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Abstract. This paper extends to non-controllable linear systems over rings the property FCs

(s > 0), which means “feedback cyclization with s inputs”: given a controllable system (A, B),

there exist a matrix K and a matrix U with s columns such that (A + BK, BU) is controllable.

Clearly, FC1 is the usual FC property. The main technique used in this work is the obtention of

block decompositions for systems, with controllable subsystems of a certain size. Each of the studied

decompositions is associated to a class of commutative rings for which all systems can be decomposed

accordingly. Finally, examples are shown of FCs rings (for s > 1) which are not FC rings.
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1. Introduction. Let R be a commutative ring with 1. An m-input, n-
dimensional system (or a system of size (n, m)) over R will be a pair of matrices
(A, B), with A ∈ Rn×n and B ∈ Rn×m. The pair (A, B) is associated to the state-
space description of the discrete-time linear system with constant coefficients, with
state and input vectors x(t), u(t), and evolution equation x(t) = Ax(t − 1) + Bu(t).
See the motivation for studying linear systems over commutative rings in [14].

A system (A, B) is reachable or controllable if any vector x of Rn is reachable
at some finite time t, starting from the initial condition x(0) = 0 and choosing ap-
propriate input vectors u(1), . . . , u(t). This is equivalent to the condition that Rn is
spanned by the columns of the reachability matrix A∗B = [B|AB| · · · |An−1B]. We
say that R is an FC ring or satisfies the FC property (FC stands for feedback cy-
clization) if, given a reachable system (A, B) over R, there exist a feedback matrix
K and a vector u such that the single-input system (A+ BK, Bu) is also reachable.
See Heymann’s Lemma [9] for an elementary solution of the FC problem and of the
related pole assignability problem when the ring of scalars is a field, like for example
R or C.

The purpose of this work is to obtain feedback cyclization by means of more
than one input, and to generalize the notion of FC to non-reachable systems. The
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following concept was introduced in [5]: The residual rank of the system (A, B),
denoted by res.rk(A, B), is defined as the residual rank of the reachability matrix
A∗B, i.e., res.rk(A, B) = max{i : Ui(A∗B) = R}, where Ui(A∗B) denotes the ideal of
R generated by the i×iminors of the matrix A∗B, with the convention U0(A∗B) = R.
The case of reachable systems corresponds with maximal residual rank. In particular,
U1(B) = R for any reachable system (A, B). Also, if two matrices M, M ′ satisfy
im(M) ⊆ im(M ′), then it is clear from the properties of the ideals of minors that
res.rk(M) ≤ res.rk(M ′), and the equality holds if the image modules are isomorphic.
In particular, given a system (A, B), one has that res.rk(A+BK, BU) ≤ res.rk(A, B)
for all matrices K, U . Finally, res.rk(M) ≤ rank(M), where rank denotes the usual
rank of a matrix. For matrices with coefficients in a field, both notions of rank
coincide, but not when scalars are taken from an arbitrary commutative ring.

The paper is organized as follows. In Section 2, we define the s-cyclization prop-
erty for not necessarily reachable systems in this way: if (A, B) is a system with
res.rk(A, B) = r, then there exists a feedback matrix K and an input matrix U with
s columns such that res.rk(A+BK, BU) = r. A ring R is called a strong FCs ring if
all systems over R are s-cyclizable. This unifies in some sense two previous concepts:
for s = 1, the strong FC1 property is the strong feedback cyclization property stud-
ied in [12], while for arbitrary s, the strong FCs property extends to non-reachable
systems the FCs property introduced in [10] for reachable systems.

In Section 3, we present the main technique used to extend results from reach-
able to non-reachable systems, which consists of various possible decompositions of
systems, with a reachable subsystem of a certain size. The first decomposition, Kr,
studied in [12], is similar to the classical Kalman controllability decomposition for
systems over fields [15, Lemma 3.3.3] and allows to extract a reachable part of dimen-
sion r. The second decomposition, Ks, was introduced in [10], and roughly speaking,
gives the possibility of concentrating the residual rank of a system (A, B) among A

and the first s columns of B. In addition, we introduce a third decomposition, Ks
r ,

which is in some sense a superposition of the two previous decompositions.

Section 4 is devoted to giving characterizations of those rings for which all systems
satisfy the given decompositions. The characterizations of rings obtained in terms of
the Kr property involve the existence of unimodular vectors in the image of certain
matrices, and a necessary condition is that all unimodular vectors must be completable
to invertible matrices. For the Ks and Ks

r properties, the principal obstruction for
systems to satisfy such decompositions is the stable range of the ring of scalars (precise
definitions will be given later).

In the last section, we present all known examples of strong FC rings, and we
study the FCs rings given in [10], to see if they also satisfy the strong form of FCs. It
is an open question whether k[x, y], for k a field, can be an FCs ring for some s > 1
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(possibly s = 2). Finally, some concluding remarks are given.

2. Strong feedback cyclization with s columns. The following definition is
the natural way to extend to arbitrary systems the FCs property introduced in [10].

Definition 2.1. In [10, Definition 2.1], a reachable system (A, B) over a ring R

is said to be s-cyclizable if there exist a matrix K and a matrix U with s columns
such that (A + BK, BU) is reachable, and the ring R is called an FCs ring if any
reachable system over R is s-cyclizable. We will say that a system (A, B) over a
ring R is s-cyclizable if there exist matrices K, U (U with s columns) such that
res.rk(A + BK, BU) = res.rk(A, B), and R will be called a strong FCs ring if all
systems over R are s-cyclizable.

Since res.rk(A+BK, BU) ≤ res.rk(A, B) for any matrices K, U , a system (A, B)
is s-cyclizable iff there exist matrices K, U as above such that res.rk(A+BK, BU) ≥
res.rk(A, B). For s = 1, one has the strong FC property studied in [11]. It is clear
that strong FCs rings are FCs rings for all s, since the case of reachable systems
corresponds with maximal residual rank. Also, by adding zero columns to the matrix
U , it is clear that s-cyclization implies s′-cyclization for all s′ > s. Hence, FCs implies
FCs′

for all s′ > s.

Some properties of systems are preserved if the system is affected by certain
operations which simplify the structure of the matrices. We recall that two systems
(A, B) and (A′, B′) over a ring R are feedback equivalent if there exist invertible
matrices P ∈ Gln(R), Q ∈ Glm(R) and a matrix K ∈ Rm×n such that (A′, B′) =
(PAP−1 + PBK, PBQ). The matrices P, Q correspond to changes of basis, while
K gives a feedback action that transforms the system (A, B) into the ‘closed-loop’
system (A+BK, B). We will use repeatedly the fact that the residual rank is invariant
under feedback [5, Proposition 2.2]. Also, the s-cyclization property is invariant under
feedback, which was already proved for reachable systems in [10, Lemma 2.3].

Proposition 2.2. Let (A, B) and (A′, B′) be two feedback equivalent systems
over a ring R. If (A′, B′) is s-cyclizable, then (A, B) is s-cyclizable.

Proof. Denote by r the common residual rank of (A, B) and (A′, B′), and let
P, Q, K1 be matrices such that (A′, B′) = (PAP−1 + PBK1, PBQ). By hypothesis,
there exists a system Σ = (A′ + B′K ′, B′U ′) with residual rank r for some matrix
U ′ with s columns. But Σ is equivalent to (P−1(A′ + B′K ′)P, P−1B′U ′), which has
also residual rank r and is of the form (A+BK, BU), where K = K1P +QK ′P and
U = QU ′ with s columns. This proves that (A, B) is s-cyclizable.

Next, we prove that the strong FCs property behaves well under the usual con-
structions such as products, quotients, lifting modulo the Jacobson radical and form-
ing power series. The next proposition is an immediate generalization of the results
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given in [1, Theorem 1], [11, Proposition 2.5] and [10, Proposition 2.4].

Proposition 2.3. Let R be a commutative ring with Jacobson radical J , I be
an ideal of R, and s be a positive integer. Then the following hold:

(i) If R is a strong FCs ring, then R/I is a strong FCs ring.
(ii) If R/J is a strong FCs ring, then R is a strong FCs ring.
(iii) A product R =

∏
i Ri is a strong FCs ring iff each Ri is a strong FCs ring.

(iv) R is a strong FCs ring if and only if R[[x]] is a strong FCs ring.

Proof. We will illustrate only the proof of (i). The remaining proofs are exactly
as in [11, Proposition 2.5].

(i) Let (A, B) be a system over R such that its reduction (Ā, B̄) modulo I has
residual rank r. One has to find matrices K̄, Ū over R/I, where Ū has s columns,
such that res.rk(Ā + B̄K̄, B̄Ū) = r. Like in the proof of [5, Lemma 2.9], one can
construct a matrix B1 = [B|B′] such that B′ has all entries in I and Ur(A∗B1) = R.

Since R is a strong FCs ring, there exist matrices K =
�

K1

K2

�
and U =

�
U1

U2

�

with s columns such that res.rk(A + B1K, B1U) ≥ r. Reducing modulo I and using
that B̄′ = 0 we get that res.rk(Ā+ B̄K̄1, B̄Ū1) ≥ r, and we are finished.

We say that a ring R is UCU (Unit-content Contains Unimodular) if, whenever
U1(B) = R, there exists a vector u with Bu unimodular, see [1]. A ring R is called
GCU (Good Contains Unimodular) if given a reachable system (A, B), there exists a
vector u with Bu unimodular [1, p. 267]. It is clear that UCU rings are GCU [1], and
GCU rings are Hermite in the sense of Lam: unimodular vectors can be completed to
invertible matrices [2, Lemma 1].

The next theorem proves that for UCU rings, the FCs and the strong FCs prop-
erties are equivalent.

Theorem 2.4. If R is UCU, then R is FCs iff R is strong FCs.

Proof. The ‘if’ part is immediate, regardless of the UCU hypothesis. Conversely,
let R be an FCs ring and consider a system (A, B) over R with res.rk(A, B) ≥ r. As
the s-cyclization property is invariant under feedback and R is a UCU ring, by [12,
Proposition 2.7], we can assume that (A, B) is decomposed in the block form given
in Definition 3.1(i), with reachable part (A1, B1) of dimension r:

(
A =

[
A1 0
A2 A3

]
, B =

[
B1

B2

])
.

By the FCs property, there exist matrices K1, U1, where U1 has s columns, such that
(A1+B1K1, B1U1) is a reachable pair. Now, define K = [K1 0], U = U1 and consider
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the system Σ = (A+BK, BU), which has the form([
A1 +B1K1 0

∗ ∗
]

,

[
B1U1

∗
])

.

Since Σ has a reachable part of dimension r, it must have residual rank ≥ r (this
is proved in Lemma 3.3 below). Thus, (A, B) is s-cyclizable, and R is a strong FCs

ring.

The case s = 1 of the above result is already proved in [12, Proposition 3.6]. In
particular, if the famous conjecture “C[x] is an FC ring” is true [4, p. 124], then C[x]
will be a strong FC ring.

The following two examples show why it is difficult to obtain counterexamples to
the FCs property for some s > 1.

Example 2.5. One dimensional systems are always 1-cyclizable. Such a system
Σ = (A, B) = ([a], [b1 · · · bm]) with residual rank zero is trivially 1-cyclizable, so we
may assume that res.rk(Σ) = 1, i.e., the ideal generated by (b1, . . . , bm) is R. Thus,
there exist scalars (ui)mi=1 such that

∑m
i=1 biui = 1. Taking U = [u1 · · ·um]′ (where ′

denotes transpose), it is clear that (A, BU) = ([a], [1]) is reachable, and hence, Σ is
1-cyclizable.

Example 2.6. The following two-dimensional system is 2-cyclizable:(
A =

[
0 0
b1 a1

]
, B =

[
1 0 · · · 0
0 b2 · · · bm

])
.(2.1)

If the ideal generated by b1, . . . , bm is notR, then res.rk(A, B) = 1 and the first column
of B already gives a 1-cyclization for the system, i.e., the system is 2-cyclizable. If
(b1, . . . , bm) = R, there exists scalars (ui)mi=1 such that

∑m
i=1 biui = 1. Now, denoting

by u the column vector [u2 · · ·um]′, we see that the 2-input system(
A, B

[
1 0
0 u

])
=

([
0 0
b1 a1

]
,

[
1 0
0 1− b1u1

])

is reachable, and hence, (A, B) is 2-cyclizable. In particular, if R is a UCU ring,
then any two-dimensional system (A, B) is 2-cyclizable: indeed, if res.rk(A, B) = 0,
then there is nothing to prove, and if res.rk(A, B) ≥ 1, then B has unit content and
hence B has a unimodular vector in its image, and therefore, following the proof of
[2, Lemma 2], we see that the system (A, B) is feedback equivalent to some system
in the form of (2.1), and thus it is 2-cyclizable.

After seeing these two examples, we know that the smallest possible counterex-
ample to the FC2 property must have sizes n, m ≥ 3 when the ring R is UCU, or
dimension n = 2 and m ≥ 3 inputs when R is not UCU. We remark that in the latter
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case, the system (A, B) must not be equivalent to one in the form (2.1), i.e., the
image of B must not have a unimodular vector that can be completed to an invertible
matrix.

3. The block decompositions. We begin this section with a precise definition
of the studied matricial decompositions.

Definition 3.1. Let (A, B) be a system of size (n, m) over R. We say that:

(i) (A, B) satisfies the property Kr if it is feedback equivalent to(
PAP−1 + PBK =

[
A1 0
A2 A3

]
, PBQ =

[
B1

B2

])
,

with (A1, B1) reachable of size (r, m), and the remaining blocks are of appro-
priate sizes. The pair (A1, B1) is called the reachable part of the decomposi-
tion. By convention, any system satisfies K0.

(ii) (A, B) satisfies Ks, for s < m, if it is equivalent to some system (A′, [B′
1|B′

2]),
with B′

1 ∈ Rn×s, res.rk(A′, B′
1) = res.rk(A, B), and where the equivalence is

given via P, K, Q, for Q =
�

Q1 0

Q2 Q3

�
, with Q1 ∈ Rs×s. It is ‘forbidden’ to

add multiples of the first s columns of B to the remaining columns of B, any
other feedback transformation is allowed. By convention, Ks holds if m ≤ s.

(iii) (A, B) satisfies Ks
r if it is equivalent to(

PAP−1 + PBK =
[

A11 0
A21 A22

]
, PBQ =

[
B11 B12

B21 B22

])
,

with (A11, B11) reachable of size (r, s), and where Q has the same structure
as in (ii). If m ≤ s, Ks

r is defined as Kr.

Remark 3.2. The property Kr was studied in [12], and Ks will be proved to be
the natural extension of the property also called Ks in [10], and studied for reachable
systems. Note that Ks implies s-cyclization: Proposition 2.2 assures that the s-
cyclization property is preserved by feedback, and it is easy to see that a decomposition
valid for Ks yields s-cyclization with K = 0, U =

�
1s

0

�
. Also, note the following

interpretation of Ks: after a suitable transformation, the residual rank of (A, B) can
be concentrated in A and in the first s columns of B.

Before obtaining the characterizations of commutative rings, we need a few lem-
mas, which collect some technical stuff needed to perform our work.

Lemma 3.3. Let (A1, B1) be a system of size (t, m), and consider any system of

size (n, m) given by A =
[

A1 0
∗ ∗

]
, B =

[
B1

∗
]
. Then we have:

(i) res.rk(A, B) ≥ res.rk(A1, B1) (cf. [12, Proposition 2.2(i)]).
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(ii) If (A, B) is reachable, then so is (A1, B1).
(iii) If (A1, B1) is equivalent to (A′

1, B
′
1) via P1, K1, Q1, then (A, B) is equivalent

to
([

A′
1 0
∗ ∗

]
,

[
B′

1

∗
])

via P =
[

P1 0
0 I

]
, K = [K1 0 ] and Q = Q1.

Proof. (i),(ii) The key fact is that the block formed by the first t rows of the reach-
ability matrix A∗B consists of [B1|A1B1| · · · |An−1

1 B1], which by Cayley-Hamilton has
the same image as A1

∗B1. If for some i, the i × i minors of A1
∗B1 generate R, the

same holds for A∗B, and statement (i) follows by definition of residual rank. Also,
if (A, B) is reachable, then A∗B is right-invertible, which forces A1

∗B1 to be also
right-invertible, i.e., (A1, B1) is reachable, which proves (ii).

(iii) It is a straightforward verification.

Lemma 3.4. Let A ∈ Rn×n, B1 ∈ Rn×s and B = [B1|B2] ∈ Rn×m. Then the
following hold:

(i) res.rk(A, B) ≥ res.rk(A, B1), and if (A, B1) is reachable, then so is (A, B).
(ii) If (A, B1) is equivalent to (A′, B′

1) via P, K1, Q1, then (A, B) is equivalent to
(A′, [B′

1|∗]) via P, K =
�

K1

0

�
and Q =

�
Q1 0

0 I

�
.

Proof. Both (i) and (ii) are immediate.

Lemma 3.5. Let (A, B) be a system of size (n, m) and s > 0 a fixed integer.

(i) If (A, B) satisfies Ks
r , then it satisfies Kr.

(ii) If res.rk(A, B) = r and (A, B) satisfies Ks
r , then Ks holds.

(iii) If res.rk(A, B) = r and (A, B) satisfies Kr with reachable part (A1, B1) sat-
isfying Ks, then Ks and Ks

r hold for (A, B).

Proof. (i) If Ks
r yields a decomposition with reachable part (A11, B11) of size

(r, s), then by Lemma 3.4(i), (A11, [B11|B12]) is reachable of size (r, m), which shows
that one has a decomposition valid for Kr.

(ii) With respect to the notation of Definition 3.1(iii), observe that

r = res.rk(A, B) ≥ res.rk
([

A11 0
∗ ∗

]
,

[
B11

∗
])

≥ res.rk(A11, B11) = r,

where the inequalities hold by Lemma 3.4(i) and Lemma 3.3(i), and the last equality
holds by Ks

r . Therefore, the middle system has residual rank r, and Ks holds.

(iii) First, by the Kr property, there exists a feedback equivalence (A, B) ∼
(Ā, B̄), and we know from [12, Lemma 2.2] that this equivalence can be obtained
without a matrix Q. Then the Ks property yields an equivalence (A1, B1) ∼
(A′

1, [B
′
11|B′

12]), with res.rk(A
′
1, B

′
11) = r, and the equivalence is given by certain

matrices P1, K1, Q1, where Q1 has the structure required by Ks. By Lemma 3.3(iii),
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we can replace (A1, B1) in (Ā, B̄) by (A′
1, [B

′
11|B′

12]), and thus,

(A, B) ≈
([

A′
1 0
∗ ∗

]
,

[
B′

11 ∗
∗ ∗

])
,

where the feedback equivalence consists of some matrices P, K, and Q = Q1 with the
required structure. Then (A, B) satisfies Ks

r , and by (ii), K
s also holds.

As promised in Remark 3.2, we will prove that the property Ks extends the one
defined in [10], and that both definitions coincide for reachable systems.

Lemma 3.6. Let (A, B) be a system of size (n, m), with B = [B1|B2] and B1 ∈
Rn×s. Then (A, B) satisfies Ks if and only if there exist matrices X, Y such that
res.rk(A+B2X, B1 +B2Y ) = res.rk(A, B).

Proof. Suppose that (A, B) satisfiesKs via an equivalence (A, B) ∼ (A′, B′), with
B′ = [B′

1|B′
2] and res.rk(A

′, B′
1) = res.rk(A, B) = r. Further, suppose that (A′, B′) is(

PAP−1 + P [B1 B2]
[

K1

K2

]
, P [B1 B2]

[
Q1 0
Q2 Q3

])
.

Operating, we see that A′ = PAP−1+PB1K1+PB2K2 and B′
1 = PB1Q1+PB2Q2.

Therefore, (A′, B′
1) is equivalent to (P−1A′P − P−1B′

1Q
−1
1 K1P, P−1B′

1Q
−1
1 ), which

has residual rank r and is of the form (A+B2X, B1+B2Y ), forX = K2P−Q2Q
−1
1 K1P

and Y = Q2Q
−1
1 .

Conversely, if res.rk(A+B2X, B1+B2Y ) = res.rk(A, B), then the matrices K =�
0

X

�
and Q =

�
I 0

Y I

�
yield an equivalence (A, B) ∼ (A+BK, BQ) valid for Ks.

4. The characterizations. The aim of this section is to characterize those rings
for which any system satisfies the studied decompositions. Let us begin recalling some
results from [12].

Proposition 4.1. For a commutative ring R, we have:

(i) The ring R is Hermite iff Kr holds for any single-input system Σ over R with
r ≤ res.rk(Σ).

(ii) R is a UCU ring iff Kr holds for all systems Σ over R with r ≤ res.rk(Σ).
Proof. See [12, Propositions 2.5 and 2.7].

Next, we use the previous decomposition to characterize GCU rings.

Proposition 4.2. For a ring R, the following statements are equivalent:

(i) Any reachable system (A, B) over R is equivalent (without Q) to a system
(A′, B′) = (PAP−1 + PBK, PB) in which A′ is strictly lower triangular.
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(ii) Any reachable n-dimensional system over R satisfies Kr for all r ≤ n.
(iii) R is a GCU ring.

Proof. (i)⇒(ii) Let (A, B) be a reachable system over R of dimension n, and
let (A′, B′) be an equivalent system as in (i). For any r ≤ n, consider the system
(Ar, Br) formed by the first r × r block of A′, and the first r rows of B′. Due to the
triangular form of A′, it follows(

A′ =
[

Ar 0
∗ ∗

]
, B′ =

[
Br

∗
])

.

As (A′, B′) is reachable, by Lemma 3.3(ii), (Ar, Br) must be also reachable, and Kr

holds.

(ii)⇒(iii) Let (A, B) be a reachable system. By K1, there exists a decomposition
(PAP−1 + PBK, PBQ) with a reachable part (A1, B1), so that B1 -the first row of
PBQ- is unimodular. Then for some column vector u, one has B1u = 1. Hence,
PBQu is unimodular (its first entry is 1), and multiplying by the invertible matrix
P−1 it follows that BQu ∈ im(B) is unimodular.

(iii)⇒(i) We proceed by induction on n. The case n = 1 being trivial: if a
one-dimensional system (a, b) is reachable, then b is a unimodular row and (a, b) is
feedback equivalent to (a+ bk = 0, b) for some k.

If n > 1, then by [2, Lemma 2], we have that (A, B) is equivalent to some system

Σ =
([
0 0
b′ A′

]
,

[
1 0
0 B′

])
,

where Σ′ = (A′, [b′|B′]) is reachable by Eising’s Lemma [6, Lemma 1]. By induction,
Σ′ can be transformed into a normal form (A′′, [b′′|B′′]) via a feedback equivalence
without Q. Therefore, we can apply [12, Lemma 2.4] to “copy & paste” the blocks
A′′, b′′, B′′ into Σ, obtaining a new system

Σ =


A =




0 0 · · · · · · 0
∗
...
...
∗

0 · · · · · · 0

∗ . . .
...

...
. . . . . .

...
∗ · · · ∗ 0


 , B =

[
1 ∗
0 ∗

]

 .

If, after the sequence of equivalences, we have A = PAP−1 + PBK and B = PBQ

for some invertible matrices P and Q, then we can remove Q by right-multiplication
by Q−1, obtaining an equivalent system in the required form.

Remark 4.3. If a statement on a system (A, B) involves only feedback reduction
of the matrix A, then we are allowed to apply any transformation (A, B) �→ (PAP−1+
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PBK, PBQ) and remove Q at the end, as was done in the previous proposition.
However, for statements involving both matrices (A, B), we may apply only those
transformations that preserve the studied property. For example, when working with
the Ks property, there are some restrictions on the matrix Q (see Definition 3.1).

Next step is to characterize those rings satisfying Ks for all systems. We need to
introduce the stable range of a ring, a useful tool for studying stability properties of
matrices. Following [8], recall that a ring R has s in its stable range, or is s-stable,
if given a unimodular row (a1, . . . , as, b), there exist elements k1, . . . , ks in R such
that (a1 + k1b, . . . , as + ksb) = R. It is easy to see that if R is s-stable, then it is
also s′-stable for s′ ≥ s. The stable range of a ring is the smallest s for which R is
s-stable. The following matricial characterization is immediate: R is s-stable iff given
a unimodular row [a|b] with a ∈ R1×s and b ∈ R1×k, there exists a matrix X with
a+ bX unimodular.

Proposition 4.4. For a commutative ring R, we have:

(i) The ring R is s-stable iff Ks holds for one-dimensional reachable systems.
(ii) If R is GCU, then it is s-stable iff Ks holds for all reachable systems over R.

In particular, s-stable GCU rings are FCs rings.
(iii) If R is UCU, then it is s-stable iff Ks holds for all systems over R. In

particular, s-stable UCU rings are strong FCs rings.

Proof. (i) It suffices to consider one-dimensional systems with more than s in-
puts, i.e., systems of the form (a, [c|d]), where c ∈ R1×s and with [c|d] unimodular.
Requiring that all such systems satisfy Ks is equivalent to the existence of K such
that c+ dK is unimodular, i.e., R is an s-stable ring.

(ii) It is proved in [10, Theorem 3.3].

(iii) From (i), it is clear that if Ks holds for all systems, then R is s-stable,
without using the UCU hypothesis. Conversely, suppose that R is an s-stable UCU
ring, let (A, B) be a system over R of size (n, m) with m ≥ s (otherwise Ks holds
by convention), and assume that res.rk(A, B) ≥ r. By Proposition 4.1(ii), (A, B)
satisfies Kr, and we know from [12, Proposition 2.2] that the equivalence yielding the
decomposition can be obtained without Q, thus preserving the presence or absence
of property Ks. Hence, we can assume that (A, B) in decomposed in the form of Kr,
with a reachable part (A1, B1) of size (r, m). Since UCU implies GCU, the reachable
pair (A1, B1) satisfies the property Ks, and we use Lemma 3.5(iii) to conclude that
Ks holds for (A, B).

The next step will be to characterize rings satisfying simultaneously the conditions
s-stable and GCU, as well as s-stable and UCU.
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Proposition 4.5. For a ring R, the following statements are equivalent:

(i) Any reachable system (A, B) of size (n, m) over R satisfies Ks
r for all r ≤ n.

(ii) Any reachable system (A, B) of size (n, m) satisfies Ks and Kr for all r ≤ n.
(iii) R is an s-stable GCU ring.

Proof. (i)⇒(ii) As was seen in Lemma 3.5, Ks
r implies Kr, and also Ks when

applied to a reachable part of maximal size (in this case r = n).

(ii)⇒(i) Let (A, B) be a reachable system over R. First, decompose (A, B) ∼
(A′, [B′

1|B′
2]) according to Ks, i.e., with (A′, B′

1) reachable of size (n, s). Then for
any r ≤ n, since (A′, B′

1) satisfies Kr by hypothesis, one can apply Lemma 3.4(i) to
replace (A′, B′

1) by its decomposition, whose reachable part is of size (r, s). This gives
a decomposition valid for Ks

r .

(ii)⇔(iii) By Proposition 4.2, the GCU condition is equivalent to the second part
of (ii). But Proposition 4.4(ii) implies that, in the presence of the GCU property, R
is s stable if and only if Ks holds for all reachable systems. Therefore, statements (ii)
and (iii) are clearly equivalent.

With an analogous formulation and almost with the same proof, we have:

Proposition 4.6. For a ring R, the following statements are equivalent:

(i) Any system (A, B) over R satisfies Ks
r for all r ≤ res.rk(A, B).

(ii) Any system (A, B) over R satisfies Ks and Kr for all r ≤ res.rk(A, B).
(iii) R is an s-stable UCU ring.

Proof. The equivalence (i)⇔(ii) can be proved exactly like in the above theorem.
To see that (ii)⇔(iii), we use Proposition 4.1(ii) and Proposition 4.4(iii).

At this point, let us see what happens if we allow arbitrary feedback transforma-
tions in Ks and Ks

r , without the restrictions on the matrix Q imposed by Definition
3.1. We shall call these properties weak Ks and weak Ks

r , respectively. As a re-
sult we will obtain weakened versions of Propositions 4.5 and 4.6. The obstruction
to obtaining stronger results will be the following: suppose that (A, B) is such that
res.rk(A + BK, BU) = res.rk(A, B) for some matrix K and some matrix U with s

columns. If U can be completed to an invertible matrix Q (i.e., the columns of U span
a free rank s direct summand of Rn with a free complement), then the equivalence
(A, B) ∼ (A+BK, BQ) is adequate for the weakKs property. Only in the case s = 1,
we were able to solve this gap.

Proposition 4.7. Consider the following statements for a commutative ring R:

(i) Reachable systems of size (n, m) satisfy weak Ks
r for all r ≤ n.

(ii) Reachable systems of size (n, m) satisfy weak Ks and Kr for all r ≤ n.
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(iii) R is a GCU ring with the FCs property.

Then (i)⇔(ii)⇒(iii), and if s = 1, then all conditions are equivalent to the FC prop-
erty.

Proof. The proof of (i)⇔(ii)⇒(iii) offers no difficulty and is only a repetition of
the usual techniques. We will prove that (iii) implies (ii) in the case s = 1. For
this, let R be an FC ring and (A, B) a reachable system over R. The existence of
a reachable system (A + BK, Bu) forces u to be a unimodular vector. Since FC
rings are GCU rings [1], unimodular vectors can be completed to invertible matrices.
Therefore, there exists an m×m invertible matrix Q = [u|∗], which yields the systems
equivalence (A, B) ∼ (A+BK, BQ) = (A+BK, [Bu|∗]), valid for the decomposition
Ks. By the characterization of GCU rings given in Proposition 4.2, it follows that
Kr holds for all r ≤ n, therefore we have (ii).

Proposition 4.8. Consider the following statements for a ring R:

(i) Any system (A, B) satisfies weak Ks
r for all r ≤ res.rk(A, B).

(ii) Any system (A, B) satisfies weak Ks and Kr for all r ≤ res.rk(A, B).
(iii) R is a UCU ring with the strong FCs property.

Then (i)⇔(ii)⇒(iii), and if s = 1, then all conditions are equivalent to the strong FC
property.

Proof. It is a straightforward adaptation of the previous proposition.

We will end this section by describing how our block decompositions can be used
to derive feedback canonical or reduced forms for systems, provided we know how to
reduce reachable systems with s inputs.

Let (A, B) be a system of size (n, m) over a principal ideal domain (PID) such
that res.rk(A, B) = r. It is known that PIDs are UCU rings [4, p. 119] and also
2-stable [8, Theorem 2.3]. Therefore, by Proposition 4.6, the system (A, B) satisfies
the property K2

r with a reachable part (A11, B11) of size (r, 2). Combining Lemma
3.3(iii) and Lemma 3.4(ii), we can replace the reachable part by any known canonical
or reduced form (see [13]), obtaining


Ac =




0 0

1
. . .

...
...
. . . . . .

...
... 1 0

...
0 a 0

0

∗ ∗




, Bc =




1 0
0 c2
...

...
0 cr−1

0 b

∗

∗ ∗







,

with gcd(a, b) = 1. Finally, some of the ∗’s can be removed as follows. Denote
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Ac = (aij) and Bc = (bij), and perform the following algorithm:

• For i = r + 1, . . . , n, apply the row transformation given by P : {rowi −
bi1row1} on Ac andBc, and apply the column operations P−1 : {col1+bi1coli}
on Ac. This cleans the first column of Bc.

• For i = n, . . . , r + 1 and j = r − 2, . . . , 1, apply P : {rowi − aijrowj+1} on
Ac and Bc, and apply P−1 : {colj+1 + aijcoli} on Ac. This cleans all the ∗’s
below the 1’s in the first r − 2 columns of Ac.

• For j = 3, . . . , m, apply Q : {colj − b1jcol1} on Bc, cleaning the first row.

With a similar procedure, we could recover the reduced form obtained in [11,
Theorem 2.8] for systems over strong FC rings. By Proposition 4.8 (case s = 1),
strong FC rings are precisely those rings for which any system of residual rank ≥
r satisfies the decomposition weak K1

r , which simply says that we can extract a
reachable subsystem of size (r, 1) in the controller canonical form. Moreover, if R is
a UCU ring with stable range 1, Proposition 4.6 assures that the same reduced form
can be obtained, but with a matrix Q of a very special form, which can be used in
induction arguments.

5. Examples and concluding remarks. First, we recall all known examples
of strong FC (FC1) rings (note that the Krull dimension can be arbitrary).

Proposition 5.1. The following commutative rings are strong FC rings:

(i) Fields, local and semilocal rings.
(ii) Local-global rings, including rings with many units.
(iii) Zero-dimensional rings, including von Neumann regular rings and Artin

rings.
(iv) 1-stable Bezout domains, in particular the ring of all algebraic integers and

the ring H(Ω) of holomorphic functions on a noncompact Riemann surface.
(v) Any other ring obtained by applying Proposition 2.3 to the above rings.

Proof. For (i)–(iv), see [11], where it is proved that all these rings are UCU and
1-stable. For (v), use Proposition 2.3 to construct more examples.

When searching for examples of an FCs ring R that is not a strong FCs ring,
by Theorem 2.4, R cannot be a UCU ring. This was solved in [11, Example 3.3] for
s = 1: using a construction from [7, p. 149], it is shown the existence of a 1-stable
Dedekind domain which is an FC ring but not a strong FC ring.

The next examples are mainly algebraic. We will only give the references where
it is proved that the studied rings are GCU or UCU, indicating the stable range, if
known, and then Proposition 4.4 will assure either the FCs or strong FCs property.

• An elementary divisor ring R is a UCU ring [4, p. 119]. By [10, p. 339], R is
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an FC2 ring (hence a strong FC2 ring) which may not be FC.

• If R is a zero-dimensional ring, then R[x] is a UCU ring with the FC2 property,
thus a strong FC2 ring (see [10, p. 240]). As commented in [1, p. 269] and [10, p.
240], R[x] is not an elementary divisor ring if R has nonzero nilradical, and R[x] is
not an FC ring if some residual field R/m has finite characteristic.

• The ring Z[[x]] inherits from Z the UCU and FC2 properties and the absence
of the FC property. Therefore, it is a strong FC2 ring that is not a strong FC ring.
Since Z[[x]] is neither an elementary divisor ring nor is of the form R[x], for R zero-
dimensional, this example is not included in the two previous cases.

• Let R be a Dedekind domain. By [8, Theorem 2.3], R is 2-stable. If R has
torsion-free class group, R is an FC2 ring [10, p. 240]. The interesting case is when
R is not a UCU ring, otherwise it would be an elementary divisor domain (see [1,
Proposition 4]). Such an R is a candidate of an FC2 but not strong FC2 ring.

• In [3], several interesting examples are given of polynomial rings with the UCU
property, called BCU in that reference. For example, (i) R = V [x], where V is a
valuation ring, or (ii) R = D[x], for D a principal ideal domain with countably many
maximal ideals and containing an uncountable field. In case (i), since V has stable
range 1, the stable s range of V [x] should not be too high, while in case (ii), by Bass
stable range theorem [8, Theorem 2.3], R is 2- or 3-stable. We have been unable to
classify these examples as strong FCs rings with the smallest possible value of s. In
fact, we know no example of a UCU ring with stable range higher than 2.

We conclude that a solution could be obtained to the feedback cyclization problem
for systems over a wide class of rings, by allowing more than one input (but as few
as possible). The residual rank and the matricial decompositions have allowed us to
treat successfully the case of non-reachable systems. Also, we have reenforced the
idea that the main obstruction for a ring R to solve the feedback cyclization problem
is the stable range and the existence of certain unimodular vectors, rather than the
Krull dimension (see [10]). Although a positive answer is given to the FCs (resp.
strong FCs) problem for GCU (resp. UCU) rings with finite stable range, it is not
known if certain rings which are not GCU, like k[x, y], with k a field, can be FCs

rings (or strong FCs) for some s ≥ 2. We close stating two important questions which
remain unsolved:

Open problem 5.2. Do the properties GCU or UCU imply stable range ≤ 2?

Open problem 5.3. Is FCs (resp., strong FCs) for s ≥ 2 possible without the
GCU (resp., UCU) property?
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