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THE EIGENVALUE DISTRIBUTION OF SCHUR COMPLEMENTS

OF NONSTRICTLY DIAGONALLY DOMINANT MATRICES AND

GENERAL H−MATRICES∗
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Abstract. The paper studies the eigenvalue distribution of Schur complements of some special

matrices, including nonstrictly diagonally dominant matrices and general H−matrices. Zhang, Xu,

and Li [Theorem 4.1, The eigenvalue distribution on Schur complements of H-matrices. Linear

Algebra Appl., 422:250–264, 2007] gave a condition for an n×n diagonally dominant matrix A to have

|JR+
(A)| eigenvalues with positive real part and |JR−

(A)| eigenvalues with negative real part, where

|JR+
(A)| (|JR−

(A)|) denotes the number of diagonal entries of A with positive (negative) real part.

This condition is applied to establish some results about the eigenvalue distribution for the Schur

complements of nonstrictly diagonally dominant matrices and general H−matrices with complex

diagonal entries. Several conditions on the n×n matrix A and the subset α ⊆ N = {1, 2, · · · , n} are

presented so that the Schur complement A/α of A has |JR+
(A)|−|Jα

R+
(A)| eigenvalues with positive

real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative real part, where |Jα
R+

(A)| (|Jα
R−

(A)|)

denotes the number of diagonal entries of the principal submatrix A(α) of A with positive (negative)

real part.

Key words. Eigenvalue distribution, Schur complements, (Generalized) Diagonally dominant

matrices, General H−matrices.
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1. Introduction. The eigenvalue distribution of special matrices has various im-

portant applications in many aspects of matrix theory and in applied mathematics;

see [9], [13] and [15]. A great deal of work has been devoted on the topic by a number

of authors; see e.g., the references within [9, 10, 16, 18, 21, 24, 14]. Recently, con-
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siderable interest in the work on Schur complements for strictly diagonally dominant

matrices and nonsingular H−matrices has been witnessed and some properties, such

as diagonal dominance and the eigenvalue distribution of Schur complements, have

been proposed. Readers are referred to [3, 4, 6, 7, 8, 9, 10, 11, 16, 18, 20, 21, 22, 24].

For example, Liu et al. [9, 10, 11], as well as Zhang, Xu, and Li [21] studied the

eigenvalue distribution on the Schur complements of strictly diagonally dominant

matrices and nonsingular H−matrices and proposed some useful results, respectively.

But little attention has been paid to work on the eigenvalue distribution of the Schur

complements for nonstrictly diagonally dominant matrices and general H−matrices.

In this paper, we study the eigenvalue distribution on the Schur complements of

some special matrices including nonstrictly diagonally dominant matrices and general

H-matrices. Let A be either a nonstrictly diagonally dominant matrix or a general

H−matrix and α ⊆ N = {1, 2, · · · , n}, and denote the Schur complement matrix of

the matrix A by A/α. Zhang et al. in [21] give the following result for a matrix

A = (aij) ∈ Cn×n. If Â = (âij) is nonsingular diagonally dominant, where âij is

defined in (2.3), then A has |JR+
(A)| eigenvalues with positive real part and |JR−

(A)|
eigenvalues with negative real part. Here |JR+

(A)| (or |JR−
(A)|) denotes the number

of diagonal entries of A with positive (or negative) real part. Applying this result

to the matrix A/α, some properties on diagonal dominance and nonsingularity for

the matrix Â/α will be presented to establish some results about the eigenvalue

distribution for the Schur complements of nonstrictly diagonally dominant matrices

and general H−matrices with complex diagonal entries. Several conditions on the

n × n matrix A and the subset α ⊆ N = {1, 2, · · · , n} are presented such that the

Schur complement matrix A/α of the matrix A has |JR+
(A)| − |Jα

R+
(A)| eigenvalues

with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative real part,

where |Jα
R+

(A)| (or |Jα
R−

(A)|) denotes the number of diagonal entries of the principal

submatrix A(α) of A with positive (or negative) real part.

The paper is organized as follows. Some notation and preliminary results about

special matrices are given in Section 2. Some conditions on diagonal dominance and

nonsingularity for the matrix Â/α are then presented in Section 3. The main results

of this paper are given in Section 4, where we give the different conditions for a non-

strictly diagonally dominant matrix or generalH−matrixA with complex diagonal en-

tries and the subset α ⊆ N so that the Schur complement A/α has |JR+
(A)|−|Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)|− |Jα

R−

(A)| eigenvalues with negative

real part. Conclusions are given in Section 5.

2. Preliminaries. In this section we give some notions and preliminary results

about special matrices that are used in this paper. Cn×n (Rn×n) will be used to

denote the set of all n × n complex (real) matrices. Let A = (aij) ∈ Rn×n and

B = (bij) ∈ Rn×n, we write A ≥ B, if aij ≥ bij holds for all i, j = 1, 2, · · · , n. A
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matrix A = (aij) ∈ Rn×n is called a Z−matrix if aij ≤ 0 for all i 6= j. We will use

Zn to denote the set of all n × n Z−matrices. A matrix A = (aij) ∈ Zn is called

an M−matrix if A can be expressed in the form A = sI − B, where B ≥ 0, and

s ≥ ρ(B), the spectral radius of B. If s > ρ(B), A is called a nonsingular M−matrix;

if s = ρ(B), A is called a singular M−matrix. Mn, M
•
n and M0

n will be used to denote

the set of all n × n M−matrices, the set of all n × n nonsingular M−matrices and

the set of all n× n singular M−matrices, respectively. It is easy to see that

Mn = M•
n ∪M0

n and M•
n ∩M0

n = ∅.(2.1)

The comparison matrix of a given matrix A = (aij) ∈ Cn×n, denoted by µ(A) =

(µij), is defined by

µij =

{ |aii|, if i = j,

−|aij |, if i 6= j.

It is clear that µ(A) ∈ Zn for a matrix A ∈ Cn×n. A matrix A ∈ Cn×n is called a

general H−matrix if µ(A) ∈ Mn (see [2]). If µ(A) ∈ M•
n, A is called a nonsingular

H−matrix and if µ(A) ∈ M0
n, A is called a singular H−matrix. Hn, H

•
n and H0

n

will denote the set of all n× n general H−matrices, the set of all n× n nonsingular

H−matrices and the set of all n × n singular H−matrices, respectively. Similar to

equalities (2.1), we have

Hn = H•
n ∪H0

n and H•
n ∩H0

n = ∅.(2.2)

Remark 2.1. A matrix A ∈ H0
n is not necessarily singular.

For example, given a matrix A =

(
1 1

−1 1

)
. Obviously,

µ(A) =

(
1 −1

−1 1

)
= I −

(
0 1

1 0

)
= I − B,

where B =

(
0 1

1 0

)
≥ 0, and the spectral radius ρ(B) = 1, which implies that

µ(A) ∈ M0
n and thus A ∈ H0

n. But, detA = 2 6= 0 shows that the singular H−matrix

A is nonsingular.

Another example is seen in [2, Example 1].

For n ≥ 2, an n × n complex matrix A is reducible if there exists an n × n

permutation matrix P such that

PAPT =

[
A11 A12

0 A22

]
,
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where A11 is an r × r submatrix and A22 is an (n − r) × (n − r) submatrix, where

1 ≤ r < n. If no such permutation matrix exists, then A is called irreducible. If A is a

1×1 complex matrix, then A is irreducible if its single entry is nonzero, and reducible

otherwise.

Given a matrix A = (aij) ∈ Cn×n and a set α ⊆ N = {1, 2, · · · , n}, we define the

matrix Â = (âij) ∈ Cn×n and the matrix Aα = (ăij) ∈ Cn×n by

âij =

{
Re(aii), i = j,

aij , otherwise
and ăij =

{
Re(aii), i = j ∈ N − α,

aij , otherwise,
(2.3)

respectively. Here, the matrix Aα is introduced for further study on the eigenvalue

distribution for the Schur complement of nonstrictly diagonally dominant matrices

and general H−matrices (see [21] and section 4 in this paper). Obviously, Aα = A if

α = N and Aα = Â if α = ∅.

Let |α| denote the cardinality of the set α ⊆ N = {1, 2, · · · , n}. For nonempty

index sets α, β ⊆ N , A(α, β) is the submatrix of A ∈ Cn×n with row indices in α

and column indices in β. The submatrix A(α, α) is abbreviated to A(α). Let α ⊂ N ,

α′ = N − α, and A(α) be nonsingular, the matrix

A/α = A/A(α) = A(α′)−A(α′, α)[A(α)]−1A(α, α′)(2.4)

is called the Schur complement with respect to A(α), where indices in both α and

α′ are arranged with increasing order. We shall confine ourselves to the nonsingular

A(α) as far as A/α is concerned.

Definition 2.2. A matrix A ∈ Cn×n is called diagonally dominant by rows if

|aii| ≥
n∑

j=1,j 6=i

|aij |(2.5)

holds for all i ∈ N . If inequality in (2.5) holds strictly for all i ∈ N, A is called

strictly diagonally dominant by rows. If A is irreducible and the inequality in (2.5)

holds strictly for at least one i ∈ N , A is called irreducibly diagonally dominant by

rows. If (2.5) holds with equality for all i ∈ N, A is called diagonally equipotent by

rows.

Dn (SDn, IDn) and DEn will be used to denote the sets of all n×n (strictly, irre-

ducibly) diagonally dominant matrices, and the set of all n×n diagonally equipotent

matrices, respectively.

Definition 2.3. A matrix A ∈ Cn×n is called generalized diagonally dominant

by rows if there exist positive constants αi, i = 1, 2, · · · , n, such that

αi|aii| ≥
n∑

j=1,j 6=i

αj |aij |(2.6)
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holds for all i ∈ N . If inequality in (2.6) holds strictly for all i ∈ N, A is called

generalized strictly diagonally dominant by rows. If (2.6) holds with equality for all

i ∈ N, A is called generalized diagonally equipotent by rows.

We will denote the sets of all n × n generalized (strictly) diagonally dominant

matrices and the set of all n × n generalized diagonally equipotent matrices by

GDn (GSDn) and GDEn, respectively.

Definition 2.4. A matrix A is called nonstrictly diagonally dominant, if either

(2.5) or (2.6) holds with equality for at least one i ∈ N .

Remark 2.5. Let A = (aij) ∈ Cn×n be nonstrictly diagonally dominant and

α = N−α′ ⊂ N . If A(α) is a (generalized) diagonally equipotent principal submatrix

of A, then the following hold:

• A(α, α′) = 0;

• A(i1) = (ai1i1) being (generalized) diagonally equipotent implies ai1i1 = 0.

Remark 2.6. Definition 2.2 and Definition 2.3 show that

Dn ⊂ GDn and GSDn ⊂ GDn.

The following properties of diagonally dominant matrices and H−matrices will

be used in the rest of the paper.

Lemma 2.7. (see [17]) If A ∈ SDn ∪ IDn, then A is nonsingular.

Lemma 2.8. (see [21]) A matrix A ∈ Dn is singular if and only if the matrix

A has at least either one zero principal submatrix or one irreducible and diagonally

equipotent principal submatrix Ak = A(i1, i2, · · · , ik), 1 < k ≤ n, which satisfies con-

dition that there exists a k × k unitary diagonal matrix Uk such that

U−1
k D−1

Ak
AkUk = µ(D−1

Ak
Ak),

where DAk
= diag(ai1i1 , ai2i2 , · · · , aikik).

Lemma 2.9. (see [22]) Let A ∈ Dn. Then A is singular if and only if A has at

least one singular principal submatrix.

Lemma 2.10. (see [19, 22]) Let A ∈ Dn. Then A ∈ H•
n if and only if A has

no diagonally equipotent principal submatrices. Furthermore, if A ∈ Dn ∩ Zn, then

A ∈ M•
n if and only if A has no diagonally equipotent principal submatrices.

Lemma 2.11. (see [1, 24]) A matrix A ∈ Cn×n is generalized (strictly) diagonally

dominant if and only if there exists a positive diagonal matrix D such that D−1AD

is (strictly) diagonally dominant.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 801-820, December 2009

http://math.technion.ac.il/iic/ela



ELA

806 Cheng-yi Zhang, Shuanghua Luo, Fengmin Xu, and Chengxian Xu

Lemma 2.12. (see [1]) H•
n = GSDn

Lemma 2.13. A matrix A ∈ H•
n if and only if A ∈ GDn and has no generalized

diagonally equipotent principal submatrices.

Proof. Lemma 2.11, Lemma 2.12 and Lemma 2.10 give the conclusion of this

lemma.

Lemma 2.14. (see [2]) Hn = GDn.

Lemma 2.15. A matrix A ∈ H0
n if and only if A ∈ GDn and has at least one

generalized diagonally equipotent principal submatrix.

Proof. It follows from (2.2), Lemma 2.13, and Lemma 2.14 that the conclusion of

this lemma is obtained immediately.

3. Further results on the Schur complements of diagonally dominant

matrices. As is shown in [3, 7], the Schur complement of a diagonally dominant

matrix is diagonally dominant. This section will present some further results on

the Schur complements of diagonally dominant matrices. Applying these results to

the Schur complement matrix A/α of nonstrictly diagonally dominant matrices and

singular H−matrices will in Section 4 establish some theorems on the eigenvalue

distribution for the Schur complements of nonstrictly diagonally dominant matrices

and singular H−matrices. The following lemmas will be used in this section.

Lemma 3.1. (see [21]) Given a matrix A ∈ Cn×n, if Â ∈ Dn and is nonsingular,

then A is nonsingular.

Lemma 3.2. (see [5, 9, 20]) If A ∈ H•
n, then

[µ(A)]−1 ≥ |A−1| ≥ 0.

Lemma 3.3. (see [12]) Let A ∈ Cn×n and be partitioned as

A =

(
a11 A12

A21 A22

)
,

where A21 = (a21, a31, · · · , an1)T , A12 = (a12, a13, · · · , a1n). If A22 is nonsingular,

then

det A

det A22
= a11 − (a12, a13, · · · , a1n)[A22]

−1




a21
a31
...

an1


 .
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Lemma 3.4. Given a matrix A ∈ Dn and a set α = N − α′ ⊆ N , if A(γ) is the

largest diagonally equipotent principal submatrix of A(α) for γ = α − γ′ ⊆ α, then

A/α = A(α′ ∪ γ′)/γ′, where

A(α′ ∪ γ′) =

[
A(γ′) A(γ′, α′)

A(α′, γ′) A(α′)

]
.(3.1)

Proof. If γ = α, i.e., A(α) is diagonally equipotent and nonsingular, then it

follows from Remark 2.5 that A(α, α′) = 0. As a result,

A/α = A(α′)−A(α′, α)[A(α)]−1A(α, α′) = A(α′) = A(α′ ∪ ∅)/∅.

Now we consider the case when γ ⊂ α. Since A ∈ Dn and A(γ) is diagonally

equipotent, we have with Remark 2.5 that A(γ, γ′) = 0 and A(γ, α′) = 0. Thus, there

exists an |α| × |α| permutation matrix Pα such that

PαA(α)P
T
α =

[
A(γ) 0

A(γ′, γ) A(γ′)

]
,

correspondingly

A(α′, α)PT
α = (A(α′, γ), A(α′, γ′)) and

PαA(α, α
′) =

(
A(γ, α′)

A(γ′, α′)

)
=

(
0

A(γ′, α′)

)
.

(3.2)

Since A(α) is nonsingular, A(γ) and A(γ′) are both nonsingular. Therefore, we have

[A(α)]−1 = PT
α

[
[A(γ)]−1 0

−[A(γ′)]−1A(γ′, γ)[A(γ)]−1 [A(γ′)]−1

]
Pα.(3.3)

Let B =

[
[A(γ)]−1 0

−[A(γ′)]−1A(γ′, γ)[A(γ)]−1 [A(γ′)]−1

]
. Then [A(α)]−1 = PT

α BPα.

As a consequence, it follows from (3.2) and (3.3) that

A/α = A(α′)−A(α′, α)[A(α)]−1A(α, α′)

= A(α′)−A(α′, α)PT
α BPαA(α, α

′)

= A(α′)− (A(α′, γ), A(α′, γ′))B

[
0

A(γ′, α′)

]

= A(α′)−A(α′, γ′)[A(γ′)]−1A(γ′, α′)

= A(α′ ∪ γ′)/γ′.

This completes the proof.
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Lemma 3.5. (see [1, 5]) Let A ∈ Rn×n. If A ∈ Mn, then det A ≥ 0. Furthermore,

if A ∈ M•
n, then det A > 0.

Lemma 3.6. (see [22]) Let A ∈ Cn×n and α ⊂ N . If both A and A(α) are

nonsingular, then A/α is also nonsingular.

Theorem 3.7. Given a matrix A = (aij) ∈ Cn×n, if Â ∈ Dn and is nonsingular,

where Â is given in (2.3), then Â/α ∈ Dn−|α| and is nonsingular for any given

α ⊂ N .

Proof. We firstly prove the conclusion that Â/α ∈ Dn−|α| for any given α ⊂ N

by proving the following two cases: (i) If A(α) ∈ H•
|α|, then Â/α ∈ Dn−|α|; (ii) if

A(α) /∈ H•
|α|, then Â/α ∈ Dn−|α|.

First, we prove case (i). Since Â ∈ Dn and is nonsingular, it follows from Lemma

3.1 that A is nonsingular. Thus, Lemma 2.9 indicates that A(α) is nonsingular. As a

result, A/α exists. Assume α = {i1, i2, · · · , ik}, α′ = N−α = {j1, j2, · · · , jm}, k+m =

n. Let A/α = (ãjl,jt)m×m. According to definition (2.4) of the matrix A/α, we have

the entries of the Schur complement A/α,

ãjl,jt = ajl,jt −


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jt
ai2,jt
...

aik,jt





 ,

l, t = 1, 2, · · · ,m,

(3.4)

and the diagonal entries,

ãjl,jl = ajl,jl −


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl





 ,

l = 1, 2, · · · ,m.

(3.5)

Since A(α) ∈ H•
|α|, Lemma 3.2 gives

{µ[A(α)]}−1 ≥ |[A(α)]−1| ≥ 0.(3.6)

Then from (3.4), (3.5), (3.6), and Lemma 3.3, we have
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|Re(ãjl,jl )| −
m∑

i=1,i6=l

|ãjl,ji | =

∣∣∣∣∣∣∣∣∣∣

Re



ajl,jl − (ajl,i1 , · · · , ajl,ik)[A(α)]−1




ai1,jl

ai2,jl

...

aik,jl







∣∣∣∣∣∣∣∣∣∣

−
m∑

i=1,i6=l

∣∣∣∣∣∣∣∣∣∣



ajl,ji − (ajl,i1 , · · · , ajl,ik )[A(α)]−1




ai1,ji

ai2,ji

...

aik,ji







∣∣∣∣∣∣∣∣∣∣

≥ |Re(ajl,jl )| −
m∑

i=1,i6=l

|ajl,ji |

−
m∑
i=1

∣∣∣∣∣∣∣∣∣∣



(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]−1




ai1,ji

ai2,ji

...

aik,ji







∣∣∣∣∣∣∣∣∣∣

≥ |Re(ajl,jl )| −
m∑

i=1,i6=l

|ajl,ji |

−
m∑
i=1



(|ajl,i1 |, |ajl,i2 |, · · · , |ajl,ik |)|[A(α)]−1|




|ai1,ji |

|ai2,ji |
...

|aik,ji |







≥ |Re(ajl,jl )| −
m∑

i=1,i6=l

|ajl,ji |

−
m∑
i=1



(|ajl,i1 |, |ajl,i2 |, · · · , |ajl,ik |){µ[A(α)]}−1




|ai1,ji |

|ai2,ji |
...

|aik,ji |







=
detBl

detµ[A(α)]
, l = 1, 2, · · · , m,

(3.7)

where

Bl =


 |Re(ajl,jl)| −

m∑
i=1,i6=l

|ajl,ji | hT

g µ[A(α)])




(k+1)×(k+1) ,

g = (−
m∑

i=1

|ai1,ji |, · · · ,−
m∑

i=1

|aik,ji |)T ,

h = (−|ajl,i1 |, · · · ,−|ajl,ik |)T .

It is clear that Bl ∈ Zk+1. Since Â ∈ Dn, we have

|Re(ajl,jl)| −
m∑

i=1,i6=l

|ajl,ji | ≥
k∑

t=1

|ajl,it |.(3.8)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 801-820, December 2009

http://math.technion.ac.il/iic/ela



ELA

810 Cheng-yi Zhang, Shuanghua Luo, Fengmin Xu, and Chengxian Xu

Since A ∈ Dn for Â ∈ Dn, we obtain

|air,ir | ≥
k∑

t=1,t6=r

|air ,it |+
m∑

i=1

|air ,ji |, r = 1, 2, · · · , k.(3.9)

Inequalities (3.8) and (3.9) indicate that Bl ∈ Dk+1. Therefore, it follows from

Remark 2.6 and Lemma 2.14 that Bl ∈ Hk+1 ∩ Zk+1 and consequently Bl ∈ Mk+1.

Lemma 3.5 gives detBl = detµ(Bl) ≥ 0. Again, since A(α) ∈ H•
|α|, µ[A(α)] ∈ M•

|α|.

Using Lemma 3.5, we have detµ[A(α)] > 0. Thus, by (3.7), we have

|Re(ãjl,jl)| −
m∑

i=1,i6=l

|ãjl,ji | ≥
detBl

detµ[A(α)]
≥ 0, l = 1, 2, · · · ,m,(3.10)

and thus

|Re(ãjl,jl)| ≥
m∑

i=1,i6=l

|ãjl,ji |, l = 1, 2, · · · ,m,(3.11)

which shows Â/α ∈ Dm. This completes the proof of case (i).

Next, we prove case (ii): Assume A(α) /∈ H•
|α|, it then follows from Lemma 2.10

that A(α) has at least one diagonally equipotent principal submatrix. Let A(γ) be

the largest diagonally equipotent principal submatrix of the matrix A(α) for γ =

α− γ′ ⊆ α. Then A(γ′) has no diagonally equipotent principal submatrix and hence

A(γ′) ∈ H•
|γ′| from Lemma 2.10. Since A ∈ Dn for Â ∈ Dn and A(γ) is the largest

diagonally equipotent principal submatrix of the matrix A(α), it follows from Lemma

3.4 that A/α = A(α′ ∪γ′)/γ′, where α′ = N −α ⊆ N and A(α′ ∪γ′) is given in (3.1).

Let B = A(α′ ∪ γ′). Since B̂ = Â(α′ ∪ γ′) ∈ D|α′∪γ′| for Â ∈ Dn and A(γ′) ∈ H•
|γ′|, it

follows from the proof of case (i) that B̂/γ′ ∈ D|α′|. SinceA/α = A(α′∪γ′)/γ′ = B/γ′,

Â/α = B̂/γ′ ∈ D|α′|, which shows that the proof of case (ii) is completed.

In what follows, the conclusion that Â/α is nonsingular for any given α ⊂ N will

be proved by proving the following two cases: (1) Â/α is irreducible; otherwise (2),

Â/α is reducible.

We prove case (1) first. If Â/α is irreducible and the inequality in (3.11) holds

strictly for at least one l, l = 1, 2, · · · ,m, Lemma 2.7 yields that Â/α is nonsin-

gular. Otherwise, if Â/α is irreducible and the equality in (3.11) holds for all l,

l = 1, 2, · · · ,m, i.e.,

|Re(ãjl,jl)| −
m∑

i=1,i6=l

|ãjl,ji | = 0, l = 1, 2, · · · ,m,(3.12)
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(3.12), (3.7), and (3.10) imply that

|Re(ãjl,jl)| =

∣∣∣∣∣∣∣∣∣
Re


ajl,jl − (ajl,i1 , · · · , ajl,ik)[A(α)]−1




ai1,jl
ai2,jl
...

aik,jl







∣∣∣∣∣∣∣∣∣

= |Re(ajl,jl)| −

∣∣∣∣∣∣∣∣∣


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl







∣∣∣∣∣∣∣∣∣

and thus

Re(ãjl,jl) = Re


ajl,jl − (ajl,i1 , · · · , ajl,ik)[A(α)]−1




ai1,jl
ai2,jl
...

aik,jl







= Re(ajl,jl)−


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl







(3.13)

for all l, l = 1, 2, · · · ,m. Let Ă = A−E, where E = i ·diag(e1, · · · , en) with i =
√
−1,

es = Im(ass) for s ∈ α′ = N − α and es = 0 for s ∈ α. Therefore, (3.13) yields

Â/α = Ă/α.

Since Â ∈ Dn is nonsingular and
̂̆
A = Â, it follows from Lemma 3.1 that Ă is also

nonsingular. Again, since A(α) is nonsingular, Lemma 3.6 shows that Â/α = Ă/α is

nonsingular. This completes the proof of case (i).

The following will prove case (2). If Â/α is reducible, so is A/α. Then there

exists an m×m permutation matrix P such that

P [A/α]PT = PA(α′)PT − PA(α′, α)[A(α)]−1A(α, α′)PT

=




B11 B12 · · · B1s

0 B22 · · · B2s

...
...

. . .
...

0 0 · · · Bss


 ,

(3.14)
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and correspondingly,

P [A(α′)]PT =




A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

. . .
...

As1 As2 · · · Ass


 ,

P [A(α′, α)] =
[
A10 A20 · · · As0

]T
,

and

[A(α, α′)]PT =
[
A01 A02 · · · A0s

]
,

where Bii is irreducible for i = 1, 2, · · · , s (s ≥ 2), Bij = B(αi, αj) and Aij = A(αi, αj)

are the submatrices of the matrix A and A/α = B, respectively, with row indices

in αi and column indices in αj ,
⋃s

j=1 αj = α′ and αi ∩ αj = ∅ for i 6= j, i, j =

0, 1, 2, · · · , s (s ≥ 2), α0 = α. Using (3.14), direct calculation gives

Bii = Aii −Ai0[A(α)]
−1A0i, i = 1, 2, · · · , s (s ≥ 2), i = 1, 2, · · · , s

which is the Schur complement of the matrix

A(α ∪ αi) =

[
A(α) A(α, αi)

A(αi, α) A(αi)

]
=

[
A(α) A0i

Ai0 Aii

]

with respect to A(αi) = Aii. Since Â ∈ Dn and is nonsingular, Â(α ∪ αi) ∈ D|α∪αi|

and is nonsingular. Again, since Bii is irreducible, so is B̂ii. It follows from the proof

of case (1) that B̂ii is nonsingular for i = 1, 2, · · · , s. By (3.14) we have

P [Â/α]PT =




B̂11 B12 · · · B1s

0 B̂22 · · · B2s

...
...

. . .
...

0 0 · · · B̂ss



.(3.15)

The nonsingularity of B̂ii for all i = 1, 2, · · · , s and (3.15) show that P [Â/α]PT is

nonsingular, so is Â/α, which shows that the proof of case (2) is completed. This

completes the proof.

Theorem 3.8. Given a matrix A = (aij) ∈ Cn×n and a set α ⊂ N, if Aα ∈ Dn

and A(α) is nonsingular, where Aα is given in (2.3), then Â/α ∈ Dn−|α| and is

nonsingular.

Proof. The proof on diagonal dominance of Â/α follows the proof of Theorem 3.7.

It follows from the definition of Aα that A(α) = Aα(α) ∈ D|α| for Aα ∈ Dn. Then, if
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A(α) ∈ H•
|α|, (3.7) holds. Furthermore, Aα ∈ Dn indicates that both (3.8) and (3.9)

hold. As a result, (3.11) holds, which shows that Â/α ∈ Dn−|α|. If A(α) /∈ H•
|α|, the

proof on diagonal dominance of Â/α is similar to the proof of case (ii) in the proof

Theorem 3.7.

In what follows, we will prove the nonsingularity of the matrix Â/α. Since

Aα is nonsingular, Lemma 2.9 indicates aii 6= 0 for all i ∈ α and Re(aii) 6= 0

for all i ∈ α′. Furthermore, since Aα ∈ Dn, A ∈ Dn. Let α = {i1, i2, · · · , ik}
and α′ = {j1, j2, · · · , jm} with k + m = n. Definite a unitary diagonal matrix

U =

[
Uα 0

0 Iα′

]
, where Uα = diag(ui1 , · · · , uik), ui =

āii
|aii|

for all i ∈ α, āii is

the conjugate complex number of the complex number aii and Iα′ is the |α′| × |α′|
identity matrix, such that B = UA =

[
UαA(α) UαA(α, α

′)

A(α′, α) A(α′, α′)

]
∈ Dn. Therefore,

B̂ = UAα =

[
UαA(α) UαA(α, α

′)

A(α′, α) Â(α′, α′)

]
∈ Dn and is nonsingular for Aα ∈ Dn and

is nonsingular. It follows from Theorem 3.7 that B̂/α is nonsingular. Since

A/α = A(α′)−A(α′, α)[A(α)]−1A(α, α′)

= A(α′)−A(α′, α)[UαA(α)]
−1[UαA(α, α

′)]

= [UA]/[UαA(α)]

= B/α,

Â/α is also nonsingular. This completes the proof.

Applying Theorem 3.7 and Theorem 3.8, we will in the next section establish

some results on the eigenvalue distribution for the Schur complements of nonstrictly

diagonally dominant matrices and general H−matrices.

4. The eigenvalue distribution on the Schur complement of nonstrictly

diagonally dominant matrices and general H−matrices. This section follows

[9], [10], [11], and [21], and continues to study the eigenvalue distribution on the

Schur complements of some special matrices including nonstrictly diagonally domi-

nant matrices and singular H−matrices. The results in [9] and [21] will be extended

to the Schur complements for nonstrictly diagonally dominant matrices and general

H−matrices with complex diagonal entries. The following lemma will be used in this

section.

Lemma 4.1. (see [21]) Given a matrix A ∈ Cn×n, if Â ∈ Dn and is nonsingular,

then A has |JR+
(A)| eigenvalues with positive real part and |JR−

(A)| eigenvalues with
negative real part, where JR+

(A) = {i | Re(aii) > 0, i ∈ N}, JR−
(A) = {i | Re(aii) <

0, i ∈ N}.
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Theorem 4.2. Given a matrix A = (aij) ∈ Cn×n and a set α ⊂ N , if Â ∈ Dn

and is nonsingular, where Â is given in (2.3), then A/α has |JR+
(A)| − |Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative

real part, where JR+
(A) = {i | Re(aii) > 0, i ∈ N}, JR−

(A) = {i | Re(aii) < 0, i ∈
N}, Jα

R+
(A) = {i | Re(aii) > 0, i ∈ α}, Jα

R−

(A) = {i | Re(aii) < 0, i ∈ α}.

Proof. The conclusion of this theorem will be proved by showing the results: (i)

Â/α ∈ Dm and is nonsingular; (ii) Sign Re(ãjl,jl) = Sign Re(ajl,jl), l = 1, 2, · · · ,m,

where m = n− |α|, ãjl,jl and ajl,jl are the diagonal entries of the matrices A/α and

A, respectively. With these two results, the conclusion of the theorem comes from

the results of Lemma 4.1.

Since Â ∈ Dn and is nonsingular, it follows from Theorem 3.7 that Â/α ∈ Dm

and is nonsingular. This completes the proof of result (i). Next, we prove result (ii):

Sign Re(ãjl,jl) = Sign Re(ajl,jl), l = 1, 2, · · · ,m.(4.1)

Assume α = {i1, i2, · · · , ik}, α′ = N − α = {j1, j2, · · · , jm}, k +m = n. Let A/α =

(ãjl,jt)m×m, then it follows from (2.4) that the diagonal entries of A/α,

ãjl,jl = ajl,jl −


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl





 ,

l = 1, 2, · · · ,m.

Since Â/α ∈ Dm and is nonsingular, it then from Lemma 2.9 that

Re(ãjl,jl) = Re(ajl,jl)−

Re


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl





 6= 0

(4.2)

for l = 1, 2, · · · ,m. Therefore, equation (4.2) implies that (4.1) is true if

|Re(ajl,jl)| ≥

∣∣∣∣∣∣∣∣∣
Re


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl







∣∣∣∣∣∣∣∣∣
,

l = 1, 2, · · · ,m

(4.3)

holds. The inequality (4.3) will be proved by the following two cases.
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Case (I.) If A(α) ∈ H•
|α|, then Lemma 3.2 gives

{µ[A(α)]}−1 ≥ |[A(α)]−1| ≥ 0.(4.4)

Using inequality (4.4) and Lemma 3.3, we have

|Re(ajl,jl)| −

∣∣∣∣∣∣∣∣∣
Re


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl







∣∣∣∣∣∣∣∣∣

≥ |Re(ajl,jl)| −

∣∣∣∣∣∣∣∣∣
(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]−1




ai1,jl
ai2,jl
...

aik,jl




∣∣∣∣∣∣∣∣∣

≥ |Re(ajl,jl)| −


(|ajl,i1 |, |ajl,i2 |, · · · , |ajl,ik |)|[A(α)]

−1|




|ai1,jl |
|ai2,jl |

...

|aik,jl |







≥ |Re(ajl,jl)| −


(|ajl,i1 |, |ajl,i2 |, · · · , |ajl,ik |){µ[A(α)]}

−1




|ai1,jl |
|ai2,jl |

...

|aik,jl |







=
detCl

detµ[A(α)]
, l = 1, 2, · · · ,m,

(4.5)

where

Cl =

( |Re(ajl,jl)| hT
l

gl µ[A(α)]

)

(k+1)×(k+1)

,

gl = (−|ai1,jl |, · · · ,−|aik,jl |)T ,
hl = (−|ajl,i1 |, · · · ,−|ajl,ik |)T .

It is clear that the matrix Cl ∈ Zk+1. Since Â ∈ Dn and hence A ∈ Dn, we have

|Re(ajl,jl)| ≥
k∑

t=1

|ajl,it |,(4.6)

|air ,ir | ≥
k∑

t=1,t6=r

|air ,it |+ |air ,jl |, r = 1, 2, · · · , k.(4.7)
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Inequalities (4.6) and (4.7) indicate that the matrix Cl ∈ Dk+1∩Zk+1. It then follows

from Remark 2.6 and Lemma 2.14 that Cl is an H−matrix and thus an M−matrix.

Hence det Cl ≥ 0 coming from Lemma 3.5. Since A(α) ∈ H•
|α|, µ[A(α)] ∈ M•

|α| and it

follows from Lemma 3.5 that detµ[A(α)] > 0, it follows from (4.5) that we have

|Re(ajl,jl)| −

∣∣∣∣∣∣∣∣∣
Re


(ajl,i1 , ajl,i2 , · · · , ajl,ik)[A(α)]

−1




ai1,jl
ai2,jl
...

aik,jl







∣∣∣∣∣∣∣∣∣
≥ 0, l = 1, 2, · · · ,m,

which proves (4.3), and hence (4.1) holds for l = 1, 2, · · · ,m.

Case (Π.) If A(α) /∈ H•
|α|, it then follows from Lemma 2.10 that A(α) has at least

one diagonally equipotent principal submatrix. Let A(γ) be the largest diagonally

equipotent principal submatrix of the matrix A(α) for γ = α−γ′ ⊆ α. Then A(γ′) has

no diagonally equipotent principal submatrix and hence A(γ′) ∈ H•
|γ′| from Lemma

2.10. Since A ∈ Dn for Â ∈ Dn and A(γ) is the largest diagonally equipotent principal

submatrix of the matrix A(α), it follows from Lemma 3.4 that A/α = A(α′ ∪ γ′)/γ′,

where α′ = N−α ⊆ N and A(α′∪γ′) is given in (3.1). Assume γ′ = {r1, r2, · · · , rs} ⊆
α (s ≤ k). Then the diagonal entries of A/α = A(α′ ∪ γ′)/γ′ are

ãjl,jl = ajl,jl −


(ajl,r1 , ajl,r2 , · · · , ajl,rs)[A(γ

′)]−1




ar1,jl
ar2,jl
...

ars,jl





 ,

l = 1, 2, · · · ,m.

Since Â/α ∈ Dm and is nonsingular, Lemma 2.9 indicates that

Re(ãjl,jl) = Re(ajl,jl)−

Re


(ajl,r1 , ajl,r2 , · · · , ajl,rs)[A(γ

′)]−1




ar1,jl
ar2,jl
...

ars,jl





 6= 0

(4.8)

for l = 1, 2, · · · ,m. Therefore, equation (4.8) implies that (4.1) is true if

|Re(ajl,jl)| ≥

∣∣∣∣∣∣∣∣∣
Re


(ajl,r1 , ajl,r2 , · · · , ajl,rs)[A(γ

′)]−1




ar1,jl
ar2,jl
...

ars,jl







∣∣∣∣∣∣∣∣∣
,

l = 1, 2, · · · ,m

(4.9)
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holds. Similar to the proof of Case (I), we can prove that (4.9) holds and hence (4.1)

also holds for l = 1, 2, · · · ,m.

Result (i) shows that the matrix A/α satisfies the conditions of Lemma 4.1.

Applying Lemma 4.1 and the result (i) and (ii) give the conclusion that the matrixA/α

has |JR+
(A)| − |Jα

R+
(A)| eigenvalues with positive real part and |JR−

(A)| − |Jα
R−

(A)|
eigenvalues with negative real part. The proof is completed.

Lemma 4.3. (see [22, 23]) Given a matrix A = (aij) ∈ Cn×n and a positive

diagonal matrix D = diag(d1, · · · , dn). Let B = D−1AD and α ⊂ N given. If A(α)

is nonsingular, then B/α = D−1
α′ (A/α)Dα′ , where α′ = N − α = {j1, · · · , jm} and

Dα′ = diag(dj1 , · · · , djm).

Theorem 4.4. Given a matrix A = (aij) ∈ Cn×n and a set α ⊂ N , if Â ∈ Hn

and is nonsingular, where Â is given in (2.3), then A/α has |JR+
(A)| − |Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative

real part.

Proof. Since Â ∈ Hn, Lemma 2.14 and Lemma 2.11 indicate that there exists a

positive diagonal matrix D = diag(d1, d2, · · · , dn) such that D−1ÂD ∈ Dn. Then, it

follows from the definition of Â that D−1AD ∈ Dn. Let B = D−1AD = (bij), then

bij = d−1
i aijdj , i 6= j and bii = aii for all i, j ∈ N. Thus, |JR+

(B)| − |Jα
R+

(B)| =
|JR+

(A)| − |Jα
R+

(A)| and |JR−
(B)| − |Jα

R−

(B)| = |JR−
(A)| − |Jα

R−

(A)|. Since the

matrix B satisfies the condition of Theorem 4.2, it follows that the matrix B/α has

|JR+
(A)| − |Jα

R+
(A)| eigenvalues with positive real part and |JR−

(A)| − |Jα
R−

(A)|
eigenvalues with negative real part. Again, Lemma 4.3 gives

B/α = D−1
m (A/α)Dm,(4.10)

where Dm = diag(dj1 , dj2 , · · · , djm). Equation (4.10) implies that both the matrices

B/α and A/α have the same number of eigenvalues with positive real part and the

same number of eigenvalues with negative real part. This completes the proof.

Example 4.5. Given a matrix

A =




5− i −1 −1 −1 −1 −1

1 −6 + i −2 −i −1 i

2i 1 −10 −2 −3 −2

0 0 0 6 + 3i −2 −4i

0 0 0 2 8− 5i −6

0 0 0 3 1 −4 + 3i




and α = {1, 3, 4}, we consider the eigenvalue distribution on the Schur complement

matrix A/α.
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Since Â ∈ Dn ⊂ Hn and is nonsingular, it follows from Theorem 4.4 that

A/α has |JR+
(A)| − |Jα

R+
(A)| = 3 − 2 = 1 eigenvalue with positive real part and

|JR−
(A)| − |Jα

R−

(A)| = 3 − 1 = 2 eigenvalues with negative real part. In fact, by

direct computations, it is easy to verify that A/α has an eigenvalue with positive real

part and 2 eigenvalues with negative real part. This illustrates that the conclusion of

Theorem 4.4 is true.

The fist equality in (2.2) implies that the following corollary holds.

Corollary 4.6. Given a matrix A = (aij) ∈ Cn×n and a set α ⊂ N , if Â ∈ H0
n

and is nonsingular, where Â is given in (2.3), then A/α has |JR+
(A)| − |Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative

real part.

In fact, the condition that “Â ∈ Dn and is nonsingular” in Theorem 4.2 and the

condition that “Â ∈ Hn and is nonsingular” in Theorem 4.4 seem strict and can be

weakened while the conclusions of the theorems still hold. The following theorems

give the weakened conditions on the matrix A.

Theorem 4.7. Given a matrix A ∈ Cn×n and a set α ⊂ N , if Aα ∈ Dn and is

nonsingular, where Aα is given in (2.3), then A/α has |JR+
(A)|−|Jα

R+
(A)| eigenvalues

with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative real part.

Proof. The proof is similar to the proof of Theorem 4.2. Theorem 3.8 gives that

Â/α ∈ Dm and is nonsingular, which shows that the result (i) in the proof of Theorem

4.2 holds.

The definition of the matrix Aα and Aα ∈ Dn shows Aα(α) = A(α) ∈ D|α|. If

A(α) ∈ H•
|α| and if A(α) /∈ H•

|α|, we can prove that the result (ii) in the proof of

Theorem 4.2 also holds by using the methods of the proof for Case (I) and Case (Π)

in the proof of Theorem 4.2, respectively.

Result (i) in the proof of Theorem 4.2 shows that the matrix A/α satisfies the

conditions of Lemma 4.1. Applying Lemma 4.1 and the result (i) and (ii) in the proof

of Theorem 4.2 give the conclusion that the matrix A/α has |JR+
(A)| − |Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)|− |Jα

R−

(A)| eigenvalues with negative

real part. The proof is completed.

Theorem 4.8. Given a matrix A ∈ Cn×n and a set α ⊂ N , if Aα ∈ Hn and is

nonsingular, where Aα is given in (2.3), then A/α has |JR+
(A)|−|Jα

R+
(A)| eigenvalues

with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative real part.

Proof. Similar to the proof of Theorem 4.4, the conclusion of this theorem can

be obtained immediately from Lemma 2.14, Lemma 2.11, Lemma 4.3, and Theorem

4.7.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 801-820, December 2009

http://math.technion.ac.il/iic/ela



ELA

Eigenvalue Distribution of Schur Complements 819

Example 4.9. Given a matrix

A =




3i −1 i −1

1 2 + i 0 −i

2 i −5 −2

1 2 3 6




and α = {1}, we consider the eigenvalue distribution on the Schur complement matrix

A/α.

Since Â /∈ Hn, we fail to get the eigenvalue distribution of the Schur complement

matrix B/α by Theorem 4.4. However, Aα ∈ Dn ⊂ Hn and is nonsingular. It follows

from Theorem 4.8 that A/α has |JR+
(A)| − |Jα

R+
(A)| = 2 − 0 = 2 eigenvalues with

positive real part and |JR−
(A)| − |Jα

R−

(A)| = 1− 0 = 1 eigenvalue with negative real

part. In fact, by direct computations, it is easy to verify that A/α has 2 eigenvalues

with positive real part and an eigenvalue with negative real part, which demonstrates

that the conclusion of Theorem 4.8 is true.

Corollary 4.10. Given a matrix A ∈ Cn×n and a set α ⊂ N , if Aα ∈ H0
n

and is nonsingular, where Aα is given in (2.3), then A/α has |JR+
(A)| − |Jα

R+
(A)|

eigenvalues with positive real part and |JR−
(A)| − |Jα

R−

(A)| eigenvalues with negative

real part.

Remark 4.11. It follows from the former equality of (2.2) that Theorem 5.7

in [21] and Corollary 4.10 in this paper are special cases of Theorem 4.8. Besides,

Example 4.9 and the relationship between the matrix Â and Aα show that Theorems

4.4 and Corollary 4.6 are also special cases of Theorem 4.8.

5. Conclusions. This paper studies the eigenvalue distribution for the Schur

complements of nonstrictly diagonally dominant matrices and general H−matrices.

Above all, different conditions on the matrix A and the set α ⊆ N are presented

such that the matrix Â/α is diagonally dominant and nonsingular. Then, the result

of Zhang et al. in [21] is applied to establish some results about the eigenvalue

distribution for the Schur complements of nonstrictly diagonally dominant matrices

and general H−matrices with complex diagonal entries.
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