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Abstract. For vectors X, Y ∈ R
n, Y is said to be left matrix majorized by X (Y ≺� X) if

for some row stochastic matrix R, Y = RX. A linear operator T : R
p → R

n is said to be a linear

preserver of ≺� if Y ≺� X on R
p implies that TY ≺� TX on R

n. The linear operators T : R
p → R

n

(n < p(p−1)) which preserve ≺� have been characterized. In this paper, linear operators T : R
p → R

n

which preserve ≺� are characterized without any condition on n and p.
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1. Introduction. Let Mnm be the algebra of all n ×m real matrices. A ma-
trix R = [rij ] ∈ Mnm is called a row stochastic (resp., row substochastic) matrix if
rij ≥ 0 and Σm

k=1rik = 1 (resp., ≤ 1) for all i, j. For A, B in Mnm, A is said to be
left matrix majorized by B (A ≺� B), if A = RB for some n×n row stochastic matrix
R. These notions were introduced in [11]. If A ≺� B ≺� A, we write A ∼� B. Let
T :Rp → R

n be a linear operator. T is said to be a linear preserver of ≺� if Y ≺� X on
R

p implies that TY ≺� TX on R
n. For more information about types of majorization

see [1], [5] and [10]; for their preservers see [2]-[4], [6] and [9].

We shall use the following conventions throughout the paper: Let T : R
p → R

n

be a nonzero linear operator and let [T ] = [tij ] denote the matrix representation of T
with respect to the standard bases {e1, e2, . . . , ep} of R

p and {f1, f2, . . . , fn} of R
n. If

p = 1, then all linear operators on R
1 are preservers of ≺�. Thus, we assume p ≥ 2. Let

Ai be mi × p matrices, i = 1, . . . , k. We use the notation [A1/A2/ . . . /Ak] to denote
the corresponding (m1 +m2 + . . . +mk) × p matrix. We let e = (1, 1, . . . , 1)t ∈ R

p,

and denote

a : = max{maxT (e1), . . . ,maxT (ep)},
b : = min{minT (e1), . . . ,minT (ep)}.(1.1)
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Theorem 1.1. ([9, Theorem 2.2]) Let T :Rp → R
n be a nonzero linear preserver

of ≺� and suppose p ≥ 2. Then p ≤ n, b ≤ 0 ≤ a and for each i ∈ {1, . . . , p},
a = maxT (ei) and b = minT (ei). In particular, every column of [T ] contains at least
one entry equal to a and at least one entry equal to b.

Definition 1.2. Let T :Rp → R
n be a linear operator. We denote by Pi (resp.,

Ni) the sum of the nonnegative (resp., non positive) entries in the ith row of [T ]. If
all the entries in the ith row are positive (resp., negative), we define Ni = 0 (resp.,
Pi = 0).

We know that T is a linear preserver of ≺� if and only if αT is also a linear
preserver of ≺� for some nonzero real number α. Without loss of generality we make
the following assumption.

Assumption 1.3. Let T :Rp → R
n be a nonzero linear preserver of ≺� . Let a

and b be as in (1.1). We assume that 0 ≤ −b ≤ 1 = a.

Definition 1.4. Let P be the permutation matrix such that P (ei) = ei+1,

1 ≤ i ≤ p− 1, P (ep) = e1. Let I denote the p× p identity matrix, and let r, s ∈ R be
such that rs < 0. Define the p(p− 1)× p matrix Pp(r, s) = [P1/P2/ . . . /Pp−1], where
Pj = rI + sP j , for all j = 1, 2, . . . , p − 1. It is clear that up to a row permutation,
the matrices Pp(r, s) and Pp(s, r) are equal. Also define Pp(r, 0) := rI, Pp(0, s) := sI

and Pp(0, 0) as a zero row.

The structure of all linear operators T :Mnm → Mnm preserving matrix majoriza-
tions was considered in [6, 7, 8]. Also the linear operators T from R

p to R
n that

preserve the left matrix majorization ≺� were characterized in [9] for n < p(p− 1).
In the present paper, we will characterize all linear preservers of ≺� mapping R

p to
R

n without any additional conditions.

2. Left matrix majorization. In this section we obtain a key condition that is
necessary for T : R

p → R
n to be a linear preserver of ≺�. We first need the following.

Lemma 2.1. Let T : R
p → R

n be a linear operator such that min T (Y ) ≤
minT (X) for all X ≺� Y. Then T is a preserver of ≺� .

Proof. Let X ≺� Y. It is enough to show that maxT (X) ≤ maxT (Y ). Since X ≺�

Y, −X ≺� −Y, and hence minT (−Y ) ≤ min T (−X). This means that maxT (X) ≤
maxT (Y ). Then T is a preserver of ≺� .

Remark 2.2. Let T : R
p → R

n be a linear preserver of ≺� and let a and b be as
in Assumption 1.3. By Theorem 1.1 we know that in each column of [T ] = [tij ] there
is at least one entry equal to a(= 1) and at least one entry equal to b. For 1 ≤ k ≤ p,
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we define

Ik = {i : 1 ≤ i ≤ n, tik = 1}, Jk = {j : 1 ≤ j ≤ n, tjk = b}.

Next we state the key theorem of this paper.

Theorem 2.3. Let T : R
p → R

n be a linear preserver of ≺� and let a and b be
as in Assumption 1.3. Then there exist 0 ≤ α ≤ 1 and b ≤ β ≤ 0 such that Pp(1, β)
and Pp(α, b) are submatrices of [T ], where Pp(r, s) is as in Definition 1.4.

Proof. Let 1 ≤ k ≤ p be a fixed number and let Ik and Jk be as in Remark 2.2.
Since T is a linear preserver of ≺�, it follows that Ik and Jk are nonempty sets. Also
ek + el ≺� ek, l �= k. Thus, the other entries in the ith row, i ∈ Ik (resp., jth row,
j ∈ Jk) are non positive (resp., nonnegative). Hence, til ≤ 0, tjl ≥ 0, l �= k, i ∈ Ik,

and j ∈ Jk. Let βi
k =

∑
l �=k til ≤ 0, i ∈ Ik and αj

k =
∑

l �=k tjl ≥ 0, j ∈ Jk. Set

βk := min{βi
k, i ∈ Ik}, αk := max{αj

k, j ∈ Jk}.(2.1)

Define Xk = −(N + 1)ek + e. Choose N0 large enough such that for all N ≥ N0 and
1 ≤ i ≤ n,

minT (Xk) = −N + βk ≤ −Ntik +
∑
l �=k

til ≤ −Nb+ αk = maxT (Xk).(2.2)

We know that Xk ∼� Xr = −(N + 1)er + e, 1 ≤ r ≤ p and T is a linear preserver
of ≺�. Hence by (2.2), α := αk = αr and β := βk = βr, 1 ≤ r ≤ p. Also, Xk ∼�

−Nei + ej , i �= j. For each N ≥ N0, there exists 1 ≤ h ≤ n such that −Nthi + thj =
minT (−Nei + ej) = minT (Xk) = −N + β and for each 1 ≤ i ≤ p, 1 ≤ j ≤ p

and N ≥ N0, there exists 1 ≤ h ≤ n such that −N(1 − thi) = thj − β. It follows
that thi = 1, thj = β. Hence Pp(1, β) is a submatrix of [T ]. Similarly, there exists
N1, such that for each N ≥ N1 there exists 1 ≤ h ≤ n so that −Nthi + thj =
maxT (−Nei+ej) = maxT (Xk) = −Nb+α and −N(b− thi) = thj −α. Thus, thi = b

and thj = α. Since 1 ≤ i �= j ≤ p was arbitrary, Pp(b, α) is a submatrix of [T ].
Therefore, Pp(1, β) and Pp(b, α) are submatrices of [T ].

Remark 2.4. Let T : R
p → R

n and T̂ : R
p → R

m be two linear operators such
that [T ] = [T1/T2/ . . . /Tn] and let [T̂ ] = [T̂1/T̂2/ . . . /T̂m] be the matrix representation
of these operators with respect to the standard basis. Let R(T ) = {T1, T2, . . . , Tn}
be the set of all rows of [T ]. If R(T ) = R(T̂ ), then T preserves ≺� if and only if T̂
preserves ≺�.

Lemma 2.5. Let T be a linear operator on R
p. If [T ] = Pp(α, β), αβ ≤ 0, then

T is a preserver of ≺� .
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Proof. Without loss of generality, let β ≤ 0 ≤ α and let X = (x1, . . . , xp)t, Y =
(y1, . . . , yp)t ∈ R

p such that X ≺� Y. Then ym = minY ≤ xi ≤ maxY = yM , for all
1 ≤ i ≤ p. It is easy to check that αym + βyM ≤ αxi + βxj , for all i �= j ∈ {1, . . . , p},
which implies min TY ≤ minTX. Hence by Lemma 2.1, TX ≺� TY.

3. Left matrix majorization on R
2 . Let T :R2 → R

n be a linear operator
and let a, b, be as in Assumption 1.3. We consider the square S = [b, 1]× [b, 1] in R

2.

Definition 3.1. Let T : R
2 → R

n be a linear operator and let [T ] = [T1/ . . . /Tn],
where Ti = (ti1, ti2), 1 ≤ i ≤ n. Define

∆ := Conv ({(ti1, ti2), (ti2, ti1), 1 ≤ i ≤ n}) ⊆ R
2.

Also, let C(T ) denote the set of all corners of ∆.

Lemma 3.2. Let T : R
2 → R

n be a linear preserver of ≺� and [T ] = [T1/ . . . /Tn],
where Tj = (tj1, tj2), 1 ≤ j ≤ n. If for some 1 ≤ i ≤ n, ti1ti2 > 0, then Ti /∈ C(T ),
where C(T ) is as in Definition 3.1.

Proof. Assume that, if possible, there exists 1 ≤ i ≤ n such that Ti ∈ C(T ) and
ti1ti2 > 0. By Remark 2.4 we can assume that [T ] has no identical rows. Without loss
of generality, we assume that there exist 1 ≤ i ≤ n and real numbers m ≤ M such
that ti1 > 0, ti2 > 0 andmti1+Mti2 < mtj1+Mtj2, j �= i. Choose ε > 0 small enough
so that mti1 + (M + ε)ti2 < mtj1 + (M + ε)tj2, j �= i. Since (m,M)t ≺� (m,M + ε)t,
T (m,M)t ≺� T (m,M + ε)t. But min(T (m,M + ε)t) = mti1 + (M + ε)ti2 > mti1 +
Mti2 = min(T (m,M)t), a contradiction.

Next we shall characterize all linear operators T : R
2 → R

n which preserve ≺�.

Theorem 3.3. Let T : R
2 → R

n be a linear operator. Then T is a linear
preserver of ≺� if and only if P2(x, y) is a submatrix of [T ] and xy ≤ 0 for all
(x, y) ∈ C(T ).

Proof. Let T be a linear preserver of ≺� with 0 ≤ −b ≤ 1 = a. Let (x, y) ∈ C(T ),
then by Lemma 3.2, xy ≤ 0. Without loss of generality, let Ti = (ti1, ti2) ∈ C(T ) and
ti1ti2 ≤ 0. By Remark 2.4, we assume that [T ] has no identical rows. Then there exist
real numbers m,M ∈ R such that mti1 +Mti2 < mtj1 +Mtj2, j �= i. Choose ε0 > 0
small enough so that (m−ε)ti1+(M+ε)ti2 < (m−ε)tj1+(M+ε)tj2, j �= i, 0 < ε ≤ ε0.
Since (M + ε,m − ε)t ∼� (m − ε,M + ε)t, T (M + ε,m − ε)t ∼� T (m − ε,M + ε)t.
Hence, for all 0 < ε ≤ ε0, there exist 1 ≤ k ≤ n such that Tk = (tk1, tk2) ∈ C(T )
and (m − ε)ti1 + (M + ε)ti2 = minT (m − ε,M + ε)t = minT (M + ε,m − ε)t =
(M + ε)tk1+(m− ε)tk2. Since k ∈ {1, 2, . . . , n} is a finite set, there exists k such that
tk1 = ti2 and tk2 = ti1. Therefore, P2(ti1, ti2) is a submatrix of [T ].

Conversely, let P2(x, y) be a submatrix of [T ] and suppose for all (x, y) ∈ C(T ),
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xy ≤ 0.Define the linear operator T̂ onR
2 such that [T̂ ] = [P2(x1, y1)/ · · · /P2(xr , yr)],

where (xi, yi) ∈ C(T ), 1 ≤ i ≤ r. By elementary convex analysis, we know that
maxT (X) = max T̂ (X) and minT (X) = min T̂ (X) for all X ∈ R

2. Hence it is
enough to show that T̂ is a linear preserver of ≺� . By Lemma 2.5, each P2(xi, yi) is
a linear preserver of ≺�. Thus, T̂ is a linear preserver of ≺�.

4. Left matrix majorization on R
p. In this section we shall characterize all

linear operators T : R
p → R

n which preserve ≺� . We shall prove several lemmas and
prove the main theorem of this paper.

Definition 4.1. Let T : R
p → R

n be a linear operator and let [T ] = [T1/ . . . /Tn].
Define

Ω := Conv({Ti = (ti1, . . . , tip), 1 ≤ i ≤ n}) ⊆ R
p.

Also, let C(T ) be the set of all corners of Ω.

Lemma 4.2. Let T : R
p → R

n be a linear preserver of ≺� and [T ] = [T1/ . . . /Tn],
where Ti = (ti1, ti2, . . . , tip), 1 ≤ i ≤ n. Suppose there exists 1 ≤ i ≤ n such that
tij > 0, ∀1 ≤ j ≤ p, or tij < 0, ∀1 ≤ j ≤ p. Then Ti /∈ C(T ), where C(T ) is as in
Definition 4.1.

Proof. Assume that, if possible, there exists 1 ≤ i ≤ n such that Ti ∈ C(T )
and tij > 0, for all 1 ≤ j ≤ p, or tij < 0, for all 1 ≤ j ≤ p. By Remark 2.4,
without loss of generality, we can assume that [T ] has no identical rows and there
exists 1 ≤ i ≤ n such that tij > 0, for all 1 ≤ j ≤ p. Since Ti ∈ C(T ), there
exists X = (x1, . . . , xp)t such that x1ti1 + x2ti2 + · · ·+ xptip < x1tj1 + x2tj2 + · · ·+
xptjp, j �= i. Let xk = max{xi, 1 ≤ i ≤ p}. Choose ε > 0 small enough so that
x1ti1 + · · ·+ (xk + ε)tik + · · ·+ xptip < x1tj1 + · · ·+ (xk + ε)tjk + · · ·+ xptjp, j �= i.
Define X̂ = (x1, . . . , xk + ε, . . . , xp)t. Since tik > 0, hence minT (X) = x1ti1 + x2ti2+
· · · + xptip < x1ti1 + · · · + (xk + ε)tik + · · · + xptip = min T (X̂). But X ≺� X̂, a
contradiction.

Let T : R
p → R

n be a linear operator. Without loss of generality, we assume that
[T ] = [T p/T n/T̃ ], where all entries of T p (resp., T n) are positive (resp., negative) and
each row of T̃ has nonnegative and non positive entries.

Corollary 4.3. Let T and T̃ be as above. Then T preserves ≺� if and only if
C(T ) = C(T̃ ) and T̃ preserves ≺�, where C(T) is as in Definition 4.1.

Proof. Let T preserve ≺�. By Lemma 4.2, C(T ) = C(T̃ ). Thus, if X ∈ R
p, then

maxT (X) = max T̃ (X) and minT (X) = min T̃ (X). Therefore T̃ preserves ≺�. Con-
versely, let C(T ) = C(T̃ ). Then maxT (X) = max T̃ (X) and minT (X) = min T̃ (X).
Since T̃ preserves ≺�, T preserves ≺�.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 88-97, February 2009

http://math.technion.ac.il/iic/ela



ELA

Linear Preservers of Left Matrix Majorization 93

Definition 4.4. Let T : R
p → R

n be a linear operator. Define

∆ = Conv({(Pi, Ni), (Ni, Pi) : 1 ≤ i ≤ n}),

where Pi, Ni be as in (1.2). Let E(T ) = {(Pi, Ni) : (Pi, Ni) is a corner of ∆}. Let
1 ≤ i ≤ n, define [i] = {j : 1 ≤ j ≤ n, Pi = Pj and Ni = Nj}.

Lemma 4.5. Let T :Rp → R
n be a linear preserver of ≺� and let C(T ), E(T ) be

as in Definitions 4.1, 4.4, respectively. If (Pr, Nr) ∈ E(T ) for some 1 ≤ r ≤ n, then
there exists k ∈ [r] such that Tk ∈ C(T ).

Proof. Suppose there exist 1 ≤ r ≤ n such that (Pr , Nr) ∈ E(T ). Then there
exists m ≤ M such that

Prm+NrM < Pjm+NjM, j /∈ [r].(4.1)

Let X ∈ R
p such that min(X) = m and max(X) = M. Then there exists 1 ≤ k ≤ n

such that minTX =
∑p

l=1 tklxl. Hence

Prm+NrM ≤ Pkm+NkM ≤
p∑

l=1

tklxl = minT (X).(4.2)

Define Y ∈ R
p by yl = m, if trl > 0 and yl =M, if trl ≤ 0. Obviously Y ≺� X. Since

T preserves ≺�, TY ≺� TX which implies that

Pkm+NkM ≤
p∑

l=1

tklxl = min TX ≤ minTY ≤ Prm+NrM.(4.3)

Now, by (4.2) and (4.3), we have Prm+NrM = Pkm+NkM. Thus by (4.1), k ∈ [r]
and min TX =

∑p
l=1 tklxl. Hence Tk ∈ C(T ) for some k ∈ [r].

Next we state the main result in this paper.

Theorem 4.6. Let T and E(T ) be as in Definition 4.4. Then T preserves ≺� if
and only if Pp(α, β) is a submatrix of [T ] for all (α, β) ∈ E(T ).

Proof. Let T be a preserver of ≺� and let (Pr , Nr) ∈ E(T ). Then there exists
m ≤ M such that Prm + NrM < Pjm + NjM, j /∈ [r]. Choose ε0 small enough so
that for all 0 < ε < ε0,

Pr(m− ε) +Nr(M + ε) < Pj(m− ε) +Nj(M + ε), j /∈ [r],

If j ∈ [r], then Pj = Pr and Nj = Nr. Thus

Pr(m− ε) +Nr(M + ε) ≤ Pj(m− ε) +Nj(M + ε), 1 ≤ j ≤ n.(4.4)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 88-97, February 2009

http://math.technion.ac.il/iic/ela



ELA

94 F. Khalooei and A. Salemi

Let 0 < ε < ε0, be fixed and let Xε = (xε
1, . . . , x

ε
p)

t ∈ R
p with minXε = m − ε

and maxXε =M + ε. As in the proof of Lemma 4.5, there exists k ∈ [r] such that

Pr(m− ε) +Nr(M + ε) = minT (Xε) =
p∑

l=1

tklx
ε
l .

Fix i �= j ∈ {1, . . . , p} and define Y ε = (yε
1, . . . , y

ε
p)

t ∈ R
p such that yε

i = m − ε,

yε
j =M +ε and yε

l = γl, m−ε < γl < M +ε, l �= i, j. Since Xε ∼� Y
ε, TXε ∼� TY

ε,

there exists q ∈ [r] such that tqi(m − ε) + tqj(M + ε) +
∑

l �=i,j γltql = Pr(m − ε) +
Nr(M + ε). Since 0 < ε < ε0 and m− ε ≤ γl ≤ M + ε, l �= r, s are arbitrary, it is easy
to show that there exists s ∈ [r] such that tsi = Pr and tsj = Nr and tsl = 0, l �= i, j.

Therefore [T ] has Pp(Pr , Nr) as a submatrix.

Conversely, Let E(T ) = {(Pi1 , Ni1), . . . , (Pis , Nis)}. Then up to a row permuta-
tion [T ] = [Pp(Pi1 , Ni1)/ . . . /Pp(Pis , Nis)/Q].

Let T̂ be the operator on R
p such that [T̂ ] = [Pp(Pi1 , Ni1)/ . . . /Pp(Pik

, Nik
)].

Let Ti ∈ Q and suppose there exists X ∈ R
p such that

minT (X) =
p∑

l=1

tilxl ≤
p∑

l=1

tjlxl, 1 ≤ j ≤ n.

Obviously, Pim+NiM ≤ ∑p
l=1 tilxl ≤

∑p
l=1 tjlxl, 1 ≤ j ≤ n, where m = minX and

M = maxX. We know that (Pi, Ni) ∈ ∆ and ∆ is convex. Hence there is 1 ≤ k ≤ n

such that (Pk, Nk) ∈ E(T ) and Pkm + NkM ≤ Pim + NiM . As in the proof of
Lemma 4.5, min TX = Pkm + NkM. Then min T̂X ≤ minTX. But we know that
minT (X) ≤ min T̂X and thus min T̂X = minTX. Similarly, max T̂X = maxTX.
Therefore, T is a preserver of ≺� if and only if T̂ preserves ≺� . By Lemma 2.5 each
Pp(Pil

, Nil
) is a preserver of ≺�, 1 ≤ l ≤ k. Hence T̂ is a preserver of ≺� and the

theorem is proved.

Next we state necessary conditions for T : R
p → R

n to be a linear preserver of
≺�. We use the notation of Theorem 2.3 in the following corollary.

Corollary 4.7. Let T : R
p → R

n be a linear operator and let a and b be as
given in (1.1). If the following conditions hold, then T is a linear preserver of ≺� .

• [T ] has [Pp(a, 0)/Pp(0, b)/Pp(a, b)] as a submatrix.
• 0 ≤ Pi ≤ a and b ≤ Ni ≤ 0, 1 ≤ i ≤ n,

where Pi and Ni, 1 ≤ i ≤ n are as in Definition 1.2.

Proof. It is clear that E(T ) = {(a, 0), (0, b), (a, b)}. Since [T ] has Pp(a, 0),Pp(0, b)
and Pp(a, b) as submatrices, it follows by Theorem 4.6 that T is a linear preserver of
≺� .
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Let T : R
p → R

n be a linear preserver of ≺�, and let [T ] = [T 1|T 2| . . . |T p], where
T i is the ith column of [T ]. For i �= j ∈ {1, . . . , p} define T ij : R

2 → R
n such that

[T ij ] = [T i|T j].

Lemma 4.8. Let T : R
p → R

n be a linear preserver of ≺�, and let T ij be as
above. Then T ij is a linear preserver of ≺� for all i �= j ∈ {1, . . . , p}.

Proof. Let i �= j ∈ {1, . . . , p} and let x = (x1, x2)t, y = (y1, y2)t ∈ R
2 such

that x ≺� y. Define X,Y ∈ R
p such that Xi = x1, Xj = x2, Yi = y1, Yj = y2 and

Xk = Yk = 0, for all k �= i, j. It is obvious that X ≺� Y in R
p and hence TX ≺� TY

in R
n. But T ijx = x1T

i + x2T
j = TX ≺� TY = y1T

i + y2T
j = T ijy. Therefore, T ij

is a linear preserver of ≺� .

The following example shows that the converse of Lemma 4.8 is not necessarily
true.

Example 4.9. Assume [T ] = [P3(1,−0.5)/ 0.25 0.25 0.25]. Consider X =
(−1,−1,−1)t and Y = (−1,−1,−0.75)t, we know that X ≺� Y and min TX <

minTY. Thus T is not a linear preserver of ≺� . However, by Corollary 4.7, for all
i �= j ∈ {1, 2, 3}, T ij preserves ≺� .

5. Additional results. In this section we give short proofs of some Theorems
from [6, 9].

Theorem 5.1. [6] Let T :R2 → R
2 be a linear operator. Then T preserves ≺� if

and only if T has the form T (X) = (aI + bP )X for all X ∈ R
2, where P is the 2× 2

permutation matrix not equal to I, and ab ≤ 0.

Proof. Let T be a preserver of ≺�. By Assumption 1.3, a = 1. By Theorem 2.3,
there exist 0 ≤ α ≤ 1 and b ≤ β ≤ 0 such that P (1, β) and P (b, α) are submatrices

of [T ]. Since [T ] is a 2 × 2 matrix, β = b and α = 1. Therefore, [T ] =
[
1 b

b 1

]
and hence T (X) = (I + bP )X, for all X ∈ R

2. Conversely, up to a row permutation,
[T ] = P2(1, b) and by Lemma 2.5, T preserves ≺� .

Theorem 5.2. [6] Let p ≥ 3. Then T :Rp → R
p is a linear preserver of left

matrix majorization if and only if T is of the form X �→ aPX for some a ∈ R and
some permutation matrix P.

Proof. By Assumption 1.3, we have a = 1. Let T be a preserver of ≺� . By
Theorem 2.3, b = 0 and [T ] has Pp(1, 0) as a submatrix; hence, up to a row permuta-
tion, [T ] = Pp(1, 0) = I. Conversely, by a row permutation, [T ] = Pp(1, 0); hence by
Lemma 2.5, T preserves ≺� .
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Theorem 5.3. ([9, Theorem 3.1]) For a linear preserver T of R
p to R

n the
following assertions hold.

(a) If n < 2p and p ≥ 3, then T is nonnegative.

(b) If T is nonnegative, then there exists an n × n permutation matrix Q such
that [T ] = Q[I/W ], where W is a (possibly vacuous) (n− p)× p matrix of one of the
following forms (i), (ii) or (iii):

(i) W is row stochastic;

(ii) W is row substochastic and has a zero row;

(iii) W = [(cI)/B], where 0 < c < 1 and B is an (n−2p)×p row substochastic
matrix with row sums at least c.

(c) Let Q be an n× n permutation matrix, and let W be an (n− p)× p matrix of
the form (i), (ii), or (iii) in part (b). Then the operator X �→ Q[X/(WX)] from R

p

into R
n is a nonnegative linear preserver of ≺�.

Proof.

(a) Assume that, if possible, b < 0. By Theorem 2.3 n ≥ p(p − 1). Since p ≥
3, n ≥ 2p, a contradiction.

(b) Since T is nonnegative, Ni = 0, 1 ≤ i ≤ n, and 0 ≤ Pi ≤ 1. By Theorem 2.3,
[T ] has Pp(1, 0) as its submatrix and therefore up to a row permutation [T ] = [I/W ].
Let c = min{Pi, 1 ≤ i ≤ n}. Then E(T ) = {(1, 0), (c, 0)}. By Theorem 4.6, Pp(c, 0) is
a submatrix of [T ]. If c = 1 then (i) holds; if c = 0 then (ii) holds and if 0 < c < 1,
then (iii) holds.

(c) Let [T ] = [I/W ], where W is an (n − p) × p matrix of the form (i), (ii), or
(iii) in part (b). Then E(T ) = {(1, 0), (c, 0)}. By Theorem 4.6, T is a nonnegative
linear preserver of ≺�.

Theorem 5.4. ([9, Theorem 4.5]) Assume T : R
p → R

n is a linear preserver
of ≺�, b < 0 and 2p ≤ n < p(p − 1). Let Pi (resp., Ni) denote the sum of the
positive (resp., negative) entries of the ith row of [T ]. Then, up to a row permutation,
[T ] = [I/bI/B] and min(Ni + bPi) = b, (i = 1, 2, . . . , n).

Proof. By Theorem 2.3, Pp(1, β) and Pp(α, b) are submatrices of [T ]. Since n <

p(p − 1), β = α = 0 and E(T ) = {(1, 0), (0, b)}, where E(T ) is as in Definition4.4.
Then up to a row permutation, [T ] = [I/bI/B] and min{(bx + y) : (x, y) ∈ ∆} =
min{(bx+ y) : (x, y) ∈ E(T )} = b. Therefore, min(Ni + bPi) = b, (i = 1, 2, . . . , n).
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