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Abstract. Eventually r-cyclic matrices are defined, and it is shown that if A is an eventually

r-cyclic matrix A having rank A2 = rank A, then A is r-cyclic with the same cyclic structure. This

result and known Perron-Frobenius theory of eventually nonnegative matrices are used to establish

an algorithm to determine whether a matrix is strongly eventually nonnegative (i.e., is an eventually

nonnegative matrix having a power that is both irreducible and nonnegative).
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1. Introduction. A matrix A ∈ R
n×n is eventually nonnegative (respectively,

eventually positive) if there exists a positive integer k0 such that for all k ≥ k0, Ak ≥ 0

(respectively, Ak > 0), and the least such k0 is called the power index of A. A matrix

A ∈ R
n×n is strongly eventually nonnegative if A is eventually nonnegative and there

is a positive integer k such that Ak ≥ 0 and Ak is irreducible [4].

For a fixed n, the power index of an eventually positive or eventually nonnegative

n × n matrix may be arbitrarily large, so it is not possible to show a matrix is not

eventually positive or eventually nonnegative by computing powers. Eventual posi-

tivity is characterized by Perron-Frobenius properties, which provide necessary and

sufficient conditions to determine whether a matrix is eventually positive. Unfortu-

nately, nilpotent matrices, which have no Perron-Frobenius structure, are eventually

nonnegative, and there is no known “if and only if” test using Perron-Frobenius-type

properties for eventual nonnegativity. Strongly eventually nonnegative matrices are a

subset of the eventually nonnegative matrices having weaker connections with Perron-

Frobenius theory than eventually positive matrices, but still allowing an “if and only

if” test, presented here in Algorithm 3.1, which provides a way to show a matrix is not

strongly eventually nonnegative. The proof of the algorithm is based on results from

the literature and the result that if rankA2 = rankA and A is eventually r-cyclic,

then A is r-cyclic (Corollary 2.8 below).
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Throughout this paper all matrices are real. An eigenvalue λ of A is a dominant

eigenvalue if |λ| = ρ(A) (where ρ(A) denotes the spectral radius). A matrix is even-

tually positive if and only if ρ(A) is a simple eigenvalue having positive right and left

eigenvectors and A has no other dominant eigenvalue [6].

Just as digraphs are central to the Perron-Frobenius theory of nonnegative ma-

trices, they are central to our analysis of strongly eventually nonnegative matrices,

and we need additional notation and terminology. A digraph Γ = (V,E) consists of a

finite, nonempty set V of vertices, together with a set E ⊆ V × V of arcs. Note that

a digraph allows loops (arcs of the form (v, v)) and may have both arcs (v, w) and

(w, v) but not multiple copies of the same arc.

Let A = [aij ] ∈ R
n×n. The digraph of A, denoted Γ(A), has vertex set {1, . . . , n}

and arc set {(i, j) : aij 6= 0}. If R,C ⊆ {1, 2, . . . , n}, then A[R|C] denotes the subma-

trix of A whose rows and columns are indexed by R and C, respectively. If C = R, then

A[R|R] can be abbreviated to A[R]. For a digraph Γ = (V,E) and W ⊆ V , the induced

subdigraph Γ[W ] is the digraph with vertex set W and arc set {(v, w) ∈ E : v, w ∈ W}.
For a square matrix A, Γ(A[W ]) is identified with Γ(A)[W ] by a slight abuse of no-

tation.

A square matrix A is reducible if there exists a permutation matrix P such that

PAPT =

[

A11 0

A21 A22

]

,

where A11 and A22 are nonempty square matrices and 0 is a (possibly rectangular)

block consisting entirely of zero entries, or A is the 1 × 1 zero matrix. If A is not

reducible, then A is called irreducible. A digraph Γ is strongly connected (or strong)

if for any two distinct vertices v and w of Γ, there is a walk in Γ from v to w. It

is well known that for n ≥ 2, A is irreducible if and only if Γ(A) is strong. For a

strong digraph Γ, the index of imprimitivity is the greatest common divisor of the

the lengths of the closed walks in Γ. A strong digraph is primitive if its index of

imprimitivity is one; otherwise it is imprimitive. The strong components of Γ are the

maximal strongly connected subdigraphs of Γ.

For r ≥ 2, a digraph Γ = (V,E) is cyclically r-partite if there exists an ordered

partition (V1, . . . , Vr) of V into r nonempty sets such that for each arc (i, j) ∈ E, there

exists ℓ ∈ {1, . . . , r} with i ∈ Vℓ and j ∈ Vℓ+1 (where we adopt the convention that

index r + 1 is interpreted as 1). For r ≥ 2, a strong digraph Γ is cyclically r-partite

if and only if r divides the index of imprimitivity (see, for example, [2, p. 70]). For

r ≥ 2, a matrix A ∈ R
n×n is called r-cyclic if Γ(A) is cyclically r-partite. If Γ(A) is

cyclically r-partite with ordered partition Π, then we say A is r-cyclic with partition

Π, or Π describes the r-cyclic structure of A. The ordered partition Π = (V1, . . . , Vr)

is consecutive if V1 = {1, . . . , i1}, V2 = {i1 + 1, . . . , i2}, . . . , Vr = {ir−1 + 1, . . . , n}. If
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A is r-cyclic with consecutive ordered partition Π, then A has the block form

















0 A12 0 · · · 0

0 0 A23 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ar−1,r

Ar1 0 0 · · · 0

















, (1.1)

where Ai,i+1 = A[Vi|Vi+1]. For any r-cyclic matrix A, there exists a permutation

matrix P such that PAPT is r-cyclic with consecutive ordered partition. The cyclic

index of A is the largest r for which A is r-cyclic.

An irreducible nonnegative matrix B is primitive if Γ(B) is primitive, and the

index of imprimitivity of B is the index of imprimitivity of Γ(B). It is well known

that a nonnegative matrix is primitive if and only if it is eventually positive. Let

B ≥ 0 be irreducible with index of imprimitivity r ≥ 2. Then r is the cyclic index of

B, Γ(B) is cyclically r-partite with ordered partition Π = (V1, . . . , Vr), and the sets

Vi are uniquely determined (up to cyclic permutation of the Vi) (see, for example, [2,

p. 70]). Furthermore, Γ(Br) is the disjoint union of r primitive digraphs on the sets

of vertices Vi, i = 1, . . . , r (see, for example, [8, Fact 29.7.3]).

Section 2 presents the definition of eventually r-cyclic matrices and some of their

properties, including that if rankA2 = rankA and A is eventually r-cyclic, then A

is r-cyclic. It is also shown there that a strongly eventually nonnegative matrix is

eventually r-cyclic or eventually positive. These results are used in Section 3 to estab-

lish the validity of Algorithm 3.1, which tests whether a matrix is strongly eventually

nonnegative; examples illustrating the use of the algorithm are included.

2. Eventually r-cyclic matrices.

Definition 2.1. For an ordered partition Π = (V1, . . . , Vr) of {1, . . . , n} into r

nonempty sets, the cyclic characteristic matrix CΠ = [cij ] of Π is the n × n matrix

such that cij = 1 if there exists ℓ ∈ {1, . . . , r} such that i ∈ Vℓ and j ∈ Vℓ+1, and

cij = 0 otherwise.

Note that for any ordered partition Π = (V1, . . . , Vr) of {1, . . . , n} into r nonempty

sets, CΠ is r-cyclic, and Γ(CΠ) contains every arc (v, w) for v ∈ Vℓ and w ∈ Vℓ+1.

Definition 2.2. For matrices A = [aij ], C = [cij ] ∈ R
n×n, matrix A is conformal

with C if for all i, j = 1, . . . , n, cij = 0 implies aij = 0. Equivalently, A is conformal

with C if Γ(A) is a subdigraph of Γ(C) (with the same set of vertices).

Let Π be an ordered partition into r nonempty sets. Then A is r-cyclic with

partition Π if and only if A is conformal with CΠ.
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Observation 2.3. If A,B,C,D ∈ R
n×n, C,D ≥ 0, A is conformal with C and

B is conformal with D, then AB is conformal with CD. If A is an r-cyclic matrix

with partition Π, then Ak is conformal with CΠ
k.

Observation 2.4. Let B ≥ 0 be irreducible with index of imprimitivity r ≥ 2

and let Π describe the r-cyclic structure of B. Then for d large enough, CΠ is

conformal with Bdr+1, i.e., Γ(Bdr+1) = Γ(CΠ).

Definition 2.5. A matrix A is eventually r-cyclic if there exists an ordered

partition Π of {1, . . . , n} into r ≥ 2 nonempty sets, and a positive integer m such that

for all k ≥ m, Ak is conformal with CΠ
k. In this case, we say that Π describes the

eventually r-cyclic structure of A. The eventually cyclic index of A is the largest r

for which A is eventually r-cyclic.

Many eventual properties, such as eventual positivity or eventual nonnegativity,

can be established by establishing the property for two consecutive powers of a matrix.

The following proposition shows this is sufficient for eventually r-cyclic matrices.

Proposition 2.6. If A is a matrix and for some nonnegative integer d, Adr+1 is

r-cyclic with partition Π and Adr is conformal with Cr
Π, then A is eventually r-cyclic

and Π describes the eventually r-cyclic structure of A.

Proof. For every positive integer k sufficiently large, there exist a, b ≥ 0 such

that k = a(dr) + b(dr + 1) (see e.g., [2, Lemma 3.5.5]). Fix k = a(dr) + b(dr + 1).

Then Ak = Aa(dr)+b(dr+1) = (Adr)a(Adr+1)b is conformal with (CΠ
r)aCΠ

b, which is

conformal with CΠ
adrCΠ

b(dr+1) = CΠ
k.

For any square matrix A, rankA2 = rankA if and only if the degree of 0 as a root

of the minimal polynomial of A is at most 1. The combinatorial structure of eventually

nonnegative matrices with this property was studied in [3], where it is shown that if A

is an irreducible eventually nonnegative matrix such that rankA2 = rankA, then some

power of A is irreducible and nonnegative, i.e., A is strongly eventually nonnegative.

A matrix with the property that rankA2 = rankA behaves very nicely in regard to

being eventually r-cyclic, because this property eliminates issues caused by a nonzero

nilpotent part. The following notation will be used in the next proof. The nullspace

of a (possibly rectangular) p × q matrix M is NS(M) = {v ∈ R
q : Mv = 0}, and the

left nullspace of M is LNS(M) = {w ∈ R
p : wT M = 0}.

Theorem 2.7. If A ∈ R
n×n, rankA2 = rankA, and there is a positive integer m

divisible by r such that Am+1 is r-cyclic with partition Π and Am is conformal with

CΠ
r, then A is r-cyclic with partition Π.

Proof. Assume that A, m, r and Π = (V1, . . . , Vr) satisfy the hypotheses. Since

rankA2 = rankA, for every positive integer k, rankAk = rankA. Thus, NS(Ak) =
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NS(A) and LNS(Ak) = LNS(A).

Initially, we assume that Π is consecutive. Partition A = [Aij ] where Aij =

A[Vi|Vj ]. By hypothesis, Am = B1 ⊕ · · · ⊕ Br is a block diagonal matrix, and thus

NS(Am) = {[vT
1 , . . . ,vT

r ]T : vℓ ∈ NS(Bℓ), ℓ = 1, . . . , r},
LNS(Am) = {[wT

1 , . . . ,wT
r ]T : wℓ ∈ LNS(Bℓ), ℓ = 1, . . . , r}.

For vℓ ∈ NS(Bℓ), define v̂ℓ = [0T , . . . , 0T ,vT
ℓ , 0T , . . . , 0T ]T , so Amv̂ℓ = 0. Since

NS(A) = NS(Am),

0 = Av̂ℓ =







A1ℓvℓ

...

Arℓvℓ






,

and so Aiℓvℓ = 0, i = 1, . . . , r. Similarly, wT
ℓ Aℓj = 0T , j = 1, . . . , r for wℓ ∈ LNS(Bℓ).

That is, for all i, j = 1, . . . , r,

NS(Bℓ) ⊆ NS(Aiℓ) and LNS(Bℓ) ⊆ LNS(Aℓj). (2.1)

Now consider

Am+1 = AmA =











B1A11 B1A12 . . . B1A1r

B2A21 B2A22 . . . B2A2r

...
...

. . .
...

BrAr1 BrAr2 . . . BrArr











.

Since Am+1 is conformal with CΠ,

BℓAℓj = 0 unless j ≡ ℓ + 1 mod r.

Since Bℓv = 0 implies Aiℓv = 0, i = 1, . . . , r,

AiℓAℓj = 0 unless j ≡ ℓ + 1 mod r. (2.2)

By considering Am+1 = AAm and the left null space,

AiℓAℓj = 0 unless i ≡ ℓ − 1 mod r. (2.3)

So the only product of the form AiℓAℓj that is not required to be 0 is Aℓ−1,ℓAℓ,ℓ+1

(with indices mod r). Thus,

Bℓ = (Aℓ,ℓ+1 · · ·Ar1A12 · · ·Aℓ−1,ℓ)
m/r,

so NS(Aℓ−1,ℓ) ⊆ NS(Bℓ) and LNS(Aℓ,ℓ+1) ⊆ LNS(Bℓ). Then by (2.1),

NS(Aℓ−1,ℓ) = NS(Bℓ) and LNS(Aℓ,ℓ+1) = LNS(Bℓ). (2.4)
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So by (2.1), NS(Aℓ−1,ℓ) ⊆ NS(Ai,ℓ) for i = 1, . . . , r. This implies that for each i there

exists a (possibly rectangular) matrix Mi such that

Ai,ℓ = MiAℓ−1,ℓ. (2.5)

So for i 6≡ ℓ − 1 mod r,

0 = rank(AiℓAℓ,ℓ+1) by (2.3)

= rank(MiAℓ−1,ℓAℓ,ℓ+1) by (2.5)

≥ rank(MiAℓ−1,ℓ) + rank(Aℓ−1,ℓAℓ,ℓ+1) − rank(Aℓ−1,ℓ) by [9, (2.7)]

= rank(MiAℓ−1,ℓ) because LNS(Aℓ−1,ℓAℓ,ℓ+1) = LNS(Aℓ−1,ℓ) from (2.4)

= rank(Aiℓ) by (2.5).

Thus, Aiℓ = 0 for i 6≡ ℓ − 1 mod r, and A is r-cyclic with partition Π.

Without the assumption that Π is consecutive, there exists a permutation matrix

P such that (PAPT )m+1 = PAm+1PT is r-cyclic with consecutive partition Π′ and

(PAPT )m = PAmPT is conformal with CΠ′

r. Since rank(PAPT )2 = rank(PAPT ),

(PAPT )ij = 0 unless j ≡ i + 1 mod r (using the block structure of CΠ′). Thus, A is

r-cyclic with partition Π.

Corollary 2.8. Let A ∈ R
n×n have rankA2 = rankA. Then A is eventually

r-cyclic if and only if A is r-cyclic.

We now return to strongly eventually nonnegative matrices. We need a prelimi-

nary lemma.

Lemma 2.9. If A and B are n × n nonnegative matrices having all diagonal

entries positive, then Γ(A) ∪ Γ(B) ⊆ Γ(AB).

Proof. Let A = [aij ] and B = [bij ]. If (u, v) ∈ Γ(A), then

(AB)uv =
n

∑

i=1

auibiv ≥ auvbvv > 0,

so (u, v) ∈ Γ(AB). Thus, Γ(A) ⊆ Γ(AB). The case Γ(B) ⊆ Γ(AB) is similar.

Remark 2.10. Let A be a strongly eventually nonnegative matrix with power

index k0 and r dominant eigenvalues. Since A is eventually nonnegative, ρ(A) is

an eigenvalue of A [5]. There is a positive integer k such that Ak ≥ 0 and Ak is

irreducible. For any such k, Ak has positive left and right eigenvectors for its spectral

radius; the same is true for every power of A, including A itself. If r = 1, then

A is eventually positive [6]. Now assume ℓ ≥ k0 such that ρ(Aℓ) is simple. Then

Aℓ is irreducible [1, Corollary 2.3.15], and so the r dominant eigenvalues of Aℓ are

{ρ(Aℓ), ρ(Aℓ)ω, . . . , ρ(Aℓ)ωr−1} where ω is a primitive rth root of unity [1, Theorem
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2.2.20]. Furthermore, Aℓ is r-cyclic [1, Theorem 2.2.20]. Note that ℓ ≥ k0 with ρ(Aℓ)

simple necessarily exists (e.g., ℓ = kk0r + 1). If u ≥ k0 and ρ(Au) is simple, then any

positive integers x, y divisible by r, the multiplicity of ρ(Aℓx+uy) = ρ(Aℓ)xρ(Au)y) is

r, so Γ(Aℓx+uy) has r strong components [1, Theorem 2.3.14].

Theorem 2.11. Let A be strongly eventually nonnegative matrix A having r ≥ 2

dominant eigenvalues and power index k0. Then there exists a positive integer m ≥ k0

divisible by r such that Am+1 is r-cyclic with partition Π and Am is conformal with

CΠ
r.

Proof. Choose a positive integer ℓ ≥ k0 such that ρ(Aℓ) is simple, so Aℓ is

irreducible and r-cyclic, and let Π = (V1, . . . , Vr) denote an ordered partition that

describes the r-cyclic structure of Aℓ. Let m = ℓr; the spectral radius of Am+1 ≥ 0

is simple, and thus Am+1 is irreducible and r-cyclic. Let Ψ = (W1, . . . ,Wr) be an

ordered partition that describes the r-cyclic structure of Am+1. It suffices to show

that Am is conformal with CΨ
m. Note that for an r-cyclic matrix, in any power that

is a multiple of r, the order of the sets in the partition is irrelevant, since all arcs are

within partition sets. Thus, it suffices to show that the unordered sets {V1, . . . , Vr}
and {W1, . . . ,Wr} are equal.

By Observation 2.4, we can choose s large enough so that the diagonal blocks

Aℓrs[Vi] and A(m+1)rs[Wi] are positive for i = 1, . . . , r. Since AℓrsA(m+1)rs =

Aℓ(rs)+(m+1)(rs), Γ(AℓrsA(m+1)rs) has r strong components. Since all diagonal en-

tries of Γ(Aℓrs) and Γ(A(m+1)rs) are positive, by Lemma 2.9,

Γ(Aℓrs) ∪ Γ(A(m+1)rs) ⊆ Γ(AℓrsA(m+1)rs).

But Γ(Aℓrs) ∪ Γ(A(m+1)rs) contains the complete digraphs on Vi, i = 1, . . . , r and

Wi, i = 1, . . . , r, so the only way for Γ(AℓrsA(m+1)rs) to have r strong components is

to have {V1, . . . , Vr} = {W1, . . . ,Wr}.

Corollary 2.12. If A ∈ R
n×n is strongly eventually nonnegative with r ≥ 2

dominant eigenvalues, then A is eventually r-cyclic.

Corollary 2.13. If A ∈ R
n×n is strongly eventually nonnegative with r ≥ 2

dominant eigenvalues and rankA2 = rankA, then A is r-cyclic.

3. Testing for strong eventual nonnegativity. In this section, we provide an

algorithm to test whether a matrix is strongly eventually nonnegative and prove that

it works, illustrate the algorithm with examples, and discuss computational issues

related to the algorithm.
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3.1. Algorithm and proof.

Algorithm 3.1. Test a matrix for strong eventual nonnegativity.

Let A be an n × n real matrix.

1. Compute the spectrum σ(A), set r equal to the number of dominant eigenval-

ues, and set ω = e2πi/r.

2. If the multiset of dominant eigenvalues is not {ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1},
then A is not strongly eventually nonnegative,

else continue.

3. Compute eigenvectors v and w for ρ(A) for A and AT .

4. If v or w is not a multiple of a positive eigenvector,

then A is not strongly eventually nonnegative,

else continue.

5. If r = 1,

then A is eventually positive (and thus is strongly eventually nonnegative),

else continue.

6. Compute a nonsingular matrix S ∈ R
n×n such that

A = S(diag(ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1) ⊕ M)S−1.

7. Set B1 = S(diag(1, ω, . . . , ωr−1) ⊕ 0)S−1.

8. If B1 is not nonnegative or B1 is not r-cyclic,

then A is not strongly eventually nonnegative,

else continue.

9. Set q = ⌈n
r ⌉r. Then A is strongly eventually nonnegative if and only if Aq

and Aq+1 are conformal with B1
r and B1, respectively.

The following result will be used in the proof of Algorithm 3.1.

Theorem 3.2. [4] If A is strongly eventually nonnegative and has r dominant

eigenvalues, then the dominant eigenvalues of A are {ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1}
where ω = e2πi/r.

Theorem 3.3. Algorithm 3.1 is correct.

Proof. The first three assertions that A is or is not strongly eventually nonnegative

are justified by the following theorems:

2. Theorem 3.2.

4. Remark 2.10.

5. Remark 2.10.

There are two remaining assertions, in Steps 8 and 9. Define B = 1
ρ(A)A, and

note that B has one of the following properties if and only if A has the same property:

nonnegative, r-cyclic, strongly eventually nonnegative, conformal with a matrix C.
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Thus, we establish the results for B rather than A. There exists a nonsingular T ∈
R

(n−r)×(n−r) such that M = T (G⊕N)T−1 where N is nilpotent and G is nonsingular.

Define B0 = S(0 ⊕ T (G ⊕ 0)T−1)S−1. From the definitions of B1 and B0,

B1
dr+1 = B1 for d ≥ 0, ρ(B1) = 1, ρ(B0) < 1,

Bk = B1
k + B0

k for k ≥ n, and rank(B1 + B0)
2 = rank(B1 + B0).

Thus, limk→∞ B0
k = 0, and

lim
d→∞

Bdr+1 = B1. (3.1)

Thus, if B1 has an negative entry or is not r-cyclic, Bdr+1 retains this property
for arbitrarily large d and so B and thus A are not eventually nonnegative. This

establishes the validity of Step 8.

For Step 9, we may assume that B1 ≥ 0 is r-cyclic with partition Π. By (3.1),

for k large enough, (B1
k)ij > 0 implies (Bk)ij > 0. By the construction of B1 from

S, B1 and BT
1 have positive eigenvectors for simple eigenvalue 1, so by [1, Corollary

2.3.15], B1 is irreducible. Then by Observation 2.4 and the fact that B1
dr+1 = B1,

CΠ is conformal with B1.

First assume Bq and Bq+1 are conformal with B1
r and B1, respectively. By

Proposition 2.6, B is eventually r-cyclic and Π describes the eventually r-cyclic struc-

ture of B. So for k large enough, (3.1) implies Bk ≥ 0 and if gcd(r, k) = 1, then

ρ(Bk) is simple so Bk is irreducible. Thus, B is strongly eventually nonnegative.

For the converse, assume that B is strongly eventually nonnegative, so B1 + B0

is strongly eventually nonnegative. By Theorem 2.11, there exists a positive integer

m ≥ k0 divisible by r such that (B1 + B0)
m+1 is r-cyclic with partition Π and

(B1 + B0)
m is conformal with CΠ

r. Since rank(B1 + B0)
2 = rank(B1 + B0), by

Theorem 2.7, B1 + B0 is conformal with CΠ. As a consequence of (3.1), B1 must

be r-cyclic with the same partition Π. Since B1 ≥ 0 and CΠ is conformal with

B1, a matrix is conformal with CΠ
k if and only if it is conformal with B1

k. Thus,

(B1 + B0)
q and (B1 + B0)

q+1 are conformal with B1
r and B1, respectively. Since

q ≥ n, Bq = (B1 + B0)
q and Bq+1 = (B1 + B0)

q+1.

3.2. Examples. We illustrate the algorithm with examples.

Example 3.4. Let

A =



















0 2 0 0 2 0

0 0 0 2 0 2

0 2 0 0 2 0

2 1 2 0 −1 0

0 0 0 2 0 2

2 −1 2 0 1 0



















.
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Step 1: σ(A) =
{

4,−2 + 2i
√

3,−2 − 2i
√

3, 0, 0, 0
}

, so r = 3 and ρ(A) = 4. The

eigenvectors of A and AT for eigenvalue ρ(A) = 4 are both [1, 1, 1, 1, 1, 1, 1, 1]T . For

Steps 6 and 7, a possible S and the resulting B1 are

S =























1
(−1−i

√
3)

2

(−1+i
√

3)
2 0 0 −1

1
(−1+i

√
3)

2

(−1−i
√

3)
2 0 − 1

2 0

1
(−1−i

√
3)

2

(−1+i
√

3)
2 0 0 1

1 1 1 −1 0 0

1
(−1+i

√
3)

2

(−1−i
√

3)
2 0 1

2 0

1 1 1 1 0 0























, B1 =



















0 1
2 0 0 1

2 0

0 0 0 1
2 0 1

2

0 1
2 0 0 1

2 0
1
2 0 1

2 0 0 0

0 0 0 1
2 0 1

2
1
2 0 1

2 0 0 0



















.

Clearly, B1 ≥ 0. By examining Γ(B1) we see that B1 is 3-cyclic with partition

({1, 3}, {2, 5}, {4, 6}). Computations then verify that A6 and A7 are conformal with

B1
6 and B1, respectively, so B is strongly eventually nonnegative.

Example 3.5. Let

A =



























1
4 − 3

4 − 3
4

5
4

1
2

1
2

1
2

1
2

− 1
4

3
4 − 1

4 − 1
4

1
2

1
2

1
2

1
2

0 0 1 −1 1
2

1
2

1
2

1
2

0 0 0 0 1
2

1
2

1
2

1
2

3
4

3
4

3
4 − 1

4 − 1
2 − 1

2
1
2

1
2

1
4

1
4

1
4

5
4 0 0 0 0

1
2

1
2

1
2

1
2

1
4

1
4 − 3

4
1
4

1
2

1
2

1
2

1
2

1
4

1
4

1
4 − 3

4



























.

Step 1: σ(A) = {2,−2,−1,−1, 1, 1, 0, 0}, so r = 2 and ρ(A) = 2. The eigenvectors of

A and AT for eigenvalue ρ(A) = 2 are both [1, 1, 1, 1, 1, 1, 1, 1]T . For Steps 6 and 7, a

possible S and the resulting B1 are

S =



























1 −1 −1 8 0 0 0 −4

1 −1 1 0 0 0 0 0

1 −1 0 −8 0 0 0 2

1 −1 0 0 0 0 0 2

1 1 0 0 −1 −2 −1 0

1 1 0 0 0 0 1 0

1 1 0 0 0 2 0 0

1 1 0 0 1 0 0 0



























, B1 =



























0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0



























,

and B1 is clearly nonnegative and 2-cyclic. Step 9: Computations show A9 is not

conformal with B1, so A is not strongly eventually nonnegative.
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Example 3.6. Let

A =









0 0 45 1155

0 0 2097 −897

871 329 0 0

187 1013 0 0









.

Step 1: σ(A) =
{

1200,−1200, 684i
√

3,−684i
√

3
}

, so r = 2 and ρ(A) = 1200. The

eigenvectors of A and AT for eigenvalue ρ(A) = 1200 are [1, 1, 1, 1]T and [7, 5, 9, 3]T ,

respectively. For Steps 6 and 7, a possible S and the resulting B1 are

S =











1 −1 − 5i
3
√

3
5i

3
√

3

1 −1 7i
3
√

3
− 7i

3
√

3

1 1 − 1
3 − 1

3

1 1 1 1











, B1 =









0 0 3
4

1
4

0 0 3
4

1
4

7
12

5
12 0 0

7
12

5
12 0 0









,

so B1 ≥ 0 and 2-cyclic. Since A is conformal with B1, A4 and A5 are conformal with

B1
4 and B1, respectively, and A is strongly eventually nonnegative.

In this particular case (because the spectrum consists entirely of real multiples of

roots of unity), we can extend the spectral analysis in the algorithm to estimate the

power index of A. Set B = 1
1200A and α = ρ(B − B1), and define

B̂0 =
1

α
(B − B1) =











0 0 − 5
4
√

3
5

4
√

3

0 0 7
4
√

3
− 7

4
√

3
1

4
√

3
− 1

4
√

3
0 0

−
√

3
4

√
3

4 0 0











.

Since σ(B̂0) = {i,−i, 0, 0}, B̂0
4k+1 = B̂0. Solving αk|(B̂0)24| = (B1)24 yields k =

109.001, and in fact A109 6≥ 0, but A is nonnegative thereafter.

3.3. Computational issues. The computations in Examples 3.4, 3.5 and 3.6

were all done in exact arithmetic, so there was no issue of roundoff error. However,

eigenvalues will generally need to be computed as decimal approximations, and round-

off error is an issue. Fortunately, to implement Algorithm 3.1 it is not necessary to

compute Jordan forms (or eigenvectors for repeated eigenvalues), which are difficult to

do in decimal arithmetic. If the matrix A is eventually nonnegative, then the dominant

eigenvalues are simple and well spread out. The accuracy of the computations will

depend on the condition number of each dominant eigenvalue, which in turn depends

on the angle between the eigenvectors of A and AT (see, for example, [7, p. 323]).

Step 6 of Algorithm 3.1 requires computing a matrix S = [s1, . . . , sn] such that

S−1AS = diag(ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1) ⊕ M.
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This can be done as follows:

• Compute eigenvectors s1, . . . , sr for the dominant eigenvalues

ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1.

• Extend {s1, . . . , sr} to a basis {s1, . . . , sr,ur+1, . . . ,un} for R
n.

• Set U = [s1, . . . , sr,ur+1, . . . ,un]. Then

U−1AU =

[

H11 H12

0 H22

]

where H11 = diag(ρ(A), ρ(A)ω, . . . , ρ(A)ωr−1).

• Since σ(H11)∩σ(H22) = ∅, by [7, Lemma 7.1.5], we can solve a system of linear

equations to find a matrix Z ∈ R
r×(n−r) such that H11Z − ZH22 = −H12.

• Then for Y =

[

Ir Z

0 In−r

]

, Y −1U−1AUY =

[

H11 0

0 H22

]

, and S = UY is a

satisfactory matrix for Step 6.
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