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ON THE TRACE CHARACTERIZATION OF THE JOINT

SPECTRAL RADIUS∗
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Abstract. A characterization of the joint spectral radius, due to Chen and Zhou, relies on

the limit superior of the k-th root of the dominant trace over products of matrices of length k. In

this note, a sufficient condition is given such that the limit superior takes the form of a limit. This

result is useful while estimating the joint spectral radius. Although it applies to a restricted class of

matrices, it appears to be relevant to many realistic situations.
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1. Introduction. The joint spectral radius has drawn much attention lately,

see, for example, [1, 2, 3, 4, 5, 6, 7, 9, 13, 18] and the references therein, due to its

applications in various areas such as switched systems [12], differential equations [8],

coding theory [14], and wavelets [15]. For more background material, we also refer

the reader to the monograph [11].

As the joint spectral radius can be regarded as a generalization of the (conven-

tional) spectral radius, we shall denote throughout both the joint spectral radius

and the spectral radius by ρ(·). It is well known that given a set of n × n matrices

Σ = {A1, . . . , Am}, its joint spectral radius can be characterized by

ρ(Σ) = lim
k→∞

max
A∈Πk

‖A‖1/k,(1.1)

with Πk being the set of products of Ai of length k whose factors are in Σ and ‖ · ‖
being a matrix norm; or, equivalently, by

ρ(Σ) = lim sup
k→∞

max
A∈Πk

ρ1/k(A).(1.2)

Recently, Chen and Zhou showed in [4], also see [18], that ρ(Σ) can be expressed

alternatively as

ρ(Σ) = lim sup
k→∞

max
A∈Πk

|tr(A)|1/k.(1.3)

∗Received by the editors February 14, 2010. Accepted for publication July 9, 2010. Handling

Editor: Michael Neumann.
†Department of Mathematics, Southern Illinois University Carbondale, Carbondale, Illinois 62901,

USA (jxu@math.siu.edu).

367

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 367-375, July 2010

http://math.technion.ac.il/iic/ela



ELA

368 J. Xu

This result was then used in [4, 18] to estimate ρ(Σ). An attractive feature of (1.3) is

that it characterizes ρ(Σ) by the trace, hence it is computationally less expensive1 as

compared to (1.1) — assuming here a general subordinate matrix norm — and (1.2).

However, the utilization of (1.3) can be complicated as it involves a limit superior,

which implies that, in general, the convergence in (1.3) is attained only on some

subsequence {ki}, where ki → ∞ as i → ∞. It is therefore natural for us to ask when

the convergence is attained on any subsequence {ki}, i.e. in the sense of a limit.

In this short note, we shall illustrate that the limit superior in (1.3) can be

replaced with a limit when Σ is a set of nonnegative matrices which has at least one

primitive element. From a computational perspective, this outcome is handy since it

guarantees that with any subsequence {ki}, the corresponding

{ max
A∈Πki

|tr(A)|1/ki}

provides, in general, increasingly tighter approximations to ρ(Σ) as ki grows.

2. Trace Characterization. Given a matrix A, the notations A ≥ 0 and A > 0

are interpreted in an entrywise sense. Recall that a square matrix A ≥ 0 is called

primitive if Ak > 0 for some integer k ≥ 1. In the sequel, matrices are assumed to be

square. Let us begin with the following lemma:

Lemma 2.1. ([17, p.49]) Let A ≥ 0 be primitive. Then

ρ(A) = lim
k→∞

tr1/k(Ak).(2.1)

We comment that the assumption of primitivity in Lemma 2.1 is necessary. Con-

sider, for instance, A =

[

0 1

1 0

]

, which is not primitive; clearly, tr(Ak) = 0 or 2,

depending on whether k is odd or even, thus the limit in (2.1) does not exist. Inciden-

tally, if A ≥ 0 is irreducible, i.e. its underlying digraph is strongly connected, and if

the diagonal entries of A are not all zero, then A must be primitive. This requirement

on the diagonal entries serves as a convenient, although only sufficient, condition for

determining primitivity — note that, conversely, primitivity implies irreducibility.

We shall also need a conclusion from [2] as below.

1Nevertheless, the computation of the joint spectral radius remains a tough challenge since the

main difficulty comes from the cardinality of Πk as k grows, or the construction of extremal polytope

norms [9], or the size of the eigenproblem as a result of Kronecker and semidefinite liftings [2].
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Lemma 2.2. ([2, Theorem 3]) Let Σ = {A1, . . . , Am} be a set of n×n nonnegative

matrices. Then

ρ(Σ) = lim
k→∞

ρ1/k(A⊗k
1

+ . . .+A⊗k
m ),

where A⊗k is the k-th Kronecker power of A.

For background material on the Kronecker power and, more generally, Kronecker

product, see [10, 16]; a few properties of such products are used in this note without

being first stated as preparatory lemmas. However, we mention here that, according

to [10, Lemma 4.2.10], it follows by induction that

A⊗k
1

· · ·A⊗k
l = (A1 · · ·Al)

⊗k(2.2)

holds for any positive integers k and l. In particular, (A⊗k)l = (Al)⊗k.

Continuing, we point out that applying Lemma 2.1, along with Lemma 2.2, to

answer our main question here hinges on the next two simple, yet useful, observations.

Lemma 2.3. Suppose that A ≥ 0 is primitive. Then A⊗k is also primitive for

any integer k ≥ 1.

Proof. By the assumption, there exists some integer l ≥ 1 such that Al > 0.

Hence

(A⊗k)l = (Al)⊗k > 0.

This completes the proof.

We mention in passing that Lemma 2.3 does not extend to irreducibility of ma-

trices. Consider, again, A =

[

0 1

1 0

]

, which is indeed irreducible; but it is easy to

verify that, for example, A⊗2 is no longer irreducible.

Lemma 2.4. Suppose that {A1, . . . , Am} is a set of nonnegative matrices of the

same size, where at least one Ai is primitive. Then A1 + . . .+Am is also primitive.

Proof. Without loss of generality, we assume that A1 is primitive. Thus there

exists an integer k ≥ 1 such that Ak
1
> 0. We notice that

(A1 + . . .+Am)k ≥ Ak
1
> 0,

which yields the conclusion.

We are now ready to state the following result:

Theorem 2.5. For a set Σ = {A1, . . . , Am} of n× n nonnegative matrices, with

at least one Ai being primitive,

ρ(Σ) = lim
k→∞

max
A∈Πk

tr1/k(A),(2.3)
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where Πk is the set of products of Ai of length k whose factors are in Σ.

Proof. First of all, based on Lemmas 2.3 and 2.4, A⊗k
1

+ . . . + A⊗k
m is primitive

for any k. Therefore, Lemma 2.1 may be exploited to formulate ρ(A⊗k
1

+ . . .+A⊗k
m ).

For any integers k, l ≥ 1, we observe that, using (2.2),

tr
(

A⊗k
1

+ . . .+A⊗k
m

)l
= tr

(

∑

1≤i1,...,il≤m A⊗k
i1

· · ·A⊗k
il

)

= tr
[

∑

1≤i1,...,il≤m (Ai1 · · ·Ail)
⊗k
]

=
∑

1≤i1,...,il≤m tr (Ai1 · · ·Ail)
⊗k

=
∑

1≤i1,...,il≤m trk (Ai1 · · ·Ail) ,

i.e.

tr
(

A⊗k
1

+ . . .+A⊗k
m

)l
=
∑

A∈Πl

trk(A),(2.4)

with the cardinality of Πl being N = ml. Obviously, (2.4) implies

tr1/kl
(

A⊗k
1

+ . . .+A⊗k
m

)l ≤ m1/k max
A∈Πl

tr1/l(A).(2.5)

Assuming σ(A⊗k
1

+ . . .+A⊗k
m ) = {λ1, . . . , λnk}, where σ(·) denotes the spectrum,

we arrive at

tr(A⊗k
1

+ . . .+A⊗k
m )l = λl

1
+ . . .+ λl

nk ≤ nkρl(A⊗k
1

+ . . .+A⊗k
m ),

which, together with (2.4), leads to

max
A∈Πl

tr1/l(A) ≤ tr1/kl
(

A⊗k
1

+ . . .+A⊗k
m

)l ≤ n1/lρ1/k(A⊗k
1

+ . . .+A⊗k
m ).(2.6)

It now follows from (2.5) and (2.6) that for any integers k, l ≥ 1,

tr1/kl
(

A⊗k
1

+ . . .+A⊗k
m

)l

m1/k
≤ max

A∈Πl

tr1/l(A) ≤ n1/lρ1/k(A⊗k
1

+ . . .+A⊗k
m ).(2.7)

By taking the iterated limit limk→∞ liml→∞ in the above inequalities and resorting

to Lemmas 2.1 and 2.2, we conclude that

lim
k→∞

lim
l→∞

max
A∈Πl

tr1/l(A) = ρ(Σ),

which immediately translates into (2.3).
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Concerning Theorem 2.5, we remark that in view of the previous 2× 2 example,

(2.3) may fail without the primitivity of Ai’s — if so, the limit superior formulation

is required in (2.3). However, in its proof, we see that primitivity is needed merely in

the left inequality of (2.7). In other words, Theorem 2.5 still holds if its assumption is

relaxed to the primitivity of A⊗k
1

+. . .+A⊗k
m at any k. For example, take Σ = {A1, A2},

where

A1 =

[

0 1

1 0

]

and A2 =

[

1 1

0 1

]

,

neither being primitive. It can be readily verified that when l ≥ 4, either S =
l/2
∏

i=1

(A1A2) > 0 for any even l or T = A1 ·
⌊l/2⌋
∏

i=1

(A2A1) > 0 for any odd l, where ⌊·⌋ is

the floor function. But then

(A⊗k
1

+A⊗k
2

)l =
∑

1≤i1,...,il≤2

(Ai1 · · ·Ail)
⊗k,

which implies that (A⊗k
1

+A⊗k
2

)l is no less than S⊗k or T⊗k, depending on whether

l is even or odd. Thus A⊗k
1

+A⊗k
2

is primitive for all k. In other words, Theorem 2.5

remains valid on the set Σ = {A1, A2}.

Our second observation from Theorem 2.5 is the following estimate of ρ(Σ), which

arises as we push l → ∞ in (2.7):

Corollary 2.6. (see also [2, Theorem 3]) Under the same assumption as in

Theorem 2.5,

ρ1/k
(

A⊗k
1

+ . . .+A⊗k
m

)

m1/k
≤ ρ(Σ) ≤ ρ1/k(A⊗k

1
+ . . .+A⊗k

m )(2.8)

for any integer k ≥ 1.

While being free of products of Ai’s, one drawback of (2.8) is the huge size of the

eigenproblem being involved. When n = 2, for example, a case with k = 15 would

exhaust the available memory on a typical modern PC platform.

As we mentioned earlier, the trace characterization is computationally more ad-

vantageous than that in (1.1) or (1.2). It is also known that the trace operator is

invariant under cyclic shifts of the factors in a product of Ai’s. However, the benefit

from this invariance is limited. Consider all products of Ai’s of length k. Let ki be

the number of Ai’s. Then for each fixed set of {k1, . . . , km}, there are
k!

k1! · · · km!
different arrangements of the factors, while under the cyclic-shift equivalence, this

number is reduced by a factor of k to
1

k
· k!

k1! · · · km!
. This analysis shows that there
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are effectively a total of mk/k different arrangements of Ai’s of length k. Clearly, the

reduction is not significant as compared with mk.

In addition, it is interesting to note that (2.1) can now be thought of as a special

case of (2.3) when the set Σ consists of a single element A. Such an extension of (2.1)

is parallel to that from the well-known Gelfand’s formula

ρ(A) = lim
k→∞

‖Ak‖1/k

to formula (1.1).

Finally, we give an example which implements (2.3) in Matlab. Again, set Σ =

{A1, A2}, where

A1 =

[

0 1

1 0

]

and A2 =

[

1 1

0 1

]

.

It is known [11, p.70] that ρ(Σ) =

(

3 +
√
13

2

)1/4

≈ 1.3481.
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tr
1
/
k
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Fig. 2.1. The curve represents maxA∈Πk
tr1/k(A), which approaches ρ(Σ) as k increases. The

computation is carried out in Matlab on a Dell Precision workstation with dual Xeon CPU’s at

3.0 GHz and 2 GB RAM. The total running time is approximately 250 seconds with four pools in

Matlab’s Parallel Computing Toolbox.

Consider next possible arrangements of Ai’s of length k. Any such arrangement

may be represented as a zero-one word in which each zero and one stand for A1 and
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A2, respectively. All such words can be obtained by calling de2bi(0:2^k-1,k,2).

The result is a 2k × k array, denoted here by u, where each row translates to a word

— we choose to generate the words at once without using a loop for the sake of speed.

For the same reason, the arrangement corresponding to word u(i,:) are constructed

by

kron(1-u(i,:),A_1)+kron(u(i,:),A_2),

which produces a 2 × 2k array, with all the factors being arranged in this array as

2 × 2 blocks. Finally, the product of these factors is computed by using a loop. The

numerical result on maxA∈Πk
tr1/k(A) is shown in Figure 2.1, while the Matlab code

for this experiment are given in Appendix A.

We mention that the above vectorized implementation runs faster than loops, but

it consumes a large amount of memory. To address this issue, we may generate one

u(i,:) at a time — the trade-off, of course, is the loss of speed.

3. Concluding Remarks. It is demonstrated here the limit superior in (1.3)

can be replaced by a limit under certain circumstances. Particularly, the presence of

primitivity turns out to be a sufficient condition. The lack of premitivity generally

entails the limit superior formulation.

The significance of this result lies in the fact that maxA∈Πk
tr1/k(A) now ap-

proaches ρ(Σ) from both above and below. Accordingly, any subsequence of {k} may

be used to estimate ρ(Σ) with the trace characterization. Seeing the role that nonneg-

ative matrices play in many applications, we feel that this note is relevant to tackling

problems which involve the joint spectral radius.

The trace characterization as in (2.3) can be efficiently implemented in Matlab

as shown by the numerical example. Even though the applicability of this method

is largely limited by the nature of the joint spectral radius, the approach we discuss

here appears to be useful for solving small-scale problems concerning the joint spectral

radius as well as for estimating this crucial quantity for problems of larger size by

resorting to smaller k-values in (2.3).

Appendix A. Matlab Code.

%estimating joint spectral radius with trace characterization

clear all

a1=[0 1; 1 0];

a2=[1 1; 0 1];

k=6:2:20;

m=length(k);

jsr=zeros(m,1); %output
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%matlabpool open 4 %parallel computing toolbox with 4 labs

for i=1:m %parfor i=1:m %with parallel computing toolbox

trmax=0;

n=2^k(i);

arr=de2bi(0:n-1,k(i),2); %all zero-one words

for j=1:n

a=kron(1-arr(j,:),a1)+kron(arr(j,:),a2);

u=1:2; %product

p=a(:,u);

for v=2:k(i)

u=u+2;

p=p*a(:,u);

end

tr=trace(p); %trace of product

if tr>trmax

trmax=tr;

end

end

jsr(i)=trmax^(1/k(i));

end

%matlabpool close %with parallel computing toolbox

plot(k,jsr,’-bo’,’LineWidth’,2)
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