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THE ¢-NUMERICAL RANGE OF 3 x 3 TRIDIAGONAL MATRICES*

MAO-TING CHIENT AND HIROSHI NAKAZATO*

Abstract. For 0 < ¢ <1, we examine the g-numerical ranges of 3 x 3 tridiagonal matrices A(b)
that interpolate between the circular range Wo(A(b)) and the elliptical range W1 (A(b)) as ¢ varies
from 0 to 1. We show that for ¢ < (1 — b)2/(2(1 + b)), W4 (A(b)) is a circular disc centered at the
origin with radius (1 + b2)1/2, but Wy /5(A(2)) is not even an elliptical disc.
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1. Introduction. For a bounded linear operator T on a complex Hilbert space
H, the g-numerical range W,(T) of T for 0 < ¢ <1 is defined as

Wo(T) = {{T&n) - &n € H,[[E]] = [Inll =1, (& n) = q}-

In the paper [5], the authors of this paper give a bounded normal operator T' on an
infinite dimensional separable Hilbert space H defined by

T=U+U"/2+ia(U-U*)/(2i),

where U is a unitary operator on a Hilbert space H with o(U) = {2z € C: |z] = 1},
and 0 < a < 1, and show that
2

Yy
;<1)

closure(W,(T)) = {z + iy : (v,y) € R* 2* + 1+a2@— g2

is an elliptical disc which interpolates between the circular range Wy(T') and the
elliptical range W(T') := W1 (T) as ¢ varies from 0 to 1.

Various conditions for a bounded operator 7" are known which assure that the
closure of the numerical range W(T) is an elliptical disc (cf. [2],[3],[7]). It seems
naturally to ask whether the conditions for elliptical range of W(T') guarantee that
W,(T) is also elliptical for 0 < ¢ < 1. If T is an n xn upper triangular nilpotent matrix
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associated with a tree graph, then the range W, (T') is circular for every 0 < ¢ < 1.
Thus the question has a positive answer for such a special class of matrices. A special
quadratic 3 x 3 matrix

0 1+~ 0
A(v,a+ib)y=|1—-~v 0 0 ,
0 0 a+1b

is another affirmative example (cf.[6]). It is shown [6] that if v > 0, a,b € R, and
a?+ (b/7)? <1 then

o . 22 y?
We(A(v,a+ib)) ={z+iy: AT 0= + CENTETAEE <1}

The main purpose of this note is to deal with the behavior of the g-numerical
ranges of some 3 x 3 tridiagonal matrices A that interpolate between the circular
range Wy(A) and elliptical range W1 (A) for 0 < ¢ < 1. We also give an example of a
real 3 x 3 tridiagonal matrix which has a non-elliptical ¢g-numerical range.

2. 3 x 3 tridiagonal matrices. The shapes of the classical numerical ranges of
3 x 3 matrices are tested and determined in [8],[10]. For tridiagonal matrices, it is
proved in [1, Theorem 4] that if A is a nonnegative tridiagonal 3 x 3 matrix with 0
main diagonal:

0 a12 0
A=1az 0 a3 |,
0 as2 0

then the numerical range W(A) is an elliptical disc centered at 0, the major axis on
the real line. We show that the g-numerical range of this tridiagonal matrix is in
general not an elliptical disc. Consider tridiagonal matrices of Toeplitz type

0 b 0
a 0 b|,a#b
0 a O
We may assume that a =1and b>0, b# 1
0 b 0
A=Ab)=11 0 b|. (1)
01 0

First we compute the equation of the boundary of the Davis- Wielandt shell of A:

W(AA*A) = {(E*AE, A AE) e Cx R : £ € C3 e =11,
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We consider the form
F(t,z,y, z) = det(tls + aR(A) + yS(A4) + zA*A),
and find that

AF(L,2,y,2) = 4 — 22° — 4ba® — 20°2® — 2% + d4by® — 2b%y° + 82
+8b%z — 22z + 2b%a% 2 — braz — P2 + 207y 2 — b2z
+42% 4+ 8b%22 + 4b*22. (2)

The surface F(t,z,y, z) = 0 in CP? has an ordinary double singular point at
(t,x,y,2) = (1,0,0,—1/(1 4 b?)).

Corresponding to this singular point, the boundary of the Davis-Wielandt shell
W (A, A*A) has a flat portion on the horizontal plane

Z =1+b

(3)

The intersection of the shell W(A, A*A) and the horizontal plane (3) is the elliptical

disc bounded by the ellipse
1 —4b% + 6b* — 405 + 0% — 4X2 +16bX2 — 28b° X2
+3203 X2 — 28 X2 + 16b° X2 — 465 X2 — 4Y?% — 16bY>
—28b%Y? — 32632 — 28b"Y2 — 16b°Y? — 4b°Y2 = 0. (4)

The Davis-Wielandt shell W (A, A* A) also provides information for W, (A). We define

the height function
h(z +iy) = max{w € R: (z + iy,w) € W(A4, A" A)}.
Then Tsing’s circular union formula [11] is written as
W,(A) ={gz+V1—@w¥(z): ze W(A),w e C, |w| <1},
where
U(z) = Vh(z) 2>

The formula (6) leads to the convexity of the range W, (A).

Theorem 2.1 Let A = A(b),b > 0, be the matrix defined by (1).

(i) If ¢ < (1 — b)?/(2(1 + b?)) then W, (A) is the circular disc 2% + y* < 1 + b2

(5)

(6)

(7)
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(id) If (1 —0)2/(2(1 +b%) < ¢ < (1 4+b)?/(2(1 + b?)) then the boundary of W,(A)

contains circular arcs on the circle #2 + y? = 1 + b2

Proof. We prove (i) first. By (3), the function (7) restricted to the elliptical disc
bounded by (4) becomes

U(z) =140 — |22
Consider a point z = x + iy € W(A) for which
qz+r1—|q?¥(z) € OW,(A)

for some r € C,|r| = 1. Moreover, if ¥(z) is continuously differentiable on a neigh-
borhood of the point x + 4y, then by [4, Theorem 2] the point = + iy satisfies the
equation

Voo +iy)” + Uy(z+iy)* =q*/(1-¢*). 8)
We compute that
Uy (x +iy)? + Wy (z +iy)? = (2° + ) /(1 +0° =2 —¢?). 9)
From (8) and (9), we obtain
(@ +y)/A+0" —a® —y*) = ¢*/(1 - ¢). (10)
Substitute R = 22 + y? in (10). Then we have the relation
R=q¢ +b¢.

Consider X = 0 in the ellipse (4), then the semi-minor of the ellipse is (1 —b)?/(2(1+
b2)1/2). Suppose

RY2 = (¢* +6%¢*)"? < (1-0)%/(2(1 +6°)'/?). (11)

Then the circle 22 + y? = ¢* + b%¢? is contains in the elliptical disc bounded by (4).
The inequality (11) is rewritten as

¢ < (1-b)%/(2(1+107)).
Again, by [4, Theorem 2],

{zeW(A):qz+7rvV1—q>¥(z) € OW,(A(D)) for some r € C,|r| =1}
C{I+1y€W(A) : (a? +y)/(1+52—I2—y2):q2/(1—q2)},
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the boundary of W, (A) in (6) is expressed as

V1 +02ge” + /1 — 2 \/1+ b2 — (1 +b2)¢2,

1/2

which is a circle centered at the origin with radius (1 + b2)*/2. This proves (4).

A similar argument of the proof of (i) is applicable to prove (ii). We consider
Y = 0 in the ellipse (4), then the semi-major of the ellipse is (1 + b)?/(2v/1 + b2).
Suppose

RY2 = (@ 4+ 0*°A)Y? < (1+0)%/(2V1 + b?),

i.e., ¢ < (1+40b)2/2(1+ b?). Then the intersection of the elliptical disc

. . ‘T2 y2
{z+iy: (z,y) € R, G+oyan+y) a-pyace) =

and the set

{zeW(A):qz+7rV1—q>¥(z) € OW,(A(D)) for some r € C,|r| =1}
CHe+iy e W(A)°: (2% + ) /(A +b* —2® —y*) = ¢*/(1 - ¢*)},

containing two arcs. Corresponding to these two arcs, the boundary of W;(A) in (6)
contains arcs on the circle 22 + 3% = 1 + b2. O

Although for (1—-0)2/(2(14b%)) < g < (1+b)?/2(1+b?), the boundary of W, (A)
contains two arcs on the circle 2% + y? = 1 + b2, but W, (A) may not equal to the
associated circular disc. Indeed, it may not even be an elliptical disc. We treat the case
b = 2 in the matrix (1). Then (1—b)?/(2(14b?)) = 1/10 and (1+b)?/2(1+b%) = 9/10.
In the following, we show that W, 5(A(2)) is not an elliptical disc. At first, we have
the boundary equation of the Davis-Wielandt shell of A(2).

Theorem 2.2 Let A = A(2) be the matrix defined by (1) with b = 2. Then every
boundary point (X,Y, Z) of W(A, A* A) lies on the surface G(X,Y, Z) = 0 of degree
10 or its multi-tangent Z = 5 satisfying the inequality 20X 2 + 1620Y?2 < 8.

Proof. Let G(X,Y,Z) = 0 be the dual surface of F(t,z,y,z) = 0 (2). By [4], the
boundary generating surface of the shell W(A, A*A) can be obtained by the following
steps:

The dual surface G(X,Y,Z) = 0 consists of the points (X,Y, Z) such that the
plane Xz + Yy + Zz+ 1 = 0 is a tangent of the surface F(1,z,y,z) = 0 at some
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non-singular point of this surface. Consider the polynomial

1 Xz Yy
XY, 2)=2*F(1 — - -
fl@y: XY, Z) Lay, - —— = —),
and eliminate the variables x and y from the equations
0] 0]
flz,y: XY, Z) =0, 8—f(x,y:X,Y,Z)=O, 8—f(x,y:X,Y,Z):O.
Y x

Successive eliminations of z and y provide a performable method to this process. The
polynomial G(X,Y, Z) is obtained as a simple factor of the successive discriminants. O

Partial terms of the polynomial G(X,Y,Z) computed by the proof of Theorem
2.2 are given by

G(X,Y,7) = (18432X? + 165888Y?) 2% — (359424 X2 4 2571264Y%)Z7
+(—121856 X * — 474624 X 2Y? + 6925824Y* + 2750976 X 2
+14805504Y?) Z% 4+ lower degree terms in Z
+(2000X % + 490000X8Y 2 + 40340000X °Y* + 1142100000X Y
+2165130000X2Y® + 1062882000Y*0 — 1295975 X ®
+256936100X Y2 + 1698904150X *Y* + 2621816100X 2y
+1181144025Y® + 209935800X 6 4- 528751800X 1Y% + 427696200 X %Y
+108880200Y° 4 2624400X* + 5248800X Y2 + 2624400Y%).

The algebraic surface G(X,Y, Z) = 0 contains the three lines
{(0,0,2): Z e C}, {(X,0,(18-X)/4): X € C}, {(X,0,(18+ X)/4): X € C}

on the plane Y = 0. These lines do not lie on the boundary of the shell W (A, A*A).
The equation G(X,Y, Z) = 0 gives the implicit expression of the hight function Z =
h(X +4Y) (5). The Davis-Wielandt shell W (A, A*A) is symmetric with respect to
the real axis Y = 0 and the imaginary axis X = 0:

G(X,-Y,Z) =G(X,Y,Z), G(-X,Y,Z)=G(X,Y,2).

By this property and the formula (6), the g-numerical range W,(A4), 0 < ¢ < 1, is
also symmetric with respect to the real and imaginary axes. For # € R, we define

Moy (q) = max{R(zexp(—if)) : z € W (A)}.
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By the symmetry property, we have that

M_4(q) = Mo(q), Mx—o(q) = My(q).
We denote M, = My, My = M5, M, = M ,4. By equation (6), we obtain
My(q) = max{qz + /1 — @®y(x) :
min Reep(—i0) <o < max Reesw(-i)},  (12)
where
Do(2) = max{y/A(z) — 217 = € W(A), R(z exp(i6)) = ).

If z= X + 4Y lies on the elliptical disc

20X?% 4 1620Y? < 81, (13)
then the function ¥(z) is given by

U(z) =5 X2 Y2,
If z € W(A) does not belong to the disc (13), then ¥(z) satisfies

G(R(2),3(2), |2|> + ¥(2)?) = 0.

Suppose 3(z) = 0. If X = R(z) € W(A) with |[X| > 9v/5/10 ( X € W(A) implies
|X| < 3v2/2), then W = ®y(X) satisfies
728 4 (288X 2 — 108)W° + (432X — 791X? + 54)W*
+(288X° — 1258 X% — 802X2% — 9)IW?
+(72X8 — 575X +1144X* +16X?) = 0.
Suppose R(z) = 0. If Y = (2) € W(A) with |Y] > +/5/10 ( iY € W(A) implies
Y| </2/2), then W = &, 5(Y) satisfies
SWE 4 (32Y2 — 108)WS + (48Y* — 71Y2 + 486)W* 4 (32Y° + 182Y*
—738Y% — 729)W? + (8Y® + 145Y° + 776Y* + 1296Y?) = 0. (14)

If |z| < 94/205/410, then the function W = & ,(x) is given by

O a(x) = V5 — 22

We have ®./4(9v/205/410) = /4019/820. To express W = & 4(x) for
9v/205/410 < |z| < v/10/2, we introduce

r—v r+v

V2 V2

L(z,v,WW) = G( W2 2?4+ y2).
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The implicit expression of W = &, /4(z) is obtained by the elimination of v from the
equations

L(z,v,W) =0, g—i(:zr, v, W) =0.

It is given by

T(z, W) = 173946175488000000W 2 + (27274760316518400002>
—3168477904896000000) W25 4 (203135735304290304002
—398817413132451840002% + 23822488882380800000) W24
+ lower degree terms in W
+(29183325585360814082% + 303992974847508480022°
—104417065668305747968z>* 4 1369408747046174720002>
+5322458976694084567042%° — 9279521668371107020802 %
—64177948162244214782'° + 2275950316355374284802: 1
—20311912234652281077762'2 4 37730603752540549939202°
—12012696880733445160962° 4 24850621932208180428802°
+1261622913333890908162* + 144996139555356672022).

By using these equations, we prove the following theorem.

Theorem 2.3 Let A(2) be the 3 x 3 tridiagonal matrix (1) with b = 2. Then

M, = max{R(2) : z € Wy5(A)} = V5,

276

My = max{%(z) VA W4/5(A)} = T,

and the quantity
M, = max{(R(z) + S(2))/V2: z € Wy5(A)},
is the greatest real root of the equation

R(v) = 332800000000v° — 257344640000v* + 54701815600002 — 194025305907 = 0,
(15)
and satisfying the inequality

M7 + My 6187
2 © 1600’

M?2> 391> (16)
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and hence the boundary of the convex set W, /5(A) is not an ellipse.

Proof. Suppose that the inequality (16) is proved. If the boundary of W,,5(A) is an
ellipse, by the symmetry of Wy /5(A) with respect to the real and imaginary axes, the
ellipse is given by

2 2

. T Y
Wiss(4) = {z +iy : (e,y) € R 105 + 20 < 1}
z Y

and its support ax + by + 1 = 0 satisfies the equation
2 2 272
M;a” + Mjb" = 1.
We may rewrite a support line

xrcost +ysind — My =0

as
cosf sin 0
— - 1=0.
My T YT
Then, we have the equation
cos? 6 sin? 6
M? + M? =1,
Mz I
and hence
M3 = M? cos29+M§ sin? 6. (17)
As a special case 6 = 7/4, we have
M2 M2+ M;
v 2 :

Thus the inequality (16) implies that the boundary is not an ellipse.

Secondly, we determine the quantities M, M,. By the equation (12), the quanti-
ties M, = Mo(4/5), My = My ;5(4/5), M, = My ,4(4/5) are respectively the maximum
of the function

4 3

qr + /1 - ¢*Pg(x) = Frt 5‘1)9(117)-

for 6 = 0,7/2,7/4. Each maximal point xy satisfies

Bp(2g) = — s = .
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for 6 = 0,7/2,7/4. For 8 =0, xz is given by

1595

T =T = T S g

for which

4 3

For 6 = 7/2, x¢ is given by

96 V5 V2
e TR
at which the function
4 3
g(E + gq)ﬂ-/Q((E)

attains the maximum M, = 27v/6/40, where ®, 5(Y) is given by (14).

Thirdly, an implicit expression (15) of M, can be obtained by the elimination of
x from the equation

X

and M, is the greatest real root of the polynomial R(v). Finding a numerical solution
of the equation R(v) = 0, we obtain the inequality (16). O

The boundary points = + iy of Wy /5(A) are classified into the two classes. One
class consists of points satisfying

(u+iv) + w5 —u? —v?

for some point w+4v on the elliptical disc (13), and some |w| = 1. This class of points

T4y =

(SRR

lies on the circle 22 + 3% = 5. Another class corresponds to points u + iv satisfying
G(u,v,u? +v? + ¥(u + iv)?) = 0, and lies on an algebraic curve S(x,y) = 0, where
S(z,y) is a polynomial in = and y of degree 16 which is decomposed as the product of
a polynomial Sp(z,y) of degree 6 and a polynomial Sa(z,y) of degree 10. We perform
the computation of S(x,y). The curve Si(z,y) = 0 is displayed in Figure 1. At the
right-end corner of Figure 1, there is an intersection of two curves which is displayed
in Figure 2. The convexity is connected by an arc of the circle 22 4+ y? = 5 as shown
in Figure 3. The curve Sy(z,y) = 0 is display in Figure 4, and the final boundary
generating curve of Wy /5(A) is displayed in Figure 5.
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1.5

. /’\
0.5

0]

-0.5

N~ —
1.5

2 1 0 i 2
Fia. 5.

We have determined W,(A(b)) in Theorem 2.1 for ¢ < (1 + b)?/2(1 + b?), and
demonstrated in Theorem 2.3 that W,(A(2)) is not an elliptical disc if ¢ = 4/5. A
similar method can be applied to show that for ¢ = 12/13 > (1 + b)2/2(1 + b?)|p=2,
Wi2/13(A(2)) is also not an elliptical disc. Indeed, the boundary of Wy5/13(A(2)) lies
on a polynomial curve of degree 16.

3. The functions ®y. By a duality theorem in [9], the function ¥ on W (A) is
reflected to the elliptical range property of the family of {WW,(A4) : 0 < ¢ < 1}. Can we
find another criterion for the elliptical range of {Wy(A) : 0 < ¢ < 1}? The following
example suggests that the functions ®y can not play the role.

B= <2(/)5 8(/)5>'

The set W,(B) is an elliptical disc for 0 < ¢ < 1. The function ®o(z) on [—1,1] is
given by

We consider an example:

345Vl —a?

Do (z) 5
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and the function ®,/5(z) on [-3/5,3/5] is given by

5+ V9 — 2522
—

Moreover, the function W = @, /4(x) on [-v/17/5,1/17/5] has an implicit expression

(I)W/Z(I) =

T(x, W) = 112890625W® + (32578125022 — 341062500)W°
+(4128906252% — 3740000002 + 141280000)W*
+(3000000002° — 3400000002 + 51200000% — 20889600) W2
+(1000000002® — 204800002* 4 1048576) = 0. (18)

For every 0 < ¢ < 1, the respective maxima Mo(q), M /2(q), My /4(q) of the function

qr+ /1 - ¢*Qy(v)
for 0 = 0,7/2, /4 satisty

Mo(q)* + M 2(q)?

Mﬂ'/4(Q)2 = 2

for all ¢q. For instance, the respective maxima

12 16 12 64

Mo(52) = 22 My p(-2) = =

are attained at x = 12/13 = 1 x 12/13 and = = 36/65 = 3/5 x 12/13. By (17), we
have

12 12

8v/82
1—3) = ((Mo(13 65

Moo )+ Maa(2))/2)? =

Since ®/4(z) satisfies (18)
T(x, Py 4(x)) =0,
The maximal point o of the function ®/4(x) is located at @, (zo) = 0. We compute

, 0. T (x,w
71'/4(x) = - 8w(EC,w))

for w = ®,/4(z), and obtain that zy = 2221/82/2665 which is different from /17/5 x
12/13. The maximum My of the functions @y satisfies property (17):

MZ = M? cos? § + Mg sin” 0,

but this property is not reflected to a simple relation among the functions ®g, @, /2
and Py for 0 < 6 < /2.
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