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THE q -NUMERICAL RANGE OF 3× 3 TRIDIAGONAL MATRICES∗

MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. For 0 ≤ q ≤ 1, we examine the q-numerical ranges of 3× 3 tridiagonal matrices A(b)

that interpolate between the circular range W0(A(b)) and the elliptical range W1(A(b)) as q varies

from 0 to 1. We show that for q ≤ (1 − b)2/(2(1 + b2)), Wq(A(b)) is a circular disc centered at the

origin with radius (1 + b2)1/2, but W4/5(A(2)) is not even an elliptical disc.
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1. Introduction. For a bounded linear operator T on a complex Hilbert space

H , the q-numerical range Wq(T ) of T for 0 ≤ q ≤ 1 is defined as

Wq(T ) = {〈Tξ, η〉 : ξ, η ∈ H, ||ξ|| = ||η|| = 1, 〈ξ, η〉 = q}.

In the paper [5], the authors of this paper give a bounded normal operator T on an

infinite dimensional separable Hilbert space H defined by

T = (U + U∗)/2 + i α (U − U∗)/(2i),

where U is a unitary operator on a Hilbert space H with σ(U) = {z ∈ C : |z| = 1},
and 0 < α < 1, and show that

closure(Wq(T )) = {x+ iy : (x, y) ∈ R2, x2 +
y2

1 + α2q2 − q2
≤ 1}

is an elliptical disc which interpolates between the circular range W0(T ) and the

elliptical range W (T ) := W1(T ) as q varies from 0 to 1.

Various conditions for a bounded operator T are known which assure that the

closure of the numerical range W (T ) is an elliptical disc (cf. [2],[3],[7]). It seems

naturally to ask whether the conditions for elliptical range of W (T ) guarantee that

Wq(T ) is also elliptical for 0 < q < 1. If T is an n×n upper triangular nilpotent matrix
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associated with a tree graph, then the range Wq(T ) is circular for every 0 ≤ q ≤ 1.

Thus the question has a positive answer for such a special class of matrices. A special

quadratic 3× 3 matrix

A(γ, a+ i b) =





0 1 + γ 0

1− γ 0 0

0 0 a+ ib



 ,

is another affirmative example (cf.[6]). It is shown [6] that if γ > 0, a, b ∈ R, and

a2 + (b/γ)2 ≤ 1 then

Wq(A(γ, a+ i b)) = {x+ i y :
x2

(1 + γ(1− q2)1/2)2
+

y2

(γ + (1 − q2)1/2)2
≤ 1}.

The main purpose of this note is to deal with the behavior of the q-numerical

ranges of some 3 × 3 tridiagonal matrices A that interpolate between the circular

range W0(A) and elliptical range W1(A) for 0 ≤ q ≤ 1. We also give an example of a

real 3× 3 tridiagonal matrix which has a non-elliptical q-numerical range.

2. 3× 3 tridiagonal matrices. The shapes of the classical numerical ranges of

3 × 3 matrices are tested and determined in [8],[10]. For tridiagonal matrices, it is

proved in [1, Theorem 4] that if A is a nonnegative tridiagonal 3 × 3 matrix with 0

main diagonal:

A =





0 a12 0

a21 0 a23
0 a32 0



 ,

then the numerical range W (A) is an elliptical disc centered at 0, the major axis on

the real line. We show that the q-numerical range of this tridiagonal matrix is in

general not an elliptical disc. Consider tridiagonal matrices of Toeplitz type





0 b 0

a 0 b

0 a 0



 , a 6= b.

We may assume that a = 1 and b ≥ 0, b 6= 1

A = A(b) =





0 b 0

1 0 b

0 1 0



 . (1)

First we compute the equation of the boundary of the Davis-Wielandt shell of A:

W (A,A∗A) = {(ξ∗Aξ, ξ∗A∗Aξ) ∈ C×R : ξ ∈ C3, ξ∗ξ = 1}.
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We consider the form

F (t, x, y, z) = det(tI3 + xℜ(A) + yℑ(A) + zA∗A),

and find that

4F (1, x, y, z) = 4− 2x2 − 4bx2 − 2b2x2 − 2y2 + 4by2 − 2b2y2 + 8z

+8b2z − x2z + 2b2x2z − b4x2z − y2z + 2b2y2z − b4y2z

+4z2 + 8b2z2 + 4b4z2. (2)

The surface F (t, x, y, z) = 0 in CP3 has an ordinary double singular point at

(t, x, y, z) = (1, 0, 0,−1/(1 + b2)).

Corresponding to this singular point, the boundary of the Davis-Wielandt shell

W (A,A∗A) has a flat portion on the horizontal plane

Z = 1 + b2. (3)

The intersection of the shell W (A,A∗A) and the horizontal plane (3) is the elliptical

disc bounded by the ellipse

1− 4b2 + 6b4 − 4b6 + b8 − 4X2 + 16bX2 − 28b2X2

+32b3X2 − 28b4X2 + 16b5X2 − 4b6X2 − 4Y 2 − 16bY 2

−28b2Y 2 − 32b3Y 2 − 28b4Y 2 − 16b5Y 2 − 4b6Y 2 = 0. (4)

The Davis-Wielandt shell W (A,A∗A) also provides information for Wq(A). We define

the height function

h(x+ iy) = max{w ∈ R : (x+ iy, w) ∈ W (A,A∗A)}. (5)

Then Tsing’s circular union formula [11] is written as

Wq(A) = {q z +
√

1− q2wΨ(z) : z ∈ W (A), w ∈ C, |w| ≤ 1}, (6)

where

Ψ(z) =
√

h(z)− |z|2. (7)

The formula (6) leads to the convexity of the range Wq(A).

Theorem 2.1 Let A = A(b), b ≥ 0, be the matrix defined by (1).

(i) If q ≤ (1− b)2/(2(1 + b2)) then Wq(A) is the circular disc x2 + y2 ≤ 1 + b2.
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(ii) If (1 − b)2/(2(1 + b2)) < q < (1 + b)2/(2(1 + b2)) then the boundary of Wq(A)

contains circular arcs on the circle x2 + y2 = 1 + b2.

Proof. We prove (i) first. By (3), the function (7) restricted to the elliptical disc

bounded by (4) becomes

Ψ(z) =
√

1 + b2 − |z|2.

Consider a point z = x+ iy ∈ W (A) for which

q z + r
√

1− |q|2 Ψ(z) ∈ ∂Wq(A)

for some r ∈ C, |r| = 1. Moreover, if Ψ(z) is continuously differentiable on a neigh-

borhood of the point x + iy, then by [4, Theorem 2] the point x + iy satisfies the

equation

Ψx(x+ i y)2 +Ψy(x+ i y)2 = q2/(1− q2). (8)

We compute that

Ψx(x+ iy)2 +Ψy(x+ iy)2 = (x2 + y2)/(1 + b2 − x2 − y2). (9)

From (8) and (9), we obtain

(x2 + y2)/(1 + b2 − x2 − y2) = q2/(1− q2). (10)

Substitute R = x2 + y2 in (10). Then we have the relation

R = q2 + b2q2.

Consider X = 0 in the ellipse (4), then the semi-minor of the ellipse is (1− b)2/(2(1+

b2)1/2). Suppose

R1/2 = (q2 + b2q2)1/2 ≤ (1− b)2/(2(1 + b2)1/2). (11)

Then the circle x2 + y2 = q2 + b2q2 is contains in the elliptical disc bounded by (4).

The inequality (11) is rewritten as

q ≤ (1− b)2/(2(1 + b2)).

Again, by [4, Theorem 2],

{z ∈ W (A) : qz + r
√

1− q2Ψ(z) ∈ ∂Wq(A(b)) for some r ∈ C, |r| = 1}
⊂ {x+ iy ∈ W (A)◦ : (x2 + y2)/(1 + b2 − x2 − y2) = q2/(1− q2)},
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the boundary of Wq(A) in (6) is expressed as

q
√

1 + b2qeiθ +
√

1− q2eiφ
√

1 + b2 − (1 + b2)q2,

which is a circle centered at the origin with radius (1 + b2)1/2. This proves (i).

A similar argument of the proof of (i) is applicable to prove (ii). We consider

Y = 0 in the ellipse (4), then the semi-major of the ellipse is (1 + b)2/(2
√
1 + b2).

Suppose

R1/2 = (q2 + b2q2)1/2 < (1 + b)2/(2
√

1 + b2),

i.e., q < (1 + b)2/2(1 + b2). Then the intersection of the elliptical disc

{x+ iy : (x, y) ∈ R2,
x2

(1 + b)4/(4(1 + b2))
+

y2

(1− b)4/(4(1 + b2))
≤ 1}

and the set

{z ∈ W (A) : qz + r
√

1− q2Ψ(z) ∈ ∂Wq(A(b)) for some r ∈ C, |r| = 1}
⊂ {x+ iy ∈ W (A)◦ : (x2 + y2)/(1 + b2 − x2 − y2) = q2/(1− q2)},

containing two arcs. Corresponding to these two arcs, the boundary of Wq(A) in (6)

contains arcs on the circle x2 + y2 = 1 + b2. �

Although for (1−b)2/(2(1+b2)) < q < (1+b)2/2(1+b2), the boundary of Wq(A)

contains two arcs on the circle x2 + y2 = 1 + b2, but Wq(A) may not equal to the

associated circular disc. Indeed, it may not even be an elliptical disc. We treat the case

b = 2 in the matrix (1). Then (1−b)2/(2(1+b2)) = 1/10 and (1+b)2/2(1+b2) = 9/10.

In the following, we show that W4/5(A(2)) is not an elliptical disc. At first, we have

the boundary equation of the Davis-Wielandt shell of A(2).

Theorem 2.2 Let A = A(2) be the matrix defined by (1) with b = 2. Then every

boundary point (X,Y, Z) of W (A,A∗A) lies on the surface G(X,Y, Z) = 0 of degree

10 or its multi-tangent Z = 5 satisfying the inequality 20X2 + 1620Y 2 ≤ 81.

Proof. Let G(X,Y, Z) = 0 be the dual surface of F (t, x, y, z) = 0 (2). By [4], the

boundary generating surface of the shell W (A,A∗A) can be obtained by the following

steps:

The dual surface G(X,Y, Z) = 0 consists of the points (X,Y, Z) such that the

plane Xx + Y y + Zz + 1 = 0 is a tangent of the surface F (1, x, y, z) = 0 at some
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non-singular point of this surface. Consider the polynomial

f(x, y : X,Y, Z) = Z2 F (1, x, y,− 1

Z
− Xx

Z
− Y y

Z
),

and eliminate the variables x and y from the equations

f(x, y : X,Y, Z) = 0,
∂f

∂y
(x, y : X,Y, Z) = 0,

∂f

∂x
(x, y : X,Y, Z) = 0.

Successive eliminations of x and y provide a performable method to this process. The

polynomialG(X,Y, Z) is obtained as a simple factor of the successive discriminants. �

Partial terms of the polynomial G(X,Y, Z) computed by the proof of Theorem

2.2 are given by

G(X,Y, Z) = (18432X2 + 165888Y 2)Z8 − (359424X2 + 2571264Y 2)Z7

+(−121856X4 − 474624X2Y 2 + 6925824Y 4 + 2750976X2

+14805504Y 2)Z6 + lower degree terms in Z

+(2000X10 + 490000X8Y 2 + 40340000X6Y 4 + 1142100000X4Y 6

+2165130000X2Y 8 + 1062882000Y 10 − 1295975X8

+256936100X6Y 2 + 1698904150X4Y 4 + 2621816100X2Y 6

+1181144025Y 8 + 209935800X6 + 528751800X4Y 2 + 427696200X2Y 4

+108880200Y 6 + 2624400X4 + 5248800X2Y 2 + 2624400Y 4).

The algebraic surface G(X,Y, Z) = 0 contains the three lines

{(0, 0, Z) : Z ∈ C}, {(X, 0, (18−X)/4) : X ∈ C}, {(X, 0, (18 +X)/4) : X ∈ C}

on the plane Y = 0. These lines do not lie on the boundary of the shell W (A,A∗A).

The equation G(X,Y, Z) = 0 gives the implicit expression of the hight function Z =

h(X + iY ) (5). The Davis-Wielandt shell W (A,A∗A) is symmetric with respect to

the real axis Y = 0 and the imaginary axis X = 0:

G(X,−Y, Z) = G(X,Y, Z), G(−X,Y, Z) = G(X,Y, Z).

By this property and the formula (6), the q-numerical range Wq(A), 0 < q < 1, is

also symmetric with respect to the real and imaginary axes. For θ ∈ R, we define

Mθ(q) = max{ℜ(z exp(−iθ)) : z ∈ Wq(A)}.
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By the symmetry property, we have that

M−θ(q) = Mθ(q), Mπ−θ(q) = Mθ(q).

We denote Mx = M0, My = Mπ/2, Mv = Mπ/4. By equation (6), we obtain

Mθ(q) = max{qx+
√

1− q2Φθ(x) :

min
z∈W (A)

ℜ(z exp(−iθ)) ≤ x ≤ max
z∈W (A)

ℜ(z exp(−iθ))}, (12)

where

Φθ(x) = max{
√

h(z)− |z|2 : z ∈ W (A),ℜ(z exp(−iθ)) = x}.

If z = X + iY lies on the elliptical disc

20X2 + 1620Y 2 ≤ 81, (13)

then the function Ψ(z) is given by

Ψ(z) =
√

5−X2 − Y 2.

If z ∈ W (A) does not belong to the disc (13), then Ψ(z) satisfies

G(ℜ(z),ℑ(z), |z|2 +Ψ(z)2) = 0.

Suppose ℑ(z) = 0. If X = ℜ(z) ∈ W (A) with |X | > 9
√
5/10 ( X ∈ W (A) implies

|X | ≤ 3
√
2/2), then W = Φ0(X) satisfies

72W 8 + (288X2 − 108)W 6 + (432X4 − 791X2 + 54)W 4

+(288X6 − 1258X4 − 802X2 − 9)W 2

+(72X8 − 575X6 + 1144X4 + 16X2) = 0.

Suppose ℜ(z) = 0. If Y = ℑ(z) ∈ W (A) with |Y | >
√
5/10 ( iY ∈ W (A) implies

|Y | ≤
√
2/2), then W = Φπ/2(Y ) satisfies

8W 8 + (32Y 2 − 108)W 6 + (48Y 4 − 71Y 2 + 486)W 4 + (32Y 6 + 182Y 4

−738Y 2 − 729)W 2 + (8Y 8 + 145Y 6 + 776Y 4 + 1296Y 2) = 0. (14)

If |x| ≤ 9
√
205/410, then the function W = Φπ/4(x) is given by

Φπ/4(x) =
√

5− x2.

We have Φπ/4(9
√
205/410) =

√

4019/820. To express W = Φπ/4(x) for

9
√
205/410 ≤ |x| ≤

√
10/2, we introduce

L(x, v,W ) = G(
x − v√

2
,
x+ v√

2
,W 2 + x2 + y2).
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The implicit expression of W = Φπ/4(x) is obtained by the elimination of v from the

equations

L(x, v,W ) = 0,
∂L

∂v
(x, v,W ) = 0.

It is given by

T (x,W ) = 173946175488000000W 28+ (2727476031651840000x2

−3168477904896000000)W 26+ (20313573530429030400x4

−39881741313245184000x2+ 23822488882380800000)W 24

+ lower degree terms in W

+(2918332558536081408x28+ 3039929748475084800x26

−104417065668305747968x24 + 136940874704617472000x22

+532245897669408456704x20 − 927952166837110702080x18

−6417794816224421478x16 + 227595031635537428480x14

−2031191223465228107776x12+ 3773060375254054993920x10

−1201269688073344516096x8+ 2485062193220818042880x6

+126162291333389090816x4 + 1449961395553566720x2).

By using these equations, we prove the following theorem.

Theorem 2.3 Let A(2) be the 3× 3 tridiagonal matrix (1) with b = 2. Then

Mx = max{ℜ(z) : z ∈ W4/5(A)} =
√
5,

My = max{ℑ(z) : z ∈ W4/5(A)} =
27

√
6

40
,

and the quantity

Mv = max{(ℜ(z) + ℑ(z))/
√
2 : z ∈ W4/5(A)},

is the greatest real root of the equation

R(v) = 33280000000v6 − 257344640000v4+ 547018156000v2− 194025305907 = 0,

(15)

and satisfying the inequality

M2
v > 3.91 >

M2
x +M2

y

2
=

6187

1600
, (16)
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and hence the boundary of the convex set W4/5(A) is not an ellipse.

Proof. Suppose that the inequality (16) is proved. If the boundary of W4/5(A) is an

ellipse, by the symmetry of W4/5(A) with respect to the real and imaginary axes, the

ellipse is given by

W4/5(A) = {x+ iy : (x, y) ∈ R2,
x2

M2
x

+
y2

M2
y

≤ 1},

and its support ax+ by + 1 = 0 satisfies the equation

M2
xa

2 +M2
y b

2 = 1.

We may rewrite a support line

x cos θ + y sin θ −Mθ = 0

as

−cos θ

Mθ
x− sin θ

Mθ
y + 1 = 0.

Then, we have the equation

M2
x

cos2 θ

M2
θ

+M2
y

sin2 θ

M2
θ

= 1,

and hence

M2
θ = M2

x cos2 θ +M2
y sin2 θ. (17)

As a special case θ = π/4, we have

M2
v =

M2
x +M2

y

2
.

Thus the inequality (16) implies that the boundary is not an ellipse.

Secondly, we determine the quantities Mx,My. By the equation (12), the quanti-

tiesMx = M0(4/5),My = Mπ/2(4/5),Mv = Mπ/4(4/5) are respectively the maximum

of the function

qx+
√

1− q2Φθ(x) =
4

5
x+

3

5
Φθ(x).

for θ = 0, π/2, π/4. Each maximal point xθ satisfies

Φ′

θ(xθ) = − q
√

1− q2
= −4

3
.
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for θ = 0, π/2, π/4. For θ = 0, xθ is given by

xθ = x0 =
4
√
5

5
<

9
√
5

10
,

for which

Mx =
4x0

5
+

3

5

√

5− x2
0 =

√
5.

For θ = π/2, xθ is given by

xθ = xπ/2 =
9
√
6

40
∈ [

√
5

10
,

√
2

2
]

at which the function

4

5
x+

3

5
Φπ/2(x)

attains the maximum My = 27
√
6/40, where Φπ/2(Y ) is given by (14).

Thirdly, an implicit expression (15) of Mv can be obtained by the elimination of

x from the equation

T̃ (x, W̃ ) = T̃ (x,
4

5
x+

3

5
W ) = T (x,W ) = 0,

∂

∂x
T̃ (x, W̃ ) = 0,

and Mv is the greatest real root of the polynomial R(v). Finding a numerical solution

of the equation R(v) = 0, we obtain the inequality (16). �

The boundary points x + iy of W4/5(A) are classified into the two classes. One

class consists of points satisfying

x+ iy =
4

5
(u+ iv) + w

√

5− u2 − v2

for some point u+ iv on the elliptical disc (13), and some |w| = 1. This class of points

lies on the circle x2 + y2 = 5. Another class corresponds to points u + iv satisfying

G(u, v, u2 + v2 + Ψ(u + iv)2) = 0, and lies on an algebraic curve S(x, y) = 0, where

S(x, y) is a polynomial in x and y of degree 16 which is decomposed as the product of

a polynomial S1(x, y) of degree 6 and a polynomial S2(x, y) of degree 10. We perform

the computation of S(x, y). The curve S1(x, y) = 0 is displayed in Figure 1. At the

right-end corner of Figure 1, there is an intersection of two curves which is displayed

in Figure 2. The convexity is connected by an arc of the circle x2 + y2 = 5 as shown

in Figure 3. The curve S2(x, y) = 0 is display in Figure 4, and the final boundary

generating curve of W4/5(A) is displayed in Figure 5.
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We have determined Wq(A(b)) in Theorem 2.1 for q < (1 + b)2/2(1 + b2), and

demonstrated in Theorem 2.3 that Wq(A(2)) is not an elliptical disc if q = 4/5. A

similar method can be applied to show that for q = 12/13 > (1 + b)2/2(1 + b2)|b=2,

W12/13(A(2)) is also not an elliptical disc. Indeed, the boundary of W12/13(A(2)) lies

on a polynomial curve of degree 16.

3. The functions Φθ. By a duality theorem in [9], the function Ψ on W (A) is

reflected to the elliptical range property of the family of {Wq(A) : 0 ≤ q ≤ 1}. Can we

find another criterion for the elliptical range of {Wq(A) : 0 ≤ q ≤ 1}? The following

example suggests that the functions Φθ can not play the role.

We consider an example:

B =

(

0 8/5

2/5 0

)

.

The set Wq(B) is an elliptical disc for 0 ≤ q ≤ 1. The function Φ0(x) on [−1, 1] is

given by

Φ0(x) =
3 + 5

√
1− x2

5
,
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and the function Φπ/2(x) on [−3/5, 3/5] is given by

Φπ/2(x) =
5 +

√
9− 25x2

5
.

Moreover, the function W = Φπ/4(x) on [−
√
17/5,

√
17/5] has an implicit expression

T (x,W ) = 112890625W 8 + (325781250x2 − 341062500)W 6

+(412890625x4 − 374000000x2 + 141280000)W 4

+(300000000x6 − 340000000x4 + 51200000x2 − 20889600)W 2

+(100000000x8 − 20480000x4 + 1048576) = 0. (18)

For every 0 < q < 1, the respective maxima M0(q), Mπ/2(q), Mπ/4(q) of the function

q x+
√

1− q2Φθ(x)

for θ = 0, π/2, π/4 satisfy

Mπ/4(q)
2 =

M0(q)
2 +Mπ/2(q)

2

2

for all q. For instance, the respective maxima

M0(
12

13
) =

16

13
,Mπ/2(

12

13
) =

64

65

are attained at x = 12/13 = 1 × 12/13 and x = 36/65 = 3/5 × 12/13. By (17), we

have

Mπ/4(
12

13
) = ((M0(

12

13
) +Mπ/2(

12

13
))/2)1/2 =

8
√
82

65
.

Since Φπ/4(x) satisfies (18)

T (x,Φπ/4(x)) = 0,

The maximal point x0 of the function Φπ/4(x) is located at Φ′

π/4(x0) = 0. We compute

Φ′

π/4(x) = −∂xT (x,w)

∂w(x,w)

for w = Φπ/4(x), and obtain that x0 = 222
√
82/2665 which is different from

√
17/5×

12/13. The maximum Mθ of the functions Φθ satisfies property (17):

M2
θ = M2

x cos2 θ +M2
y sin2 θ,

but this property is not reflected to a simple relation among the functions Φ0,Φπ/2

and Φθ for 0 < θ < π/2.
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