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1. Introduction. In this paper, we construct Leonard pairs from each finite-

dimensional irreducible sl2-module. We show that this construction yields all Leonard

pairs of Racah, Hahn, dual Hahn, and Krawtchouk type, and no other types of

Leonard pairs.

Leonard pairs were introduced by P. Terwilliger [9] to abstract Bannai and Ito’s [1]

algebraic approach to a result of D. Leonard concerning the sequences of orthogonal

polynomials with finite support for which the dual sequence of polynomials is also a

sequence of orthogonal polynomials [7, 8]. These polynomials arise in connection with

the finite-dimensional representations of certain Lie algebras and quantum groups, so

one expects Leonard pairs to arise as well. Leonard pairs of Krawtchouk type have

been constructed from finite-dimensional irreducible sl2-modules [12]. In this paper,

we give a more general construction based upon the equitable basis for sl2 [2, 5]. The

equitable basis of sl2 arose in the study of the Tetrahedron algebra and the 3-point

loop algebra of sl2 [3]–[5]. These references consider the modules of these algebras

and their connections with a generalization of Leonard pairs called tridiagonal. Here,

we consider only Leonard pairs and sl2, which has not been considered elsewhere.

2. Leonard pairs. We recall some facts concerning Leonard pairs; see [10]–[14]

for more details. Fix an integer d ≥ 1. Throughout this paper F shall denote a

field whose characteristic is either zero or an odd prime greater than d. Also, V shall

denote an F -vector space of dimension d+1, and End(V ) shall denote the F -algebra
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of linear transformations from V to V . In addition, Fd+1 shall denote the vector space

over F consisting of column vectors of length d+ 1, and Matd+1(F) shall denote the

F -algebra of (d + 1) × (d + 1) matrices with entries in F having rows and columns

indexed by 0, 1, . . . , d. Observe that Matd+1(F) acts on Fd+1 by left multiplication.

A square matrix is said to be tridiagonal whenever every nonzero entry appears

on, immediately above, or immediately below the main diagonal. A tridiagonal matrix

is said to be irreducible whenever all entries immediately above and below the main

diagonal are nonzero. A square matrix is said to be upper (resp., lower) bidiagonal

whenever every nonzero entry appears on or immediately above (resp., below) the

main diagonal.

Definition 2.1. By a Leonard pair on V , we mean an ordered pair A, A∗ of

elements from End(V ) such that (i) there exists a basis of V with respect to which the

matrix representing A is diagonal and the matrix representing A∗ is irreducible tridi-

agonal; and (ii) there exists a basis of V with respect to which the matrix representing

A∗ is diagonal and the matrix representing A is irreducible tridiagonal.

An element of End(V ) is multiplicity-free when it has d + 1 mutually distinct

eigenvalues in F . Let A ∈ End(V ) denote a multiplicity-free linear transformation.

Let θ0, θ1, . . . , θd denote an ordering of the eigenvalues of A, and for 0 ≤ i ≤ d, set

Ei =
∏

0≤j≤d

j 6=i

A− θjI

θi − θj
,(2.1)

where I denotes the identity map on V . By elementary linear algebra, AEi = EiA =

θiEi (0 ≤ i ≤ d), EiEj = δijEi (0 ≤ i, j ≤ d), and
∑d

i=0
Ei = I. It follows

that E0, E1, . . . , Ed is a basis for the subalgebra of End(V ) generated by A. We

refer to Ei as the primitive idempotent of A associated with θi. Observe that V =

E0V + E1V + · · ·+ EdV (direct sum). For 0 ≤ i ≤ d, EiV is the (one-dimensional)

eigenspace of A in V associated with the eigenvalue θi, and Ei acts on V as the

projection onto this eigenspace.

Definition 2.2. [10] By a Leonard system on V , we mean a sequence of the

form (A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0) of elements of End(V ) that satisfies (i)–(v) below.

(i) A and A∗ are multiplicity-free.

(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents of A.

(iii) E∗

0 , E
∗

1 , . . . , E
∗

d is an ordering of the primitive idempotents of A∗.

(iv) EiA
∗Ej =

{

0 if | i− j |> 1,

6= 0 if | i− j |= 1
(0 ≤ i, j ≤ d).

(v) E∗

i AE
∗

j =

{

0 if | i− j |> 1,

6= 0 if | i− j |= 1
(0 ≤ i, j ≤ d).

We recall the relationship between Leonard systems and Leonard pairs. Suppose
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(A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0) is a Leonard system on V . For 0 ≤ i ≤ d, pick any nonzero

vectors vi ∈ EiV and v∗i ∈ E∗

i V . Then the sequence {vi}
d
i=0 (resp., {v∗i }

d
i=0) is a

basis for V which satisfies condition (i) (resp., condition (ii)) of Definition 2.1. Thus,

A, A∗ is a Leonard pair. Conversely, suppose A, A∗ is a Leonard pair on V . By [10,

Lemma 1.3], each of A and A∗ is multiplicity-free. Let {vi}
d
i=0 (resp., {v∗i }

d
i=0) be a

basis of V which witnesses condition (i) (resp., condition (ii)) of Definition 2.1. For

≤ i ≤ d, vi (resp., v
∗

i ) is an eigenvalue of A (resp., A∗); let Ei (resp., E
∗

i ) denote the

corresponding primitive idempotent of A (resp., A∗). Then (A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0)

is a Leonard system on V .

Suppose A, A∗ is a Leonard pair on V , and suppose (A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0)

is an associated Leonard system. Then the only other Leonard systems associ-

ated with A, A∗ are (A; {Ei}
d
i=0;A

∗; {E∗

d−i}
d
i=0), (A; {Ed−i}

d
i=0;A

∗; {E∗

i }
d
i=0), and

(A; {Ed−i}
d
i=0;A

∗; {E∗

d−i}
d
i=0). Since d ≥ 1, these four Leonard systems are distinct,

so there is a one-to-four correspondence between Leonard pairs and Leonard systems

here.

We recall the equivalence of Leonard systems and parameter arrays.

Definition 2.3. [10] By a parameter array over F of diameter d, we mean a

sequence of scalars ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) taken from F that satisfy

the following conditions:

θi 6= θk (0 ≤ i < k ≤ d),(2.2)

θ∗i 6= θ∗k (0 ≤ i < k ≤ d),(2.3)

ϕj 6= 0 (1 ≤ j ≤ d),(2.4)

φj 6= 0 (1 ≤ j ≤ d),(2.5)

ϕj = φ1

j−1
∑

h=0

θh − θd−h

θ0 − θd
+ (θ∗j − θ∗0)(θj−1 − θd) (1 ≤ j ≤ d),(2.6)

φj = ϕ1

j−1
∑

h=0

θh − θd−h

θ0 − θd
+ (θ∗j − θ∗0)(θd−j+1 − θ0) (1 ≤ j ≤ d),(2.7)

θi−2 − θi+1

θi−1 − θi
=
θ∗k−2 − θ∗k+1

θ∗k−1
− θ∗k

(2 ≤ i, k ≤ d− 1).(2.8)

Definition 2.4. Let (A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0) be a Leonard system on V . For

each i (0 ≤ i ≤ d), let θi be the eigenvalue of A associated with Ei. We refer to {θi}
d
i=0

as an eigenvalue sequence of A. For each i (0 ≤ i ≤ d), let θ∗i be the eigenvalue of A∗

associated with E∗

i . We refer to {θ∗i }
d
i=0 as an eigenvalue sequence of A∗.

Theorem 2.5. [11] Let Φ = (A; {Ei}
d
i=0;A

∗; {E∗

i }
d
i=0) be a Leonard system on
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V . Let {θi}
d
i=0 and {θ∗i }

d
i=0 denote the respective eigenvalue sequences for A and A∗.

Fix a nonzero vector v ∈ E∗

0V .

(i) For 0 ≤ i ≤ d, define a vector ωi = (A−θi−1I) · · · (A−θ1I)(A−θ0I)v. Then

{ωi}
d
i=0 is a basis for V with action

Aωi = θiωi + ωi+1 (0 ≤ i ≤ d− 1), Aωd = θdωd

A∗ω0 = θ∗0 , A∗ωi = ϕiωi−1 + θ∗i ωi (1 ≤ i ≤ d)

for some sequence of nonzero scalars {ϕj}
d
j=1 from F , which we refer to as

the first split sequence of Φ.

(ii) For 0 ≤ i ≤ d, define a vector wi = (A − θd−i+1I) · · · (A − θd−1I)(A − θdI)v.

Then {wi}
d
i=0 is a basis for V with action

Awi = θd−iwi + wi+1 (0 ≤ i ≤ d− 1), Awd = θ0wd

A∗w0 = θ∗0 , A∗wi = φiwi−1 + θ∗iwi (1 ≤ i ≤ d)

for some sequence of nonzero scalars {φj}
d
j=1 from F , which we refer to as

the second split sequence of Φ.

(iii) The sequence ({θi}
d
i=0, {θ∗i }

d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array,

which we refer to as the parameter array of Φ.

We say that a parameter array is associated with a Leonard pair whenever it is the

parameter array of any associated Leonard system. Observe that with respect to the

basis {ωi}
d
i=0 from Theorem 2.5, the matrices representing A and A∗ are respectively

lower bidiagonal and upper bidiagonal.

Theorem 2.6. [10] Let B ∈ Matd+1(F) be lower bidiagonal, and let B∗ ∈

Matd+1(F) be upper bidiagonal. Then the following are equivalent:

(i) The pair B, B∗ is a Leonard pair on Fd+1.

(ii) There exists a parameter array ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) over F

such that

B(i, i) = θi, B∗(i, i) = θ∗i (0 ≤ i ≤ d),

B(j, j − 1)B∗(j − 1, j) = ϕj (1 ≤ j ≤ d).

When (i), (ii) hold, B, B∗ and ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) are associated.

Theorem 2.5 constructs a parameter array from any Leonard system. Theorem

2.6 implies that certain matrices with entries taken from a parameter array form a

Leonard pair on Fd+1 associated with the parameter array. The first two subsequences

of the parameter array are the eigenvalue sequences, so (2.1) yields the primitive

idempotents of an associated Leonard system. Any Leonard systems with the same

parameter array are isomorphic since they have the same action by Theorem 2.5.
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That is to say, there is a one-to-one correspondence between parameter arrays and

isomorphism classes of associated Leonard systems. In light of the discussion following

Definition 2.2, there is a one-to-four correspondence between associated Leonard pairs

and parameter arrays.

3. Parameter arrays of classical type. In [14], parameter arrays are classified

into 13 families, each named for certain associated sequences of orthogonal polyno-

mials. The four families which arise in this paper share a common property. Given a

parameter array, let β be the common value of (2.8) minus one if d ≥ 3, and let β be

any scalar in F if d ≤ 2.

Definition 3.1. A parameter array is of classical type whenever β = 2.

We shall show that only the four classical families arise from sl2 via the construc-

tion of this paper. The following results characterize these types.

Theorem 3.2. [14, Example 5.10] Fix nonzero h, h∗ ∈ F and s, s∗, r1, r2, θ0,

θ∗0 ∈ F such that r1 + r2 = s+ s∗ + d+1 and none of r1, r2, s
∗ − r1, s

∗ − r2 is equal

to −j for 1 ≤ j ≤ d and that neither of s, s∗ is equal to −i for 2 ≤ i ≤ 2d. Let

θi = θ0 + hi(i+ 1 + s) (0 ≤ i ≤ d),

θ∗i = θ∗0 + h∗i(i+ 1 + s∗) (0 ≤ i ≤ d),

ϕj = hh∗j(j − d− 1)(j + r1)(j + r2) (1 ≤ j ≤ d),

φj = hh∗j(j − d− 1)(j + s∗ − r1)(j + s∗ − r2) (1 ≤ j ≤ d).

Then Φ = ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array; we say that it

is of Racah type. We refer to the scalars r1, r2, s, s
∗, h, h∗, θ0, θ

∗

0 as hypergeometric

parameters for Φ.

Theorem 3.3. [14, Example 5.11] Fix nonzero s, h∗ ∈ F and s∗, r, θ0, θ
∗

0 ∈ F

such that neither of r, s∗ − r is equal to −j for 1 ≤ j ≤ d and that s∗ is not equal −i

for 2 ≤ i ≤ 2d. Let

θi = θ0 + si (0 ≤ i ≤ d),

θ∗i = θ∗0 + h∗i(i+ 1 + s∗) (0 ≤ i ≤ d),

ϕj = h∗sj(j − d− 1)(j + r) (1 ≤ j ≤ d),

φj = −h∗sj(j − d− 1)(j + s∗ − r) (1 ≤ j ≤ d).

Then Φ = ({θi}
d
i=0, {θ∗i }

d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array; we say that

it is of Hahn type. We refer to the scalars r, s, s∗, h∗, θ0, θ
∗

0 as hypergeometric

parameters for Φ.

Theorem 3.4. [14, Example 5.12] Fix nonzero h, s∗ ∈ F and s, r, θ0, θ
∗

0 ∈ F

such that neither of r, s− r is equal to −j for 1 ≤ j ≤ d, and that s is not equal −i
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for 2 ≤ i ≤ 2d. Let

θi = θ0 + hi(i+ 1 + s) (0 ≤ i ≤ d),

θ∗i = θ∗0 + s∗i (0 ≤ i ≤ d),

ϕj = hs∗j(j − d− 1)(j + r) (1 ≤ j ≤ d),

φj = hs∗j(j − d− 1)(j + r − s− d− 1) (1 ≤ j ≤ d).

Then Φ = ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array; we say that it

is of dual Hahn type. We refer to the scalars r, s, s∗, h, θ0, θ
∗

0 as hypergeometric

parameters of Φ.

Theorem 3.5. [14, Example 5.13] Fix nonzero r, s, s∗ ∈ F and θ0, θ
∗

0 ∈ F such

that r 6= ss∗. Let

θi = θ0 + si (0 ≤ i ≤ d),

θ∗i = θ∗0 + s∗i (0 ≤ i ≤ d),

ϕj = rj(j − d− 1) (1 ≤ j ≤ d),

φj = (r − ss∗)j(j − d− 1) (1 ≤ j ≤ d).

Then Φ = ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array; we say that it

is of Krawtchouk type. We refer to the scalars r, s, s∗, θ0, θ
∗

0 as hypergeometric

parameters Φ.

Theorem 3.6. [14] A parameter array is of classical type if and only if it is of

Racah, Hahn, dual Hahn, or Krawtchouk type.

The parameter arrays of classical type are not distinct when d = 1; it is customary

to define the type to be Krawtchouk in this case. If d ≥ 2, then the parameter arrays

of classical type are distinguished by their eigenvalue sequences. Indeed, one need

only determine which eigenvalue sequences are linear and which are quadratic in

their subscript.

Given a parameter array, all associated Leonard pairs and Leonard systems are

said to be of the same type as the parameter array. Assume d ≥ 3. Then β is the

same in all four parameter arrays associated with a given Leonard pair; in particular,

the type of a Leonard pair is well-defined.

Each set of hypergeometric parameters uniquely determines a parameter array.

Suppose d ≥ 2. Then each parameter array of Hahn, dual Hahn, and Krawtchouk type

has a unique set of hypergeometric parameters. Swapping hypergeometric parameters

r1 and r2 in Theorem 3.2 (Racah type) gives a sequence of hypergeometric parameters

for the same parameter array (it might be the case that r1 = r2).
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4. The Lie algebra sl2. In this section, we recall some facts concerning the Lie

algebra sl2.

Definition 4.1. [6] The Lie algebra sl2 is the Lie algebra over F that has a

basis e, f , h satisfying the following conditions:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

where [−,−] denotes the Lie bracket.

Lemma 4.2. [5] With reference to Definition 4.1, let

x = 2e− h, y = −2f − h, z = h.

Then x, y, z is a basis for sl2, and

[x, y] = 2x+ 2y, [y, z] = 2y + 2z, [z, x] = 2z + 2x.

We call x, y, z the equitable basis for the Lie algebra sl2.

Observe that the map x 7→ y 7→ z 7→ x defines an automorphism of sl2. Thus, for

simplicity, we shall state all results for x, y, z with the understanding that they are

readily extended by applying any cyclic shift to the equitable basis.

Lemma 4.3. [6] There is a finite-dimensional irreducible sl2-module Vd with basis

v0, v1, . . . , vd and action hvi = (d−2i)vi (0 ≤ i ≤ d), fvi = (i+1)vi+1 (0 ≤ i ≤ d−1),

fvd = 0, ev0 = 0, evi = (d − i + 1)vi−1 (1 ≤ i ≤ d). Moreover, up to isomorphism,

Vd is the unique irreducible sl2-module of dimension d+ 1.

Lemma 4.4. [5] With reference to Lemmas 4.2 and 4.3,

(x+ dI)v0 = 0, (x+ (d− 2i)I)vi = 2(d− i+ 1)vi−1 (1 ≤ i ≤ d),

(y + (d− 2i)I)vi = −2(i+ 1)vi+1 (0 ≤ i ≤ d− 1), (y − dI)vd = 0,

(z − (d− 2i)I)vi = 0 (0 ≤ i ≤ d).

5. A pair of linear operators. Let U(sl2) denote the universal enveloping

algebra of sl2, that is, the associative F -algebra with generators e, f , h and relations

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h, where [a, b] = ab− ba is commutator of a and b.

Definition 5.1. Let A ∈ U(sl2) denote an arbitrary linear combination of 1, y,

z, and yz, and let A∗ ∈ U(sl2) denote an arbitrary linear combination of 1, z, x, and

zx. Write

A = κ1 + λy + µz + νyz, A∗ = κ∗1 + λ∗z + µ∗x+ ν∗zx.
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Our goal is to characterize when A and A∗ act on Vd as a Leonard pair. In this

section, we show that this is the case if and only if the following sequences of scalars

form a parameter array.

Definition 5.2. With reference to Definition 5.1, define

θi = κ − (λ − µ)(d − 2i)− (d− 2i)2ν (0 ≤ i ≤ d),

θ∗i = κ∗ + (λ∗ − µ∗)(d − 2i)− (d− 2i)2ν∗ (0 ≤ i ≤ d),

ϕj = −4j(d− j + 1)(λ + (d− 2(j − 1))ν)(µ∗ + (d− 2(j − 1))ν∗) (1 ≤ j ≤ d),

φj = 4j(d− j + 1) ((λ + dν)(µ∗ + dν∗)

+(λ − µ + 2(j − 1)ν)(λ∗ − µ∗ − 2(d− j)ν∗)) (1 ≤ j ≤ d).

Lemma 5.3. The pair A, A∗ of Definition 5.1 act on the sl2-module Vd as follows.

Referring to the basis {vi}
d
i=0 of Lemma 4.3,

Avi = θivi + σivi+1 (0 ≤ i ≤ d− 1), Avd = θdvd,

A∗v0 = θ∗0v0, A∗vi = τ∗i vi−1 + θ∗i vi (1 ≤ i ≤ d),

where {θi}
d
i=0 and {θ∗i }

d
i=0 are as in Definition 5.2 and where

σi = −2(i+ 1)(λ + (d− 2i)ν) (0 ≤ i ≤ d− 1),

τ∗i = 2(d− i+ 1)(µ∗ + (d− 2(i− 1))ν∗) (1 ≤ i ≤ d).

Proof. Straightforward from Lemma 4.4.

Lemma 5.4. With reference to Definition 5.2 and Lemma 5.3,

ϕj = σj−1τ
∗

j (1 ≤ j ≤ d).(5.1)

Proof. Straightforward.

Theorem 5.5. The pair A, A∗ of Definition 5.1 acts on the sl2-module Vd

as a Leonard pair if and only if the sequence of scalars ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1,

{φj}
d
j=1) from Definition 5.2 forms a parameter array, in which case they are associ-

ated.

Proof. Let B and B∗ denote the respective matrices representing A and A∗ with

respect to the basis {vi}
d
i=0 of Lemma 4.3. This defines an F -algebra isomorphism

from End(V ) to Matd+1(F), so A, A∗ act on Vd as a Leonard pair if and only if B ,
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B∗ is a Leonard pair on Fd+1. By Lemma 5.3, B is lower bidiagonal and B∗ is upper

bidiagonal with B(i, i) = θi, B
∗(i, i) = θ∗i (0 ≤ i ≤ d) and B(j, j − 1)B∗(j − 1, j) =

σj−1τ
∗

j (1 ≤ j ≤ d). Recall that ϕj = σj−1τ
∗

j (1 ≤ j ≤ d) by (5.1).

Suppose ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array. Then B , B∗

is a Leonard pair by Theorem 2.6. The same theorem also implies that this parameter

array is associated with B , B∗.

Now suppose B , B∗ is a Leonard pair. Then by Theorem 2.6, there is an associ-

ated parameter array ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φ

′

j}
d
j=1) for some scalars {φ′j}

d
j=1.

It remains to verify that φj = φ′j (1 ≤ j ≤ d). Because it is part of a parameter

array, φ′j is given by the right-hand side of (2.7) (which is well-defined since the θi
are distinct). Simplifying φ′j verifies that φj = φ′j (1 ≤ j ≤ d). This calculation will

appear with more detail in the next section.

6. The associated parameter array. In this section, we characterize when

the scalars ({θi}
d
i=0, {θ

∗

i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) of Definition 5.2 form a parameter

array. The first two conditions of Definition 5.2 (equations (2.2) and (2.3)) require

that the eigenvalue sequences consist of distinct elements, so we make a preliminary

calculation.

Lemma 6.1. With reference to Definition 5.2,

θi − θk = 2(i− k)(λ − µ + 2(d− i− k)ν) (0 ≤ i, k ≤ d),(6.1)

θ∗i − θ∗k = 2(k − i)(λ∗ − µ∗ − 2(d− i− k)ν∗) (0 ≤ i, k ≤ d).(6.2)

Proof. Clear from the definition of the θi and θ
∗

i .

Lemma 6.2. With reference to Definition 5.2, the following hold:

(i) Equation (2.2) holds if and only if

λ − µ + 2(d− ℓ)ν 6= 0 (1 ≤ ℓ ≤ 2d− 1).(6.3)

(ii) Equation (2.3) holds if and only if

λ∗ − µ∗ + 2(d− ℓ)ν∗ 6= 0 (1 ≤ ℓ ≤ 2d− 1).(6.4)

Proof. Here i 6= k, so 2(i − k) 6= 0. Also, ℓ = i + k is 1, 2, . . . , or 2d − 1. The

result follows from (6.1) and (6.2).

The second pair of conditions of Definition 5.2 (equations (2.4) and (2.5)) require

that the split sequences be nonzero.
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Lemma 6.3. With reference to Definition 5.2, equation (2.4) holds if and only if

both

λ − (d− 2j)ν 6= 0 (1 ≤ j ≤ d)(6.5)

and

µ∗ − (d− 2j)ν∗ 6= 0 (1 ≤ j ≤ d).(6.6)

Proof. Recall that ϕj = σj−1τ
∗

j (1 ≤ j ≤ d) by (5.1). Discard the nonzero

factors in the expressions for σj−1 and τ∗j of Lemma 5.3, and then reverse and shift

the indices. This gives that σj−1 6= 0 (1 ≤ j ≤ d) if and only if (6.5) holds and that

τ∗j 6= 0 (1 ≤ j ≤ d) if and only if (6.6) holds. The result follows.

Lemma 6.4. With reference to Definition 5.2, equation (2.5) holds if and only if

(λ+ dν)(µ∗ + dν∗) 6= −(λ−µ+2(j− 1)ν)(λ∗ −µ∗− 2(d− j)ν∗) (1 ≤ j ≤ d).(6.7)

Proof. Clear from the definition of φj .

The next pair of conditions of Definition 5.2 (equations (2.6) and (2.7)) relate the

eigenvalue and split sequences.

Lemma 6.5. With reference to Definition 5.2, suppose θ0 6= θd. Then

i−1
∑

h=0

θh − θd−h

θ0 − θd
=
i(d− i+ 1)

d
(1 ≤ i ≤ d).(6.8)

Lemma 6.6. With reference to Definition 5.2, suppose θ0 6= θd.

(i) If d = 1, then equation (2.6) holds.

(ii) Suppose that d ≥ 2. Then equation (2.6) holds if and only if

λ∗ν + µν∗ + 2νν∗ = 0.(6.9)

Proof. For 1 ≤ j ≤ d, let ϕ′

j denote the right-hand side of equation (2.6).

Simplifying ϕ′

j with (6.8) and expanding with Definition 5.2 gives

ϕ′

j = −4j(d− j + 1)((λ − µ)(λ∗ − µ∗ − 2(d− 1)ν∗)

+ (λ + dν)(µ∗ + dν∗)− (λ − µ − 2(j − 1)ν)(λ∗ − µ∗ − 2(d− j)ν∗)).

Now ϕj − ϕ′

j = −8j(d − j + 1)(λ∗ν + µν∗ + 2νν∗) (1 ≤ j ≤ d). If d = 1, the term

(d − j + 1) is zero for 1 ≤ j ≤ d = 1. If d ≥ 2, ϕj = ϕ′

j for 1 ≤ j ≤ d if and only if

(6.9) holds.
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Lemma 6.7. With reference to Definition 5.2, suppose θ0 6= θd. Then equation

(2.7) holds.

Proof. Simplify the right-hand side of (2.7) with (6.8) to verify the equality.

The final condition of Definition 5.2 (equation (2.8)) requires that a certain ex-

pression involving the eigenvalue sequences be equal and independent of the subscript.

Lemma 6.8. With reference to Definition 5.2, assume that both sets of equivalent

conditions in Lemma 6.2 hold. Then β = 2. That is to say, equation (2.8) holds with

θi−2 − θi+1

θi−1 − θi
=
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
= 3 (2 ≤ i ≤ d− 1).(6.10)

Proof. Straightforward.

The results of this section give the following.

Theorem 6.9. With reference to Definition 5.2, assume d ≥ 2. Then ({θi}
d
i=0,

{θ∗i }
d
i=0; {ϕj}

d
j=1, {φj}

d
j=1) is a parameter array if and only if equations (6.3), (6.4),

(6.5), (6.6), (6.7), and (6.9) hold.

Proof. By Lemma 6.2, (2.2) holds if and only if (6.3) holds, and (2.3) holds if

and only if (6.4) holds. By Lemma 6.3, (2.4) holds if and only if (6.5) and (6.6) hold.

By Lemma 6.4, (2.5) holds if and only if (6.7) holds. Assume that the equivalent

conditions of Lemma 6.2(i) hold. Then by Lemma 6.7, (2.6) holds. By Lemma 6.6,

(2.7) holds if and only if (6.9) holds. Finally, (2.8) holds by (6.10). The result follows

by Definition 2.3.

Together, Theorems 5.5 and 6.9 give our main result concerning A, A∗.

Theorem 6.10. With reference to Definitions 5.1 and 5.2, assume d ≥ 2. Then

A, A∗ act on Vd as a Leonard pair if and only if equations (6.3), (6.4), (6.5), (6.6),

(6.7), and (6.9) hold.

Proof. The result follows from Theorems 5.5 and 6.9.

In Theorems 6.9 and 6.10, if the assumption d ≥ 2 is replaced with d = 1, then

(6.9) must be removed from the list of conditions.

7. Recognizing the types of Leonard pairs. We consider which types of

Leonard pairs/parameter arrays arise from our construction.

Theorem 7.1. With reference to Definition 5.1, suppose A, A∗ act on Vd as a

Leonard pair. Then this Leonard pair is of Racah, Hahn, dual Hahn, or Krawtchouk

type.
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Proof. Clear from Theorem 3.6 and Lemma 6.8.

The type of the Leonard pair arising in Theorem 6.10 is determined by ν and ν∗.

Theorem 7.2. Assume d ≥ 2. With reference to Definition 5.1, suppose A, A∗

act on Vd as a Leonard pair. Then type of this Leonard pair is determined by ν and

ν∗ as follows.

ν , ν∗: ν 6= 0, ν∗ 6= 0 ν = 0, ν∗ 6= 0 ν 6= 0, ν∗ = 0 ν = 0, ν∗ = 0

Type: Racah Hahn dual Hahn Krawtchouk

Proof. As an abuse of notation, in this proof take A, A∗ to mean the Leonard

pair on Vd arising from their action. Let {θi}
d
i=0 and {θ∗i }

d
i=0 be as in Definition 5.2.

Observe that {θi}
d
i=0 and {θ∗i }

d
i=0 are eigenvalue sequences for A and A∗, respectively,

since they are part of an associated parameter array by Theorem 6.9.

For 0 ≤ i ≤ d, θi = κ − (λ − µ)(d − 2i) − ν(d − 2i)2. If ν 6= 0, then the θi
are quadratic functions of their subscripts. If ν = 0, then the θi are linear functions

of their subscripts. Similarly, ν∗ determines the form of the θ∗i . By Theorem 7.1,

the type of A, A∗ is Racah, Hahn, dual Hahn, or Krawtchouk. Now compare the

eigenvalue sequences in Theorems 3.2–3.5 to those of A, A∗ to complete the proof.

When one or both of ν , ν∗ vanish, the conditions of Theorem 6.10 become simpler.

Lemma 7.3. Assume d ≥ 2. With reference to Definition 5.1, A, A∗ acts on Vd

as a Leonard pair of Hahn type if and only if

λ 6= 0, µ = 0, ν = 0, ν∗ 6= 0,

µ∗ − (d− 2i)ν∗ 6= 0, λ∗ − (d− 2i)ν∗ 6= 0 (1 ≤ i ≤ d),

λ∗ − µ∗ + 2ν∗(d− i) 6= 0 (1 ≤ i ≤ 2d− 1).

Proof. Set ν = 0 and assume ν∗ 6= 0 in the lines referred to in Theorem 6.10 and

simplify. Here, (6.9) implies that µ = 0.

Lemma 7.4. Assume d ≥ 2. With reference to Definition 5.1, A, A∗ acts on Vd

as a Leonard pair of dual Hahn type if and only if

λ∗ = 0, ν 6= 0, µ∗ 6= 0, ν∗ = 0,

λ − (d− 2i)ν 6= 0, µ − (d− 2i)ν 6= 0 (1 ≤ i ≤ d),

λ − µ + 2ν(d− i) 6= 0 (1 ≤ i ≤ 2d− 1).

Proof. Set ν∗ = 0 and assume ν 6= 0 in the lines referred to in Theorem 6.10 and

simplify. Here, (6.9) implies that λ∗ = 0.

Lemma 7.5. Assume d ≥ 2. With reference to Definition 5.1, A, A∗ acts on Vd
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as a Leonard pair of Krawtchouk type if and only if

µ 6= λ, µ∗ 6= λ∗, λ 6= 0, µ∗ 6= 0, ν = 0, ν∗ = 0, λλ∗ − µλ∗ + µµ∗ 6= 0.

Proof. Set ν = ν∗ = 0 in the lines referred to in Theorem 6.10, and simplify.

8. Hypergeometric parameters. We now consider the hypergeometric pa-

rameters of the parameter arrays arising from sl2.

Lemma 8.1. Assume d ≥ 2. With reference to Definition 5.1, suppose A, A∗ acts

on Vd as a Leonard pair of Racah type. Then this Leonard pair has hypergeometric

parameters

θ0 = κ − d(λ − µ + dν), θ∗0 = κ∗ + d(λ∗ − µ∗ − dν∗),

h = −4ν, h∗ = −4ν∗,

s = −
λ − µ

2ν
− d− 1, s∗ =

λ∗ − µ∗

2ν∗
− d− 1,

{r1, r2} =

{

−
λ

2ν
−
d

2
− 1,−

µ∗

2ν∗
−
d

2
− 1

}

.

Proof. This choice of parameters in Theorem 3.2 gives the same sequences {θi}
d
i=0,

{θ∗i }
d
i=0, {ϕj}

d
j=1}

d
j=1, and {φj}

d
j=1}

d
j=1 as in Theorem 6.9. Thus, A, A∗ act as on

Vd as a Leonard pair of Racah type with the given hypergeometric parameters by

Theorem 6.10.

(The inequalities and equalities in both Theorem 6.9 and Theorem 3.2 derive from

those on a general parameter array in Definition 2.3. One may also verify directly

that those of Theorem 3.2 are a consequence of those of Theorem 6.9.)

We omit proofs for the other three types as the above argument proceeds virtually

identically in each case.

Lemma 8.2. Assume d ≥ 2. With reference to Definition 5.1, suppose A, A∗ acts

on Vd as a Leonard pair of Hahn type. Then this Leonard pair has hypergeometric

parameters

θ0 = κ − dλ, θ∗0 = κ∗ + d(λ∗ − µ∗ − dν∗),

s = 2λ, s∗ =
λ∗ − µ∗

2ν∗
− d− 1,

h∗ = −4ν∗, r = −
µ∗

2ν∗
−
d

2
− 1.
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Lemma 8.3. Assume d ≥ 2. With reference to Definition 5.1, suppose A, A∗ acts

on Vd as a Leonard pair of dual Hahn type. Then this Leonard pair has hypergeometric

parameters

θ0 = κ − d(λ − µ + dν), θ∗0 = κ∗ − dµ∗,

s = −
λ − µ

2ν
− d− 1, s∗ = 2µ∗,

h = −4ν, r = −
λ

2ν
−
d

2
− 1.

Lemma 8.4. Assume d ≥ 2. With reference to Definition 5.1, suppose A, A∗

acts on Vd as a Leonard pair of Krawtchouk type. Then this Leonard pair has hyper-

geometric parameters

θ0 = κ − d(λ − µ), θ∗0 = κ∗ + d(λ∗ − µ∗),

s = 2(λ − µ), s∗ = −2(λ∗ − µ∗),

r = 4λµ∗.

9. Leonard pairs of classical type. We prove a converse to Theorem 6.10.

We treat each type individually.

Lemma 9.1. Assume d ≥ 2. Let A, A∗ be a Leonard pair on V of Racah type. Let

h, h∗ s, s∗, r1, r2, θ0, and θ
∗

0 be hypergeometric parameters of A, A∗. Then for each ℓ

and m such that {ℓ,m} = {1, 2}, there exists an irreducible sl2-module structure on V

in which A and A∗ act respectively as κ1+λy+µz+νyz and κ∗1+λ∗z+µ∗x+ν∗zx,

where

κ = θ0 +
dh(2s+ d+ 2)

4
, κ∗ = θ∗0 +

dh∗(2s∗ + d+ 2)

4
,

λ =
h(2rm + d+ 2)

4
, λ∗ = −

h∗(2s∗ − 2rℓ + d)

4
,

µ = −
h(2s− 2rm + d)

4
, µ∗ =

h∗(2rℓ + d+ 2)

4
,

ν = −
h

4
, ν∗ = −

h∗

4
.

Proof. For 0 ≤ i ≤ d, write Sj = 2(j + 1)(λ + (d − 2j)ν) = h(j + 1)(rm + j + 1)

and Pi =
∏i−1

j=0
Sj . By Theorem 3.2, Sj 6= 0 (0 ≤ j ≤ d− 1).

Let {ωi}
d
i=0 be the basis of V from Theorem 2.5, and let {vi}

d
i=0 be the basis for

Vd from Lemma 4.3. Define a linear transformation ψ : V → Vd by ψ(ωi) = Pivi. Now

ψ is a bijection since V and Vd both have dimension d + 1 and the Pi are nonzero.

The map Ψ : End(Vd) → End(Vd) defined by Ψ(X) = ψXψ−1 is an F -algebra

isomorphism.
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Let A and A∗ act on Vd as Ψ(A) and Ψ(A∗). Using Theorem 2.5, compute the

action of A, A∗. For 0 ≤ i ≤ d−1, Avi = ψ(Aψ−1(vi)) = ψ(AP−1
i ωi) = ψ(θiP

−1
i ωi+

P−1
i ωi+1) = θiψ(P

−1
i ωi) + Siψ(P

−1
i+1ωi+1) = θivi + Sivi+1. Similarly, Avd = θdvd.

For 1 ≤ i ≤ d, A∗vi = ψ(A∗ψ−1(vi)) = ψ(A∗P−1
i ωi) = ψ(θ∗i P

−1
i ωi + P−1

i ϕiωi−1) =

θ∗i ψ(P
−1
i ωi) + S−1

i ϕiψ(P
−1
i−1ωi−1) = θivi + S−1

i ϕivi+1. Also, A
∗v0 = θ∗0v0.

Compare the respective actions of A and A∗ to those of κ1 + λy + µz + νyz

and κ∗1 + λ∗z + µ∗x+ ν∗zx in Lemma 5.3. With the given coefficients, the formulas

for {θi}
d
i=0 and {θ∗i }

d
i=0 from Theorem 3.2 and Lemma 5.3 coincide. Also σi = Si

(0 ≤ i ≤ d− 1) and τ∗i = S−1
i ϕi (1 ≤ i ≤ d). The actions coincide as required, so the

result follows.

We omit proofs for the other three types as the above argument is modified only

by choosing Sj so that it equals σj in each case.

Lemma 9.2. Assume d ≥ 2. Let A, A∗ be a Leonard pair on V of Hahn type. Let

h, s, s∗, r, θ0, and θ
∗

0 be hypergeometric parameters of A, A∗. Then there exists an

irreducible sl2-module structure on V in which A and A∗ act respectively as κ1 + λy

and κ∗1 + λ∗z + µ∗x+ ν∗zx, where

κ = θ0 +
ds

2
, κ∗ = θ∗0 +

dh∗(2s∗ + d+ 2)

4
,

λ =
s

2
, λ∗ = −

h∗(2s∗ − 2r + d)

4
,

µ∗ =
h∗(2r + d+ 2)

4
,

ν∗ = −
h∗

4
.

Lemma 9.3. Assume d ≥ 2. Let A, A∗ be a Leonard pair on V of dual Hahn

type. Let h, s, s∗, r, θ0, and θ
∗

0 be hypergeometric parameters of A, A∗. Then there

exists an irreducible sl2-module structure on V in which A and A∗ act respectively as

κ1 + λy + µz + νyz and κ∗1 + µ∗x, where

κ = θ0 +
dh(2s+ d+ 2)

4
, κ∗ = θ∗0 +

ds∗

2
,

λ =
h(2r + d+ 2)

4
,

µ = −
h(2s− 2r + d)

4
, µ∗ =

s∗

2
,

ν = −
h

4
.

Lemma 9.4. Assume d ≥ 2. Let A, A∗ be a Leonard pair on V of Krawtchouk

type. Let s∗, s, r, θ0, and θ∗0 be hypergeometric parameters of A, A∗. Then there

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 490-505, August 2010

http://math.technion.ac.il/iic/ela



ELA

Leonard Pairs from sl2 505

exists an irreducible sl2-module structure on V in which A and A∗ act respectively as

κ1 + λy + µz and κ∗1 + λ∗z + µ∗x, where for any nonzero t ∈ F ,

κ = θ0 +
ds

2
, κ∗ = θ∗0 +

ds∗

2
,

λ =
r

4t
, λ∗ = t−

s∗

2
,

µ =
r

4t
−
s

2
, µ∗ = t.

Combining Lemmas 9.1–9.4 gives the following.

Theorem 9.5. Assume d ≥ 2. Let A, A∗ be a Leonard pair on V of Racah,

Hahn, dual Hahn, or Krawtchouk type. Then there exists an irreducible sl2-module

structure on V in which A and A∗ act respectively as linear combinations of 1, y, z,

yz and of 1, z, x, zx.

One may apply a cyclic shift to the equitable basis to get two other actions.
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