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THE SPECTRUM OF THE EDGE CORONA OF TWO GRAPHS∗

YAOPING HOU† AND WAI-CHEE SHIU‡

Abstract. Given two graphs G1, with vertices 1, 2, ..., n and edges e1, e2, ..., em, and G2, the

edge corona G1 ⋄G2 of G1 and G2 is defined as the graph obtained by taking m copies of G2 and for

each edge ek = ij of G, joining edges between the two end-vertices i, j of ek and each vertex of the

k-copy of G2. In this paper, the adjacency spectrum and Laplacian spectrum of G1 ⋄ G2 are given

in terms of the spectrum and Laplacian spectrum of G1 and G2, respectively. As an application of

these results, the number of spanning trees of the edge corona is also considered.
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1. Introduction. Throughout this paper, we consider only simple graphs. Let

G = (V,E) be a graph with vertex set V = {1, 2, ..., n}. The adjacency matrix of G

denoted by A(G) is defined as A(G) = (aij), where aij = 1 if i and j are adjacent in

G, 0 otherwise. The spectrum of G is defined as

σ(G) = (λ1(G), λ2(G), ..., λn(G)),

where λ1(G) ≤ λ2(G) ≤ ... ≤ λn(G) are the eigenvalues of A(G). The Laplacian

matrix of G, denoted by L(G) is defined as D(G)−A(G), where D(G) is the diagonal

degree matrix of G. The Laplacian spectrum of G is defined as

S(G) = (θ1(G), θ2(G), ..., θn(G)),

where 0 = θ1(G) ≤ θ2(G) ≤ ... ≤ θn(G) are the eigenvalues of L(G). We call λn(G)

and θn(G) the spectral radius and Laplacian spectral radius, respectively. There is

extensive literature available on works related to spectrum and Laplacian spectrum

of a graph. See [2, 5, 6] and the references therein to know more.

The corona of two graphs is defined in [4] and there have been some results on

the corona of two graphs [3]. The complete information about the spectrum of the

corona of two graphs G,H in terms of the spectrum of G,H are given in [1]. In this
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paper, we consider a variation of the corona of two graphs and discuss its spectrum

and the number of spanning trees.

Definition 1.1. Let G1 and G2 be two graphs on disjoint sets of n1 and n2

vertices, m1 and m2 edges, respectively. The edge corona G1 ⋄ G2 of G1 and G2 is

defined as the graph obtained by taking one copy of G1 and m1 copies of G2, and

then joining two end-vertices of the i-th edge of G1 to every vertex in the i-th copy

of G2.

Note that the edge corona G1 ⋄ G2 of G1 and G2 has n1 + m1n2 vertices and

m1 + 2m1n2 + m1m2 edges.

Example 1.2. Let G1 be the cycle of order 4 and G2 be the complete graph

K2 of order 2. The two edge coronas G1 ⋄ G2 and G2 ⋄ G1 are depicted in Figure 1.

G1 G2 G1 ⋄ G2 G2 ⋄ G1

1 2

3 4

1 2

3 4

1 2

3 4

Figure 1: An example of edge corona graphs

Throughout this paper, G1 is assumed to be a connected graph with at least

one edge. In this paper, we give a complete description of the eigenvalues and the

corresponding eigenvectors of the adjacency matrix of G1 ⋄ G2 when G1 and G2

are both regular graphs and give a complete description of the eigenvalues and the

corresponding eigenvectors of the Laplacian matrix of G1 ⋄ G2 for a regular graph

G1 and arbitrary graph G2. As an application of these results, we also consider the

number of spanning trees of the edge corona.

2. The spectrum of the graph G1 ⋄ G2. Let the vertex set and edge set of a

graph G be V = {1, 2, ..., n} and E = {e1, e2, ..., em}, respectively. The vertex-edge

incidence matrix R(G) = (rij) is an n × m matrix with entry rij = 1 if the vertex i

is incident the edge ej and 0 otherwise.

Lemma 2.1. [2, P. 114] Let G be a connected graph with n vertices and R be the

vertex-edge incident matrix. Then rank(R) = n−1 if G is bipartite and n otherwise.

Lemma 2.2. [2] Let G be a connected graph with spectral radius ρ. Then −ρ

is also an eigenvalue of A(G) if and only if G is bipartite. Moreover, if G is a
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connected bipartite graph with vertex partition V = V1 ∪ V2 and X = (X1,X2)
T

is an eigenvector corresponding eigenvalue λ of A(G) then X = (X1,−X2)
T is an

eigenvector corresponding eigenvalue −λ of A(G).

Let A = (aij), B be matrices. Then the Kronecker product of A and B is defined

the partition matrix (aijB) and is denoted by A ⊗ B. The row vector of size n with

all entries equal to one is denoted by jn and the identity matrix of order n is denoted

by In.

Let G1 and G2 be graphs with n1, n2 vertices and m1,m2 edges,respectively. Then

the adjacency matrix of G = G1 ⋄ G2 can be written as

A(G) =







A(G1) R(G1) ⊗ jn2

(R(G1) ⊗ jn2
)T Im1

⊗ A(G2)






,

where A(G1) and A(G2) are the adjacency matrices of the graphs G1 and G2, respec-

tively, and R(G1) is the vertex-edge incidence matrix of G1. A complete characteri-

zation of the eigenvalues and eigenvectors of G1 ⋄G2 will be given when both G1 and

G2 are regular.

Let G1 be an r1-regular graph and G2 be an r2-regular graph and

(2.1) σ(G1) = (µ1, µ2, ..., µn1
), σ(G2) = (η1, η2, ..., ηn2

)

be their adjacency spectrum, respectively. If G1 is 1-regular then G1 = K2 as G1 is

connected. In this case, G1⋄G2 is the complete product of K2 and G2. By Theorem 2.8

of [2], or by some direct computations, we can obtain the spectrum of G = G1 ⋄G2 as

(η1, ..., ηn2−1, µ1 =
r2+µ1−

√
(r2−µ1)2+4(r1+µ1)n2

2 ,
r2+µ2±

√
(r2−µ2)2+4(r1+µ2)n2

2 ), where

µ1 = −1, µ2 = 1 are the spectrum of K2.

Theorem 2.3. Let G1 be an r1-regular (r1 ≥ 2) graph and G2 be an r2-regular

graph and their spectra are as in (2.1). Then the spectrum σ(G) of G is

(

η1 η2 · · · ηn2
= r2

r2+µ1±
√

(r2−µ1)2+4(r1+µ1)n2

2 · · ·
m1 m1 · · · m1 − n1 1 · · ·

r2+µn1
±
√

(r2−µn1
)2+4(r1+µn1

)n2

2

1

)

where entries in the first row are the eigenvalues with the number of repetitions written

below, respectively.
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Figure 2: Description of adjacency eigenvectors

Proof. Let Z1, Z2, ..., Zn2
be the orthogonal eigenvectors of A(G2) corresponding

to the eigenvalue η1, η2, ..., ηn2
= r2, respectively. Note that G2 is r2-regular and

Zj⊥j for j = 1, 2, ..., n2 − 1. Then for i = 1, 2, ...,m1 and for j = 1, 2, ..., n2 − 1,

we have (see Figure 2, picture on the left) that (n1 + m1n2)-dimension vectors

(0, 0, ..., 0, Zj , 0, ..., 0)T , where (i+1)-th block is Zj are eigenvectors of G corresponding

to eigenvalue ηj . Thus we obtain m1(n2 − 1) eigenvalues and corresponding eigenvec-

tors of G.

Let X1,X2, ...,Xn1
be the orthogonal eigenvectors of A(G1) corresponding to the

eigenvalues µ1, µ2, ...µn1
, respectively. For i = 1, 2, ..., n1, let

λi =
r2 + µni

+
√

(r2 − µni
)2 + 4(r1 + µni

)n2

2

and

λi =
r2 + µni

−
√

(r2 − µni
)2 + 4(r1 + µn−

)n2

2
.

Note that
r2+µni

±
√

(r2−µni
)2+4(r1+µni

)n2

2 = r2 if and only if µi = −r1. So λi or λi is r2

if and only if G1 is bipartite (note that at most one of λi is r2). If G1 is bipartite and

the bipartition of its vertex set is V1∪V2, then by Lemma 2.2 and some computations,

we obtain that (j,−j, 0, ..., 0)T (1 on V1, −1 on V2, and 0 on all copies of G2 ) is an

eigenvector of G corresponding the eigenvalue −r1.

Observe that if λi and λi are not equal to r2 then λi and λ̄i are eigenval-

ues of G corresponding to the eigenvectors Fi = (Xi, ...,
Xi(s)+Xi(t)

λi−r2
, ...)T and F i =

(Xi, ...,
Xi(s)+Xi(t)

λi−r2
, ...)T , respectively (see Figure 2, picture in the middle). In fact, it

needs only to be checked that characteristic equations
∑

v∼u Fi(v) = λiFi(u) (resp.
∑

v∼u F̄i(v) = λiF̄i(u)) hold for every vertex u in G.

For any vertex u in k-copy of G2, let edge ek = st, then Fi(u) = Xi(s)+Xi(t)
λi−r2

.

Furthermore,
∑

v∼u

Fi(v) = r2Fi(u) + Xi(s) + Xi(t) = λiFi(u).
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For any vertex u in G1,

∑

v∼u

Fi(v) =
∑

v∼u,v∈V (G1)

Fi(v) +
∑

v∼u,v 6∈V (G1)

Fi(v)

= µiXi(u) +
r1n2Xi(u)

λi − r2
+

n2

λi − r2

∑

v∼u,v∈V (G1)

Fi(v)

= λiXi(u) = λiFi(u).

Therefore we obtain 2n1 eigenvalues and corresponding eigenvectors of G if G1

is not bipartite and 2n1 − 1 eigenvalues and corresponding eigenvectors of G if G1 is

bipartite.

Let Y1, Y2, ..., Yb be a maximal set of independent solution vectors of linear system

R(G1)Y = 0. Then b = m1 − n1 if G1 is not bipartite and b = m1 − n1 + 1 if G1 is

bipartite. For i = 1, 2, ..., b, let Hi = (0, Yi(e1)j, ..., Yi(em)j)T (see Figure 2, picture on

the right). We can obtain that Hi is an eigenvector of G corresponding to eigenvalues

r2 = ηn2
. Thus these Y ′

i s provide b eigenvalues and corresponding eigenvectors of G.

Therefore we obtain n1 + m1n2 eigenvalues and corresponding eigenvectors of G

and it is easy to see that these eigenvectors of G are linearly independent. Hence the

proof is completed.

Next we consider the Laplacian spectrum of G1 ⋄ G2.

Let L(G1) and L(G2) be the Laplacian matrices of the graphs G1 and G2, re-

spectively, and R(G1) be the vertex-edge incidence matrix of G1. Then the Laplacian

matrix of G = G1 ⋄ G2 is

L(G) =







L(G1) + r1n2In1
−R(G1) ⊗ jn2

−(R(G1) ⊗ jn2
)T Im1

⊗ (2In2
+ L(G2))






.

In the following, we give a complete characterization of the Laplacian eigenvalues

and eigenvectors of G1 ⋄ G2.

Let G1 be an r1-regular graph and G2 be any graph and

(2.2) S(G1) = (θ1, θ2, ..., θn1
), S(G2) = (τ1, τ2, ..., τn2

)

be their Laplacian spectra, respectively. If G1 is 1-regular then G1 = K2 as G1 is

connected. In this case, G1 ⋄G2 is the complete product of K2 and G2 (by [5]), or by

some direct computations, we can obtain that the Laplacian spectrum of G = G1 ⋄G2
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is

S(G) = (0, τ2 + 2, ..., τn2
+ 2, n2 + 2, n2 + 2 ).

Theorem 2.4. Let G1 be an r1-regular (r1 ≥ 2) graph and G2 be any graph and

their Laplacian spectra are written as in (2.2). Let

βi, β̄i =
r1n2 + θi + 2 ±

√

(r1n2 + θi + 2)2 − 4(n2 + 2)θi

2

for every θi. Then the Laplacian spectrum S(G) of G is

(

τ1 + 2, τ2 + 2, · · · , τn2
+ 2, β1, β̄1, · · · , βn1

, β̄n1

m1 − n1 m1 · · · m1 1 1 · · · 1 1

)

where entries in the first row are the eigenvalues with the number of repetitions written

below, respectively.
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Figure 3: Description of Laplacian eigenvectors

Proof. Let Z1, Z2, ..., Zn2
be the eigenvectors of L(G2) corresponding to the eigen-

values 0 = τ1, τ2, ..., τn2
. Note that Zj⊥j for j = 2, ..., n2. Then for i = 1, 2, ...,m1 and

for j = 2, 3, ..., n2, we have that (n1+m1n2)-dimension vectors (0, 0, ..., 0, Zj , 0, ..., 0)T ,

where (i+1)-th block is Zj are eigenvectors of L(G) corresponding to eigenvalue τj +2

(see Figure 3, picture on the left). Thus we obtain m1(n2 − 1) eigenvalues and corre-

sponding eigenvectors of L(G).

Let X1,X2, ...,Xn1
be the orthogonal eigenvectors of L(G1) corresponding to the

eigenvalues θ1, θ2, ..., θn1
, respectively. For i = 1, 2, ..., n1, note that:

βi, β̄i =
r1n2+θi+2±

√
(r1n2+θi+2)2−4(n2+2)θi

2 =
r1n2+θi+2±

√
(r1n2+θi−2)2+4n2(2r1−θi)

2

since r1 ≥ 2, n2 ≥ 1, βi 6= 2. Note that θi ≤ 2r1 and the equality holds if and only

if G1 is bipartite. Note that β̄i = 2 implies that θi = 2r1. That is, β̄i = 2 appears

only if G1 is bipartite and i = n1. Moreover, if G1 is bipartite and the bipartition

of its vertex set is V1 ∪ V2, then it is easy to check that (j,−j, 0, ..., 0)T (1 on V1,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 586-594, September 2010

http://math.technion.ac.il/iic/ela



ELA

592 Y. Hou and W. Shiu

−1 on V2, and 0 on all copies of G2) is an eigenvector corresponding the eigenvalue

(n1 + 2)r1 = βn1
of L(G).

Observe that if βi and β̄i are not equal to 2, then βi and β̄i are eigenvalues of L(G)

and Fi = (Xi, ...,
Xi(s)+Xi(t)

2−βi
, ...)T and F̄i = (Xi, ...,

Xi(s)+Xi(t)

2−β
i

, ...)T are eigenvectors

of βi and β̄i respectively (see Figure 3, picture in the middle). In fact, it needs only

to be checked that characteristic equations dG(u)Fi(u)−∑

v∼u Fi(v) = βiFi(u) (resp.

dG(u)F̄i(u)−∑

v∼u F̄i(v) = β̄iF̄i(u)) hold for every vertex u in G, where dG(u) is the

degree of the vertex u in G.

For every vertex u in k-copy of G2, let the edge ek = st, then dG(u) = dG2
(u)+2

and Fi(u) = Xi(s)+Xi(t)
2−βi

. Further,

dG(u)Fi(u) −
∑

v∼u

Fi(v) = dG2
(u) + 2)Fi(u) − dG2

(u)
Xi(s) + Xi(t)

2 − βi

− (Xi(s) + Xi(t))

= βiFi(u).

For every vertex u in G1, note that

r1Xi(u) −
∑

v∼u

v∈V (G1)

Xi(v) = θiXi(u).

We have

dG(u)Fi(u) −
∑

v∼u

Fi(v) = (r1 + r1n2)Fi(u) −
∑

v∼u,v∈V (G1)

Fi(v) +
∑

v∼u,v 6∈V (G1)

Fi(v)

= (r1 + r1n2)Xi(u) −
∑

v∼u,v∈V (G1)

Xi(v) −
∑

v∼u,v∈V (G1)

n2

2 − βi

(Xi(u) + Xi(v))

=
(r1 + r1n2)(2 − βi) − 2n2r1 + n2θi

2 − βi

Xi(u) + (θi − r1)Xi(u)

= βiXi(u) = βiFi(u).

Therefore we obtain 2n1 eigenvalues and corresponding eigenvectors of L(G) if

G1 is not bipartite, and 2n1 − 1 eigenvalues and corresponding eigenvectors of L(G)

if G1 is bipartite.

Let Y1, Y2, ..., Yb be a maximal set of independent solution vectors of the linear

system R(G1)Y = 0. Then b = m1 − n1 if G1 is not bipartite, and b = m1 − n1 + 1

if G1 is bipartite. For i = 1, 2, ..., b, let Hi = (0, Yi(e1)j, ..., Yi(em)j)T (see Figure

3, picture on the right). We can obtain that Hi is an eigenvector corresponding

the eigenvalue 2 (= τ1 + 2) of L(G). Thus these Y ′
i s provide b eigenvalues and

corresponding eigenvectors of L(G).
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Therefore we obtain n1 + m1n2 eigenvalues and corresponding eigenvectors of

L(G) and it is easy to see that these eigenvectors of L(G) are linearly independent.

Hence the proof is completed.

As an application of the above results, we give the number of spanning trees of

the edge corona of two graphs.

Let G be a connected graph with n vertices and Laplacian eigenvalues 0 = θ1 <

θ2 ≤ · · · ≤ θn. Then the number of spanning trees of G is

t(G) =
θ2θ3 · · · θn

n
.

By Theorem 2.4 we have

Proposition 2.5. For a connected r1-regular graph G1 and arbitrary graph G2,

let the number of spanning trees of G1 be t(G1) and the Laplacian spectra of G2 be

0 = τ1 ≤ τ2 ≤ · · · ≤ τn2
. Then the number of spanning trees of G1 ⋄ G2 is

t(G1 ⋄ G2) = 2m1−n1+1(n2 + 2)n1−1t(G1)(τ2 + 2)m1 · · · (τn2
+ 2)m1 .

Proof. Following the notions in Theorem 2.4, note that βiβ̄i = (n2 + 2)θi for

i = 1, 2, ..., n1 and β1 = r1n2 + 2, β̄1 = 0. Thus

t(G1 ⋄ G2) =
2m1−n1(r1n2 + 2)(n2 + 2)n1−1

∏n2

i=2(τi + 2)m1
∏n1

j=2 θj

n1 + m1n2

=
n12

m1−n1(r1n2 + 2)(n2 + 2)n1−1t(G1)
∏n2

i=2(τi + 2)m1

n1 + m1n2

= 2m1−n1+1(n2 + 2)n1−1t(G1)(τ2 + 2)m1 · · · (τn2
+ 2)m1 .

The last equality follows from n1 + m1n2 = n1(2+r1n2)
2 .

By Proposition 2.5, we have t(G ⋄ K1) = 2m−n+13n−1t(G) for a regular graph

G. In fact t(G ⋄K1) = 2m−n+13n−1t(G) holds for arbitrary graph G by the following

proposition.

Proposition 2.6. Let G be a connected graph with n vertices and m edges. Then

the number of spanning trees of G⋄K1 is 2m−n+13n−1t(G), where t(G) is the number

of spanning trees of G.

Proof. Note that the Laplacian matrix of G ⋄ K1 is

L(G ⋄ K1) =

(

L(G) + D(G) −R

−RT 2Im

)

.
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Let (L(G))11 be the reduced Laplacian matrix of G obtained by removing the

first row and first column of L(G) and R1 be the matrix obtained by removing the

first row of the vertex-edge incidence matrix R. By the Matrix-Tree theorem [2], we

have

t(G ⋄ K1) = det(L(G ⋄ K1))11 = det

(

(L(G) + D(G))11 −R1

−RT
1 2Im

)

= 2m det[(L(G) + D(G))11 −
1

2
R1R

T
1 ],

since RRT = D(G) + A(G), R1R
T
1 = (D(G) + A(G))11. Thus

t(G ⋄ K1) = 2m det(
3

2
(D(G) − A(G))11 = 2m−n+13n−1t(G).
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