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NONNEGATIVE REALIZATION OF COMPLEX SPECTRA∗

RICARDO L. SOTO†, MARIO SALAS†, AND CRISTINA MANZANEDA†

Abstract. We consider a list of complex numbers Λ = {λ1, λ2, . . . , λn} and give a simple

and efficient sufficient condition for the existence of an n × n nonnegative matrix with spectrum

Λ. Our result extends a previous one for a list of real numbers given in [Linear Algebra Appl.,

416:844–856, 2006]. In particular, we show how to construct a nonnegative matrix with prescribed

complex eigenvalues and diagonal entries. As a by-product, we also construct Hermitian matrices

with prescribed spectrum, whose entries have nonnegative real parts.
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1. Introduction. The nonnegative inverse eigenvalue problem (NIEP) is the

problem of characterizing all possible spectra of entrywise nonnegative matrices. This

problem remains unsolved. A complete solution is known only for n ≤ 4 [5, 11]. Suffi-

cient conditions for the existence of a nonnegative matrix A with prescribed complex

spectrum have been obtained in [1, 7, 8]. A list Λ = {λ1, λ2, . . . , λn} of complex num-

bers is said to be realizable if Λ is the spectrum of an entrywise nonnegative matrix

A. In this case, A is said to be a realizing matrix. From the Perron-Frobenius Theory

for nonnegative matrices, we have that if Λ is the spectrum of an n × n nonnegative

matrix A then ρ (A) = max1≤i≤n |λi| is an eigenvalue of A. This eigenvalue is called

the Perron eigenvalue of A and we shall always assume, in this paper, that ρ (A) = λ1.

A matrix A = (aij)
n
i,j=1 is said to have constant row sums if all its rows sum up to

the same constant, say α, i.e.

n
∑

j=1

aij = α, i = 1, . . . , n.

The set of all matrices with constant row sums equal to α will be denoted by CSα.

It is clear that any matrix in CSα has eigenvector e = (1, 1, . . . , 1)T corresponding

to the eigenvalue α. We shall denote by ek the n-dimensional vector with one in the

k-th position and zero elsewhere.
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In this paper, we consider a list of complex numbers Λ = {λ1, λ2, . . . , λn} and

give a sufficient condition for the existence of an n × n nonnegative matrix with

spectrum Λ. In particular, we show how to construct an r × r nonnegative matrix

with prescribed complex eigenvalues and diagonal entries. As a by-product, we also

construct an Hermitian matrix with prescribed spectrum. Since our interest is the

nonnegative realization of spectra (NIEP), we require that the constructed Hermitian

matrix has entries with nonnegative real parts. To prove our results, we shall need

the following theorems of Brauer [3] and Rado [6] (see also [9]). The Rado Theorem

is an extension of another well known result of Brauer [3] (see also [9]). It shows how

to change r eigenvalues, r ≤ n, of a matrix A of order n, via a rank-r perturbation,

without changing any of the remaining n − r eigenvalues.

Theorem 1.1. [3] If A = (aij) ∈ CSλ1
is an n × n matrix with akj = bj ,

j = 2, 3, . . . , n, k < j, then A has eigenvalues λ1, a22 − b2, a33 − b3, . . . , ann − bn.

Theorem 1.2. [6] Let A be an n×n matrix with eigenvalues λ1, λ2, . . . , λn, and

let X = [x1 | x2 | · · · | xr] be such that rank(X) = r and Axi = λixi, i = 1, 2, . . . , r,

r ≤ n. Let also C be an r × n arbitrary matrix. Then the matrix A + XC has

eigenvalues µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn, where µ1, µ2, . . . , µr are the eigenvalues

of the matrix Ω + CX with Ω = diag{λ1, λ2, . . . , λr}.

From Theorem 1.2, the following lemmas are immediate:

Lemma 1.3. Let A be an n× n matrix with eigenvalues λ1, λ2, . . . , λn−2, a, a for

some a ∈ R, and let X = [x1 | x2] be such that rank(X) = 2 and Axi = axi, i = 1, 2.

Let also C be the 2 × n matrix such that

CX =

[

0 −b

b 0

]

.

Then A + XC has eigenvalues λ1, λ2, . . . , λn−2, a + bi, a − bi.

Lemma 1.4. Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn−2, a +

bi, a − bi for some a, b ∈ R, and let X = [x1 | x2] be such that rank(X) = 2 and

Ax1 = (a + bi)x1, Ax2 = (a − bi)x2. Let also C be the 2 × n matrix such that

CX =

[

−bi 0

0 bi

]

.

Then A + XC has eigenvalues λ1, λ2, . . . , λn−2, a, a.

In Section 2, we extend to a list of complex numbers, a previous result for lists

of real numbers given in [9, Theorem 8]. Theorem 8 in [9] considers a partition

of a real list Λ = {λ1, λ2, . . . , λn} into r sublists Λ = Λ1 ∪ Λ2 ∪ · · · ∪ Λr, with

Λk = {λk1, λk2, . . . , λkpk
}, λ11 = λ1, λk1 ≥ 0, λk1 ≥ λk2 ≥ · · · ≥ λkpk

. The novelty
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of our results relies on the fact that some of the sublists Λk can be of the form Λk =

{a ± bi, λk2, . . . , λkpk
}, that is, the first element in Λk can be complex nonreal. This

kind of partitions will allow us to propose a simple and efficient sufficient condition for

the complex nonnegative inverse eigenvalue problem. As a by-product we construct,

in Section 3, an Hermitian matrix H = (hij) with Rehij ≥ 0 and prescribed spectrum.

We also give, in Section 4, some examples to illustrate our results.

2. Main results. In this section, we extend Theorem 8 in [9]. Now, the list Λ =

{λ1, λ2, . . . , λn} can be partitioned as Λ = Λ1∪· · ·∪Λr, where some of the sublists Λk

can have as a first element a complex nonreal number. Let Λk = {λk1, λk2, . . . , λkpk
},

k = 1, . . . , r, where λ11 = λ1. With each Λk, we associate a corresponding list Γk =

{ωk, λk2, . . . , λkpk
}, 0 ≤ ωk ≤ λ1, which is realizable by a pk × pk nonnegative matrix

Ak ∈ CSωk
. Let A = diag{A1, A2, . . . , Ar} and Ω = diag{ω1, ω2, . . . , ωr}. Let X =

[x1 | x2 | · · · | xr] , where xk is an n-dimensional vector with pk ones from the position
∑k−1

j=1
pj + 1 to the position

∑k

j=1
pj and zeros elsewhere, with the first summation

being zero for k = 1. Observe that xk is an eigenvector of A corresponding to the

eigenvalue ωk. For example, if the matrices A1, A2 and A3 are of order 3, 2 and 1,

respectively, then

A =





A1 0 0

0 A2 0

0 0 A3



 , X =



















1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1



















and Ω =





ω1 0 0

0 ω2 0

0 0 ω3



 .

Let C = [C1 | C2 | · · · | Cr] be a nonnegative matrix, where Ck is the r × pk matrix

whose first column is (c1k, c2k, . . . , crk)T and whose other columns are all zero. Ob-

serve that C is an r×(
∑r

j=1
pj) matrix. For example, if r = 3, p1 = 3, p2 = 2, p3 = 1,

as above, then

C =





c11 0 0 c12 0 c13

c21 0 0 c22 0 c23

c31 0 0 c32 0 c33



 , CX =





c11 c12 c13

c21 c22 c23

c31 c32 c33





and XC =



















c11 0 0 c12 0 c13

c11 0 0 c12 0 c13

c11 0 0 c12 0 c13

c21 0 0 c22 0 c23

c21 0 0 c22 0 c23

c31 0 0 c32 0 c33



















.
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Theorem 2.1. Let Λ = {λ1, λ2, . . . , λn} be a list of complex numbers such that

Λ = Λ, λ1 ≥ maxi |λi| (i = 2, . . . , n), and
∑n

i=1
λi ≥ 0. Suppose that

i) there exits a partition Λ = Λ1∪· · ·∪Λr, where Λk = {λk1, λk2, . . . , λkpk
}, λ11 = λ1,

such that Γk = {ωk, λk2, . . . , λkpk
} is realizable by a nonnegative matrix in CSωk

, and

ii) there exists an r×r nonnegative matrix B ∈ CSλ1
, with eigenvalues λ1, λ21, . . . , λr1

and diagonal entries ω1, ω2, . . . , ωr.

Then Λ is realizable.

Proof. The proof is similar to the proof of Theorem 8 in [9]. We set down it here

for the sake of completeness: Let Λ = Λ1 ∪ · · · ∪ Λr with Λk and Γk, k = 1, . . . , r,

as defined above. Let Ak ∈ CSωk
be a pk × pk nonnegative matrix realizing Γk,

k = 1, 2, . . . , r. Then A = diag{A1, A2, . . . , Ar} is an n×n nonnegative block diagonal

matrix realizing Γ1∪· · ·∪Γr. Let Ω = diag{ω1, ω2, . . . , ωr} and X = [x1 | x2 | · · · | xr] ,

as defined above. Clearly, rank(X) = r and Axi = λi1xi, i = 1, . . . , r, r ≤ n. Let

C = [C1 | C2 | · · · | Cr] as defined above. Then

CX =











c11 c12 · · · c1r

c21 c22 · · · c2r

...
...

...
...

cr1 cr2 · · · crr











and XC =











C11 C12 · · · C1r

C21 C22 · · · C2r

...
...

...
...

Cr1 Cr2 · · · Crr











,

where Cik is the pi × pk matrix whose first column is (cik, cik, . . . , cik)T and whose

other columns are all zero. Now, we choose C with c11 = c22 = · · · = crr = 0, in such a

way that the nonnegative matrix B = Ω+CX ∈ CSλ1
has eigenvalues λ1, λ21, . . . , λr1

and diagonal entries ω1, ω2, . . . , ωr. Then, for this choice of C, from Theorem 1.2, we

have that A + XC is nonnegative with spectrum Λ.

To make use use of Theorem 2.1, we need to know conditions under which there

exists an r × r nonnegative matrix B ∈ CSλ1
with eigenvalues λ1, λ2, . . . , λr and

diagonal entries ω1, ω2, . . . , ωr. For r = 2, it is necessary and sufficient that 0 ≤ ωk ≤
λ1, k = 1, 2, and ω1 + ω2 = λ1 + λ2. For r = 3, we slightly extend a result due to

Perfect [6, Theorem 4]:

Theorem 2.2. The numbers ω1, ω2, ω3 and λ1, λ2, λ3 (λ1 ≥ |λi| , i = 2, 3) are,

respectively, the diagonal entries and the eigenvalues of a 3 × 3 nonnegative matrix

B ∈ CSλ1
if and only if

i) 0 ≤ ωk ≤ λ1, k = 1, 2, 3,

ii) ω1 + ω2 + ω3 = λ1 + λ2 + λ3,

iii) ω1ω2 + ω1ω3 + ω2ω3 ≥ λ1λ2 + λ1λ3 + λ2λ3,

iv) max
k

ωk ≥ Reλ2.
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Proof. If λ2, λ3 are real, the result is [6, Theorem 4]. Let λ2, λ3 be complex

(λ2 = λ3). The proof is like the proof in [6]. We include it here for the sake of

completeness: The necessity of conditions i), ii), iii) is clear. From a Brauer result

[2, Theorem 11] about eigenvalues localization via ovals of Cassini, we have

|λ3 − ωi| |λ3 − ωj | ≤ (λ1 − ωi)(λ1 − ωj), i 6= j.

Then, for i = 2 and j = 3, it follows

(λ2
1 − (Reλ2)

2) − (λ1 − Reλ2)(ω2 + ω3) ≥ 0

and

(λ1 − Reλ2) [λ1 + Reλ2 − (ω2 + ω3)] ≥ 0.

Hence, ω2 +ω3 ≤ λ1 +Reλ2, and from ii), ω1 ≥ Reλ2. Thus, iv) is established. Now,

suppose that conditions i) − iv) are satisfied. Then a straightforward calculation

shows that the matrix B ∈ CSλ1
,

B =





ω1 0 λ1 − ω1

λ1 − ω2 − p ω2 p

0 λ1 − ω3 ω3



 , (2.1)

where

p =
1

λ1 − ω3

[ω1ω2 + ω1ω3 + ω2ω3 − λ1λ2 − λ1λ3 − λ2λ3]

is nonnegative with eigenvalues λ1, λ2, λ3 and diagonal entries ω1, ω2, ω3.

The following corollary gives a simple sufficient condition to construct a 4 × 4

nonnegative matrix M ∈ CSλ1
with prescribed complex spectrum.

Corollary 2.3. Let Λ = {λ1, λ2, a + bi, a − bi} be a list of complex numbers

(λ1 ≥ |a ± bi|). If there exist real numbers ω1, ω2, ω3, satisfying conditions

i) 0 ≤ ωk ≤ λ1, k = 1, 2, 3,

ii) ω1 + ω2 + ω3 = λ1 + 2a, (2.2)

iii) ω1ω2 + ω1ω3 + ω2ω3 ≥ 2λ1a + a2 + b2,

iv) max
k

ωk ≥ a, max
k

ωk ≥ |λ2| ,

then

M =









ω1 0 0 λ1 − ω1

ω1 − λ2 λ2 0 λ1 − ω1

λ1 − ω2 − p 0 ω2 p

0 0 λ1 − ω3 ω3









for λ2 ≥ 0,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 595-609, September 2010

http://math.technion.ac.il/iic/ela



ELA

600 R.L. Soto, M. Salas, and C. Manzaneda

and

M ′ =









0 ω1 0 λ1 − ω1

−λ2 ω1 + λ2 0 λ1 − ω1

λ1 − ω2 − p 0 ω2 p

0 0 λ1 − ω3 ω3









for λ2 ≤ 0,

where p =
1

λ1 − ω3

[ω1ω2 + ω1ω3 + ω2ω3 − (2λ1a + a2 + b2)], is a nonnegative matrix

(in CSλ1
) with spectrum Λ.

Proof. Since ω1, ω2, ω3 satisfy conditions (2.2), by Theorem 2.2, we may construct

the matrix

B =





ω1 0 λ1 − ω1

λ1 − ω2 − p ω2 p

0 λ1 − ω3 ω3



 .

Let Λ = Λ1 ∪ Λ2 ∪ Λ3 with Λ1 = {λ1, λ2}, Λ2 = {a + bi} and Λ3 = {a − bi}, and let

Γ1 = {ω1, λ2}, Γ2 = {ω2} and Γ3 = {ω3} be the corresponding associated realizable

lists (as in Theorem 2.1). Let also

A =









ω1 0 0 0

ω1 − λ2 λ2 0 0

0 0 ω2 0

0 0 0 ω3









and A′ =









0 ω1 0 0

−λ2 ω1 + λ2 0 0

0 0 ω2 0

0 0 0 ω3









,

for λ2 ≥ 0 and λ2 ≤ 0, respectively. Then, from the proof of Theorem 2.1, M =

A + XC or M ′ = A′ + XC is the desired matrix.

To compute a possible r × r nonnegative matrix B, r ≥ 4, with diagonal entries

ω1, . . . , ωr and eigenvalues λ1, . . . , λr−2, a+bi, a−bi, b > 0, where λi (i = 1, . . . , r−2)

are real, we use Theorem 1.1. It is clear from Theorem 1.1 that if

(i) 0 ≤ ωk ≤ λ1, k = 1, . . . r,

(ii) ω1 + ω2 + · · · + ωr = λ1 + λ2 + · · · + λr, (2.3)

(iii) ωk ≥ Reλk, and ω1 ≥ Reλk, k = 2, . . . , r,

then

M =











ω1 ω2 − Reλ2 · · · ωr − Reλr

ω1 − Reλ2 ω2 · · · ωr − Reλr

...
...

. . .
...

ω1 − Reλr ω2 − Reλ2 · · · ωr











∈ CSλ1
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is a nonnegative matrix with diagonal entries ω1, . . . , ωr and eigenvalues Reλ1, . . . ,

Reλr, more precisely, with eigenvalues λ1, λ2, . . . , λr−2, a, a. It is easy to see that the

eigenvectors of M associated with a = Reλr−1 = Reλr are of the form

x1 = (S1, S1, . . . , S1, 1, 0)
T

and x2 = (S2, S2, . . . , S2, 0, 1)
T

,

where

S1 = − ωr−1 − a
∑r−2

i=2
(ωi − λi) + (ω1 − a)

and S2 = − ωr − a
∑r−2

i=2
(ωi − λi) + (ω1 − a)

with

r−2
∑

i=2

(ωi − λi) + (ω1 − a) > 0.

The eigenvectors x1 and x2 are linearly independent. Let C be the 2 × r matrix

C =

[

0 · · · · · · 0 0 −b

0 · · · · · · 0 b 0

]

.

Then

CX =

[

0 −b

b 0

]

.

Now, from Rado Theorem 1.2, we have that the matrix M + XC has eigenvalues

λ1, . . . , λr−2, a + bi, a − bi, and diagonal entries ω1, . . . , ωr. It only remains to show

that M + XC is nonnegative. To do this, we observe that

XC =

















0 · · · 0 S2b −S1b
...

. . .
...

...
...

0 · · · 0 S2b −S1b

0 · · · 0 0 −b

0 · · · 0 b 0

















.

Then the r − 2 first columns of the matrix M + XC are the same as the r − 2 first

columns of M and they are nonnegative. The (r−1)-th and r-th columns of M +XC

are of the form

(wr−1 − a + S2b, . . . , wr−1 − a + S2b, ωr−1, ωr−1 − a + b)
T

and

(wr − a − S1b, . . . , wr − a − S1b, ωr − a − b, ωr)
T

,
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respectively. From (2.3), ωr−1 ≥ Reλr−1 = a, and hence, ωr−1 − a + b ≥ 0. If

ωr − a − b ≥ 0, (2.4)

then wr − a − S1b ≥ b − S1b ≥ 0 since S1 ≤ 0. Finally,

wr−1 − a + bS2 = wr−1 − a + b

[

− ωr − a
∑r−2

i=2
(ωi − λi) + (ω1 − a)

]

≥ 0

if and only if

(wr−1 − a)

[

r−2
∑

i=2

(ωi − λi) + (ω1 − a)

]

− b(ωr − a) ≥ 0,

and from (2.3) (ii), this is equivalent to

(wr−1 − a) [(λ1 − ωr) − (ωr−1 − a)] − b(ωr − a) ≥ 0.

That is,

(wr−1 − a)2 − (ωr−1 − a)(λ1 − ωr) + b(ωr − a) ≤ 0. (2.5)

Thus, we have that if (2.4) and (2.5) hold, then B = M + XC is nonnegative. We

have proved the following result:

Theorem 2.4. Let r ≥ 4. The numbers ω1, ω2, . . . , ωr and λ1, λ2, . . . , λr−2, a +

bi, a−bi, with a, b, λi ∈ R, i = 1, . . . , r−2, are the diagonal entries and the eigenvalues

of an r × r nonnegative matrix B ∈ CSλ1
, respectively, if

(i) 0 ≤ ωk ≤ λ1, k = 1, . . . r,

(ii) ω1 + ω2 + · · · + ωr = λ1 + λ2 + · · · + λr,

(iii) ω1 ≥ Reλk, and ωk ≥ Reλk, k = 2, . . . , r,

(iv) ωr ≥ a + b,

(v) (wr−1 − a)2 − (ωr−1 − a)(λ1 − ωr) + b(ωr − a) ≤ 0,

(vi)

r−2
∑

i=2

(ωi − λi) + (ω1 − a) > 0.

3. Constructing Hermitian matrices with prescribed spectrum. Since

we are interested in the nonnegative realization of spectra, in this section, we show

how to construct an n×n Hermitian matrix with prescribed spectrum, whose entries

have nonnegative real part. In particular, we generalize a result in [10] for symmetric

nonnegative matrices. The technique is the same as in Section 2. We start with the
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following result, which is an Hermitian version of the Rado Theorem 1.2 . The proof

is similar to the proof of Theorem 2.6 in [10], which gives a symmetric version of Rado

Theorem. We include it here for the sake of completeness.

Theorem 3.1. Let A be an n×n symmetric matrix with eigenvalues λ1, . . . , λn,

and, for some r ≤ n, let {x1,x2, . . . ,xr} be an orthonormal set of eigenvectors of

A associated with λ1, . . . , λr, Axi = λixi. Let X be the n × r matrix with i-th

column xi, let Ω = diag{λ1, . . . , λr}, and let C be any r × r Hermitian matrix. Then

the Hermitian matrix A + XCXT has eigenvalues µ1, µ2, . . . , µr, λr+1, . . . , λn, where

µ1, µ2, . . . , µr are the eigenvalues of the matrix Ω + C.

Proof. Since the columns of X are an orthonormal set, we may complete X to an

orthogonal matrix W = [X Y ], i.e., XT X = Ir, Y T Y = In−r, XT Y = 0, Y T X = 0.

Then

W−1AW =

[

XT

Y T

]

A
[

X Y
]

=

[

Ω XT AY

0 Y T AY

]

and

W−1(XCXT )W =

[

Ir

0

]

C
[

Ir 0
]

=

[

C 0

0 0

]

.

Therefore,

W−1(A + XCXT )W =

[

Ω + C XT AY

0 Y T AY

]

,

and A + XCXT is an Hermitian matrix with eigenvalues µ1, . . . , µr, λr+1, . . . , λn.

It is clear that Theorem 3.1 also holds for A Hermitian.

Theorem 3.2. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 ≥
λ2 ≥ · · · ≥ λn and, for some t ≤ n, let ω1, ω2, . . . , ωt be real numbers satisfying

0 ≤ ωk ≤ λ1, k = 1, . . . t. Suppose there exist

i) a partition Λ = Λ1 ∪ · · · ∪ Λt, with Λk = {λk1, λk2, . . . , λkpk
}, λ11 = λ1, λk1 ≥ 0,

λk1 ≥λk2 ≥ · · ·≥λkpk
, such that for each k = 1, . . . , t, the list Γk= {ωk, λk2, . . . , λkpk

}
is realizable by a symmetric nonnegative matrix, and

ii) a t × t Hermitian matrix, whose entries have nonnegative real parts, with eigen-

values λ11, λ21, . . . , λt1 and diagonal entries ω1, ω2, . . . , ωt.

Then Λ is the spectrum of some n×n Hermitian matrix, whose entries have nonneg-

ative real part.

Proof. For each k = 1, . . . , t denote by Ak the symmetric nonnegative pk × pk

matrix realizing Γk. Then the n × n matrix A = diag{A1, A2, . . . , At} is symmetric
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nonnegative with spectrum Γ1 ∪ · · · ∪ Γt. Let {x1, . . .xt} be an orthonormal set of

eigenvectors of A associated, respectively, with ω1, . . . , ωt. If Ω = diag{ω1, . . . , ωt},
then the n × t matrix X with i-th column xi satisfies AX = XΩ. Moreover, X is

entrywise nonnegative since the nonzero entries of each xi constitute a Perron vector

of Ai. Now, from ii) let B the t × t Hermitian matrix with entries with nonnegative

real parts, spectrum {λ11, λ21, . . . , λt1} and diagonal entries ω1, . . . , ωt. If we set C =

B−Ω, then the matrix C is Hermitian with its entries having nonnegative real parts,

and Ω+C has eigenvalues λ11, λ21, . . . , λt1. Therefore, by Theorem 3.1, the Hermitian

matrix A + XCXT has spectrum Λ.

Theorem 3.2 not only ensures the existence of an Hermitian realizing matrix, but

it also allows to construct the realizing matrix. Of course, the key step is knowing

under which conditions does there exist a t× t Hermitian matrix B with eigenvalues

λ1, λ2, . . . , λt and diagonal entries ω1, ω2, . . . , ωt, whose entries have nonnegative real

parts. Schur proved that the vector of eigenvalues λ1 ≥ · · · ≥ λn of an n×n Hermitian

matrix A majorizes the vector of diagonal entries ω1 ≥ · · · ≥ ωn of A.

For t = 2, the Schur conditions become

λ1 ≥ ω1 and λ1 + λ2 = ω1 + ω2,

and they are also sufficient for the existence of a 2 × 2 Hermitian matrix

B =

[

ω1 a + bi

a − bi ω2

]

,

a, b ∈ R, with eigenvalues λ1 ≥ λ2 and diagonal entries ω1 ≥ ω2 ≥ 0, namely,

B =

[

ω1 a +
√

(λ1 − ω1)(λ1 − ω2) − a2 i

a −
√

(λ1 − ω1)(λ1 − ω2) − a2 i ω2

]

.

For general t, we have an algorithmic procedure to construct the required t × t

Hermitian matrix B. A converse to the result of Schur was proved by Horn [4]:

Theorem 3.3. [4] Let n ≥ 1, and let λ1 ≥ · · · ≥ λn and ω1 ≥ · · · ≥ ωn be given

real numbers. If the vector λ = [λ1, . . . , λn] majorizes the vector ω = [ω1, . . . , ωn] ,

then there exists an n× n real symmetric matrix A = [aij ] with eigenvalues {λi} and

diagonal entries aii = ωi, i = 1, 2, . . . , n.

The steps to construct the required t × t Hermitian matrix B with eigenvalues

λ1, . . . , λt and diagonal entries ω1, . . . , ωt are as follows:

i) We construct a (t− 1)× (t− 1) symmetric nonnegative matrix M with eigenvalues

γ1, . . . , γt−1 and diagonal entries ω2, . . . , ωt, where

λ1 ≥ γ1 ≥ λ2 ≥ · · · ≥ γt−1 ≥ λt,
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and the vector γ = [γ1, . . . , γt−1] majorizes the vector ω = [ω2, . . . , ωt]. The existence

of the γi is ensured by Lemma 4.3.28 in [4]. The construction of M is based on the

results in [10, Section 3].

ii) Let D = diag{γ1, . . . , γt−1}, and let Q be the real orthogonal matrix such that

M = QDQT . Then we construct an Hermitian matrix

H =

[

D z

z∗ α

]

, α ∈ R,

with eigenvalues λ1, . . . , λt. The entries of the complex vectors z and z∗ come from

the use of Theorem 4.3.10 in [4]. In fact, this result establishes that if

λ1 ≥ γ1 ≥ λ2 ≥ γ2 ≥ · · · ≥ γt−1 ≥ λt

and D = diag{γ1, . . . , γt−1}, then there exist a scalar α ∈ R and a vector y ∈ R
t−1

such that {λ1, . . . , λt} is the spectrum of the real symmetric matrix

A =

[

D y

yT α

]

.

The proof can be easily modified for y = z = (z1, . . . , zt−1) ∈ C
t−1. In this case, the

t − 1 real numbers |zi| can be found from

[

(λk − α) −
t−1
∑

i=1

|zi|2
1

λk − γi

]

t−1
∏

i=1

(λk − γi) = 0, k = 1, . . . , t,

and then we may choose zi with nonnegative real part or zi being pure imaginary.

iii) Now we set

B =

[

Q 0

0T 1

]

H

[

QT 0

0T 1

]

=

[

M Qz

(Qz)∗ α

]

,

which is an Hermitian matrix with eigenvalues λ1, . . . , λt and diagonal entries ω1, . . . ,

ωt.

4. Examples.

Example 4.1. Let Λ = {7, 1,−2,−2,−2 + 4i,−2 − 4i}. Consider the partition

Λ1 = {7, 1,−2,−2}, Λ2 = {−2 + 4i}, Λ3 = {−2 − 4i}

with

Γ1 = {3, 1,−2,−2}, Γ2 = {0}, Γ3 = {0}.
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Then we look for a nonnegative matrix B ∈ CS7 with eigenvalues 7,−2 + 4i,−2 − 4i

and diagonal entries 3, 0, 0. From (2.1),

B =





3 0 4
41

7
0 8

7

0 7 0



 .

It is clear that

A1 =









0 2 0 1

2 0 0 1

0 1 0 2

0 1 2 0









has the spectrum Γ1. Then from Theorem 2.1, we have that

A =





A1

0

0



 +



















1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 0 1























0 0 0 0 0 4
41

7
0 0 0 0 8

7

0 0 0 0 7 0





=



















0 2 0 1 0 4

2 0 0 1 0 4

0 1 0 2 0 4

0 1 2 0 0 4
41

7
0 0 0 0 8

7

0 0 0 0 7 0



















has the spectrum Λ.

Example 4.2. Let Λ = {7,−3, 1 + 3i, 1− 3i, 1 + i, 1− i}. Consider the partition

Λ1 = {7,−3}, Λ2 = {1 + 3i, 1 + i, 1 − i}, Λ3 = {1 − 3i},

Γ1 = {3,−3}, Γ2 = {3, 1 + i, 1 − i}, Γ3 = {3},

λi : 7, 1 + 3i, 1 − 3i, ωi : 3, 3, 3, p =
3

4
.

Then

B =





3 0 4
13

4
3 3

4

0 4 3



 ,
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and

A + XC =



















0 3 0 0 0 4

3 0 0 0 0 4
13

4
0 2 0 1 3

4
13

4
0 2 1 0 3

4
13

4
0 0 1 2 3

4

0 0 4 0 0 3



















has the spectrum Λ.

Example 4.3. Let Λ = {7, 5, 1,−3,−4,−6}. We shall construct an Hermitian

matrix, whose entries have nonnegative real parts, with spectrum Λ. Consider the

partition Λ1 = {7,−6}, Λ2 = {5,−4}, Λ1 = {1,−3}, with the symmetrically realizable

list Γ1 = {6,−6}, Γ2 = {4,−4}, Γ3 = {3,−3}. Then we look for an Hermitian matrix

with eigenvalues 7, 5, 1 and diagonal entries 6, 4, 3. We choose γ1 = 6 and γ2 = 1, and

construct the matrix

M =

[

4
√

6√
6 3

]

with eigenvalues 6 and 1. Let

D =

[

6 0

0 1

]

and Q =

[

√

3

5
−

√

2

5√
10

5

√
15

5

]

.

Then QT MQ = D. We construct an Hermitian matrix

H =





6 0 z1

0 1 z2

z∗1 z∗2 6





with eigenvalues 7, 5, 1. Then we solve the system

|z1|2 + |z2|2 = 1

|z1|2 − 6 |z2|2 = 1,

which allows us to choose z1 = i and z2 = 0. Thus,

H =





6 0 i

0 1 0

−i 0 6





and the required Hermitian matrix is

B =

[

Q 0

0T 1

]

H

[

QT 0

0T 1

]

=

[

C Qz

(Qz)∗ α

]

=









4
√

6
√

3

5
i

√
6 3

√
10

5
i

−
√

3

5
i −

√
10

5
i 6









.
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Now, we apply Theorem 3.1 to obtain the Hermitian matrix A with spectrum Λ

A =



















0 4 0 0 0 0

4 0 0 0 0 0

0 0 0 3 0 0

0 0 3 0 0 0

0 0 0 0 0 6

0 0 0 0 6 0



















+ XCXT

=





















0 4 1

2

√
6 1

2

√
6

√
15

10
i

√
15

10
i

4 0 1

2

√
6 1

2

√
6

√
15

10
i

√
15

10
i

1

2

√
6 1

2

√
6 0 3

√
10

10
i

√
10

10
i

1

2

√
6 1

2

√
6 3 0

√
10

10
i

√
10

10
i

−
√

15

10
i −

√
15

10
i −

√
10

10
i −

√
10

10
i 0 6

−
√

15

10
i −

√
15

10
i −

√
10

10
i −

√
10

10
i 6 0





















,

where

XT =





1

2

√
2 1

2

√
2 0 0 0 0

0 0 1

2

√
2 1

2

√
2 0 0

0 0 0 0 1

2

√
2 1

2

√
2





and

C =









0
√

6
√

3

5
i

√
6 0

√
10

5
i

−
√

3

5
i −

√
10

5
i 0









.
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