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THE SUN GRAPH IS DETERMINED BY ITS SIGNLESS

LAPLACIAN SPECTRUM∗

M. MIRZAKHAH† AND D. KIANI†‡

Abstract. For a simple undirected graph G, the corresponding signless Laplacian matrix is

defined as D(G) + A(G) in which D(G) and A(G) are degree matrix and adjacency matrix of G,

respectively. The graph G is said to be determined by its signless Laplacian spectrum, if any graph

having the same signless Laplacian spectrum as G is isomorphic to G. Also the Sun graph of order

2n is a cycle Cn with an edge terminating in a pendent vertex attached to each vertex. Among other

things, one result in this paper is that the Sun graphs are determined by their signless Laplacian

spectrum.
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1. Introduction. Let G be a simple undirected graph with n vertices and m

edges. Let V (G) and E(G) denote the vertex set and edge set of G, respectively.

Also let A(G) be the (0, 1)–adjacency matrix of G. Since A(G) is a symmetric

matrix, its eigenvalues are real numbers. The eigenvalues of A(G) are denoted by

λ1(G), . . . , λn(G), where we take them to be arranged in non-increasing order. Let

I(G) be the (vertex−edge) incidence matrix of G. Also the identity matrix of order

n will be denoted by In.

Recall that the Laplacian matrix and the signless Laplacian matrix of G are

defined as L(G) = D(G) − A(G) and Q(G) = D(G) + A(G), respectively, where

D(G) is the diagonal matrix whose diagonal entries are the vertex degrees of G. As

it is well-known, the matrices L(G) and Q(G) are positive semi-definite and they

have the same characteristic polynomial if and only if G is a bipartite graph. The

eigenvalues of the matrices L(G) and Q(G), are denoted by µ1(G) ≥ µ2(G) ≥ . . . ≥
µn(G) = 0 and ν1(G) ≥ ν2(G) ≥ . . . ≥ νn(G), respectively. Furthermore, the second

smallest Laplacian eigenvalue of G, µn−1(G), is called the algebraic connectivity, and
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µn−1(G) = 0 if and only if the graph G is disconnected (see [6, 9]).

Suppose that M(G) is a matrix associated with the graph G. The spectrum

of M(G) is the multiset containing its eigenvalues, each with its multiplicities, and

we usually write the multiplicities as exponents (i.e. λm1

1 , . . . , λmr
r , where mi is the

multiplicity of the eigenvalue λi for i = 1, . . . , r). Two graphs G and H are said to

be M–cospectral if they have equal M–spectrum, that is spectrum of M(G) is equal

to the spectrum of M(H). In addition, the graph G is said to be determined by its

M–spectrum, if any graph having the same M–spectrum as G is isomorphic to G.

Let Pn, Cn, and L(G) be the path, the cycle on n vertices, and the line graph of

the graph G, respectively. If e ∈ E(G), then G − e denotes the subgraph of G with

vertex set V (G) and edge set E(G) \ {e}. Also if v ∈ V (G), then the graph G − v is

an induced subgraph of G and obtained from G by deleting the vertex v and all edges

incident with it.

A bicyclic graph is a connected graph in which m = n + 1. Two paths are

internally disjoint, if they do not have any vertex in common, except the first and the

last ones. The graph θp,q,r is the union of three internally disjoint paths Pp, Pq+2,

and Pr+2 which have the same two distinct end vertices, where p ≥ 2, q ≥ 0 and

r ≥ 0. The graph βp,q is the union of two cycles Cp and Cq with precisely one vertex

in common, where p ≥ 3 and q ≥ 3. Also the dumbbell graph, γp,q,r, consists of two

vertex disjoint cycles Cp and Cq joined by a path Pr having only its end vertices in

common with the cycles, where p ≥ 3, q ≥ 3 and r ≥ 2.

Connected graphs in which the number of edges equals the number of vertices

are called unicyclic graphs. Therefore, a unicyclic graph is either a cycle or a cycle

with trees attached. A unicyclic graph containing an odd cycle (even cycle) is called

odd unicyclic (even unicyclic). A vertex of degree one is called a pendent vertex.

Furthermore, the Sun graph of order 2n is a cycle Cn with an edge terminating in a

pendent vertex attached to each vertex, and it is denoted by SGn (see Fig. 1).

Fig. 1. SG4

Which graphs are determined by their spectrum, seems to be a difficult problem in

algebraic graph theory. Recently, this problem has attracted some research attention.
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For background and some known results on this problem, we refer the reader to

[1, 11, 7, 10] and the references therein. In [1] it is proved that the Sun graph is

determined by its Laplacian spectrum, and an odd Sun graph is determined by its

adjacency spectrum. In particular, it is shown that for even n, there exist values of n

for which the Sun graph is not determined by its adjacency spectrum (n = 4 and 16).

Here, we prove that the Sun graph is determined by its signless Laplacian spectrum.

2. Basic Properties. In this section, we relate some useful results about sign-

less Laplacian spectrum, which are essential tools for the next section.

The subdivision graph S(G) of the graph G, obtained by inserting an additional

vertex into each edge of G. Evidently, its adjacency matrix is of the form

[

0 I(G)

I(G)t 0

]

,(2.1)

where I(G) is the incidence matrix of G (see e.g. [2]).

Lemma 2.1. [8] The adjacency eigenvalues of the graph S(G) are in the form of

±
√

νi(G).

Example 2.2. Applying Lemma 2.1 to the graph K3, we see that the adjacency

spectrum of the graph S(K3) = C6 is in the form of (−2)1, (−1)2, 12, 21.

Suppose G and H are two graphs with disjoint vertex sets of orders n1 and

n2, respectively. The product of G and H, say G × H, is a graph with vertex set

V (G) × V (H) and two vertices (v1, u1) ∈ V (G × H) and (v2, u2) ∈ V (G × H) are

adjacent if and only if v1v2 ∈ E(G) and u1u2 ∈ E(H). It is easy to see that, the

adjacency eigenvalues of the graph G × H are λi(G)λj(H), where i = 1, . . . , n1; and

j = 1, . . . , n2; (see e.g. [2]).

Using the above statements, we have the following theorem.

Theorem 2.3. Let G be a graph. Then
∏n

i=1 νi(G)ri is the adjacency eigenvalue

of the product of r disjoint copies of the graph S(G), where r = 2
∑n

i=1 ri, r > 0 and

ri are non-negative integers, for i = 1, . . . , n.

Let G be a connected graph. Also assume that the characteristic polynomial of

the signless Laplacian matrix of G is denoted by

QG(x) =

n
∑

i=0

(−1)iζix
n−i.

Using the terminology and notation from [4], a spanning subgraph of G whose con-

nected components are trees or odd unicyclic graphs is called a TU–subgraph of G.

Suppose that a TU–subgraph H of G contains c odd unicyclic graphs and s trees
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such as T1, . . . , Ts. Then the weight W (H) of H is defined by W (H) = 4c
∏s

i=1 ni,

in which ni is the number of the vertices of Ti. Note that if H contains no tree,

then W (H) = 4c. According to the following theorem, the Q–coefficients ζi can be

expressed in terms of the weights of TU–subgraphs of G.

Theorem 2.4. [4] For ζi as above, we have ζ0 = 1 and

ζi =
∑

Hi

W (Hi), i = 1, . . . , n,

where the summation runs over all TU–subgraphs Hi of G with i edges.

Remark 2.5. In Theorem 2.4, the TU–subgraph Hi with i edges, contains n− i

trees. Therefore all connected components of Hn are odd unicyclic, in which Hn is

the TU–subgraph of G with n edges.

Lemma 2.6. Suppose G is a graph and G′ is a spanning subgraph of G, then

det(Q(G′)) ≤ det(Q(G)). Moreover, if v is a pendent vertex of G, then det(Q(G)) =

det(Q(G − v)).

Proof. Let X ⊆ E(G) and G′ = G − X. We denote the set of all TU–subgraphs

of G with n edges by F(G). Therefore, ∅ ⊆ F(G′) ⊆ F(G). So by Theorem 2.4 we

have

det(Q(G′)) =
∑

Hn∈F(G′)

W (Hn) ≤
∑

Hn∈F(G)

W (Hn) = det(Q(G)).

Furthermore, let v be a pendent vertex of G. We have W (Hn − v) = W (Hn), where

Hn is a TU–subgraph of G with n edges. Therefore by Theorem 2.4 and Remark 2.5,

det(Q(G)) = det(Q(G − v)).

Theorem 2.7. Let G be a graph with n vertices and m edges;

(i) det(Q(G)) = 0 if and only if G has at least one bipartite connected component.

(ii) det(Q(G)) = 4 if and only if G is an odd unicyclic graph.

(iii) Suppose G is a non-bipartite connected graph and m > n. Then det(Q(G)) ≥
16 and equality holds if and only if G is a non-bipartite bicyclic graph with C4 as its

induced subgraph.

Proof. (i) can be proved by Corollary 2.2 of [4].

(ii) For the sufficiency part, let G be an odd unicyclic graph. Hence, Theorem 2.4

yields det(Q(G)) = 4. For the necessity part, suppose that det(Q(G)) = 4. By (i), all

connected components of G are non-bipartite. Assume that G is not an odd unicyclic

graph, then we have m = n + k, where k ≥ 1. By induction on k, we prove that
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det(Q(G)) ≥ 16. If k = 1, then G is a bicyclic graph. Since G is non-bipartite,

without loss of generality, by Lemma 2.6, we may assume that one of the following

cases occurs:

Case 1. G ∼= θp,q,r such that p + q and p + r are odd and even numbers,

respectively. So in order to obtain TU–subgraphs of G with n edges, we should delete

one edge from the even cycle Cp+r. Clearly, the length of this cycle is at least four.

Then by Theorem 2.4, we have det(Q(θp,q,r)) ≥ 16 and equality holds if p + r = 4.

Case 2. G ∼= βp,q such that p is an odd number. If q is an odd number,

then we have det(Q(βp,q)) = 4(p + q), otherwise det(Q(βp,q)) = 4q. It implies that

det(Q(βp,q)) ≥ 16 and equality holds if q = 4.

Case 3. G ∼= γp,q,r, this case is similar to the Case 2.

Now suppose that k ≥ 2. Then, there exists at least one cycle C such that by

removing each edge of it, the remaining graph is a connected non-bipartite graph with

at least n + 1 edges. But we know that

det(Q(G)) ≥
∑

e∈C

det(Q(G − e)) ≥ 48.

This completes the proof of the (ii) and (iii).

Lemma 2.8. Suppose u, v are two non-adjacent vertices in the graph G which

have the same neighbors (deg(u) = deg(v) = r). Then G has r as its Q–eigenvalue.

Proof. The proof of this lemma easily follows from det(rI − Q(G)) = 0.

Lemma 2.9. Let G be a graph with t(G) triangles and ni vertices of degree i.

Then

t(L(G)) = t(G) +

∆(G)
∑

i=3

(

i

3

)

ni,

where L(G) is the line graph of G and ∆(G) is the maximum degree of a vertex of

G.

Theorem 2.10. [5, Lemma 2] Let G be a graph on n vertices and m edges.

Suppose that e ∈ E(G) and G′ = G − e. Then ν1(G) > ν1(G
′) ≥ ν2(G) ≥ ν2(G

′) ≥
. . . ≥ νn(G) ≥ νn(G′).

Theorem 2.11. [4, Corollary 2.2] In any graph the multiplicity of the eigenvalue

0 of the signless Laplacian matrix is equal to the number of bipartite components.

Theorem 2.12. [4, Proposition 2.5] If two graphs are Q−cospectral, then their

line graphs are cospectral with respect to the adjacency matrix.
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Theorem 2.13. [4, Corollary 4.3] Let G be a graph with n vertices, m edges, t

triangles and vertex degrees d1, d2, . . . , dn. Let Tk =
∑n

i=1 νk
i , (k = 0, 1, 2, . . .) be the

kth spectral moment for the Q−spectrum. Then we have

T0 = n, T1 =
n

∑

i=1

di = 2m, T2 = 2m +
n

∑

i=1

d2
i , T3 = 6t + 3

n
∑

i=1

d2
i +

n
∑

i=1

d3
i .

Theorem 2.14. [3, Section 5] If G is a connected graph of order n ≥ 4 and

maximum degree ∆(G), then ν1(G) ≥ 1 + ∆(G). Also equality holds if and only if G

is the star graph.

3. The Sun Graph. In this section, we show that the Sun graph is determined

by its Q–spectrum.

Lemma 3.1. The matrix Q(SGn) has 2 + λi ±
√

1 + (λi + 1)2 as its eigenvalues,

where λi = cos2πi
n

, for i = 1, . . . , n.

Proof. By a suitable labelling of vertices of SGn, we may assume that

Q(SGn) =

[

3In + A(Cn) In

In In

]

.

Therefore QSGn
(x) = det(xI2n − Q(SGn)) = (x − 1)nACn

(x − 3 − 1
x−1 ), in which

QSGn
(x) and ACn

(x) are characteristic polynomials of matrices Q(SGn) and A(Cn),

respectively. Notice that ACn
(x − 3 − 1

x−1 ) is not a polynomial. One may see that,

Q(SGn) does not have 1 as its eigenvalue, because the rows of the matrix

I − Q(SGn) =

[ −2In − A(Cn) −In

−In 0

]

,

are linearly independent, therefore det(I − Q(SGn)) 6= 0. Hence, x − 3 − 1
x−1 is an

eigenvalue of the matrix A(Cn), if x is a root of QSGn
(x). Therefore, the Q–spectrum

of SGn is in the form of 2 + λi ±
√

1 + (λi + 1)2, where λi = cos2πi
n

(i = 1, . . . , n).

Corollary 3.2. The matrix Q(SGn) does not have 1 as its eigenvalue.

Corollary 3.3. The largest eigenvalue of the matrix Q(SGn) is equal to 3+
√

5,

for every positive integer n ≥ 3.

Now, suppose G is non-isomorphic Q–cospectral with SGn. By Theorem 2.13,

G has the same number of vertices and edges as SGn. Furthermore, Theorem 2.14

and Corollary 3.3 imply that ∆(G) ≤ 4. Suppose G has ni vertices of degree i, for

i = 0, 1, 2, 3, 4.

Theorem 3.4. Suppose G is a graph without any isolated vertex and is Q–

cospectral with SGn (n ≥ 4). Then G must be isomorphic to SGn.
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Proof. Corollary 4.3 of [4] implies that

4
∑

i=1

ni = 2n,

4
∑

i=1

ini =

n
∑

i=1

di = 4n,

4
∑

i=1

i2ni =

n
∑

i=1

d2
i = 10n,(3.1)

then the following equations hold

4
∑

i=1

(i − 2)ni = −n1 + n3 + 2n4 = 0,(3.2)

4
∑

i=1

(i2 − i − 3)ni = −3n1 − n2 + 3n3 + 9n4 = 0.(3.3)

Combining Equations (3.1), (3.2) and (3.3), we arrive at

n3 + 3n4 = n.(3.4)

So by Theorem 2.12, two graphs L(G) and L(SGn) are A–cospectral (where A is the

adjacency matrix), then t(L(G)) = t(L(SGn)). Therefore, two cases occur:

Case 1. If t(G) = α > 0, then by Lemma 2.9 we have n3 + 4n4 + α = n and

Equation (3.4) yields n4 = −α, a contradiction.

Case 2. If t(G) = 0, then by Lemma 2.9 we have n3 + 4n4 = n. Also Equa-

tions (3.2), (3.3), and (3.4) imply that n4 = n2 = 0, n1 = n3 = n. Furthermore, the

order of each cycle of G is at most n.

In particular, if G has a cycle of order k (3 < k < n), then G has a proper subgraph

G′ ∼= SGk because each cycle vertex has degree 3. Therefore, the interlacing theorem

implies that ν1(G) > ν1(G′) which is a contradiction with Corollary 3.3. Thus k = n,

and so G must be isomorphic to SGn.

Theorem 3.5. Let n be an odd number. Then the Sun graph, SGn, is determined

by its Q-spectrum.

Proof. Suppose that G is Q–cospectral with SGn. By Theorem 2.7 we have

det(Q(G)) = det(Q(SGn)) = 4. Therefore G is an odd unicyclic graph. Suppose that

n = 3, it is easy to check that, G must be one of the graphs in Fig. 2. Moreover,

Theorem 2.12 implies that t(L(G)) = t(L(SGn)) = 4, in which t(G) denotes the

number of triangles of G. Obviously, no graph in Fig. 2 has this property.

By Theorem 3.4 and the fact that G is an odd unicyclic graph, we have G ∼= SGn,

for odd n ≥ 5. This completes the proof.

Next, suppose that n is an even number. Since Q(SGn) = L(SGn), we have

rank(Q(G)) = rank(Q(SGn)) = 2n−1. Hence, by Theorem 2.11, G has one bipartite

component.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 610-620, September 2010

http://math.technion.ac.il/iic/ela



ELA

The Sun Graph Is Determined by its Signless Laplacian Spectrum 617

Fig. 2.

If G is a graph with no vertex of degree 0, then by Theorem 3.4, G ∼= SGn.

Therefore, suppose that G has an isolated vertex, and G1, . . . ,Gc are non-bipartite

connected components of G where c ≥ 1. Also without loss of generality we may

assume that G1, . . . ,Gc−1 are odd unicyclic graphs, and Gc is bicyclic.

Similar to the proof of the Theorem 3.4, we have n3+3n4 = n−1. Also Lemma 2.9

implies that n = t(G) + n3 + 4n4. By combining these equations, two following cases

occur:

Case 1. If t(G) = 0, then n4 = 1, n2 = 6, n1 = n3 = n − 4. Furthermore, the

graph H which is shown in Fig. 3 has 3+
√

5 as its largest Q–eigenvalue. Hence, it can

not be a subgraph of G, because of the interlacing theorem. Therefore, the vertex of

degree 4 has at least two neighbors of degree 1. We get a contradiction by Lemma 2.8

and Corollary 3.2.

Fig. 3. The graph H

Case 2. If t(G) = 1, then n4 = 0, n3 = n − 1, n2 = 3, and n1 = n − 3.

Noting that the adjacency spectrum of Cn is λi = 2cos2πi
n

, for i = 1, . . . , n. But

in fact, these numbers are not all distinct. By Lemma 3.1, the Q–spectrum of SGn

is in the form of

(3 +
√

5)1, (2 + λi +
√

1 + (1 + λi)2)
2, 21, (3 −

√
5)1, (2 + λi −

√

1 + (1 + λi)2)
2, 01,

in which λi = cos2πi
n

and i = 1, . . . , n−2
2 .

Hence, the product of the Q−eigenvalues of SGn with multiplicity 2 equals γ =
n2

4 , because ζ2n−1(SGn) = 2n2 =
∏

νi 6=0 νi(SGn) = 8γ.

Let H be a proper subgraph of G, which is obtained by deleting an edge from

Gc such that all its non-bipartite connected components are odd unicyclic graphs.
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Obviously, H is a TU–subgraph of G with 2n − 1 edges, containing c odd unicyclic

connected components and one isolated vertex. By Theorem 2.4 and the interlacing

theorem, we have

W (H) = 4c =

2n−1
∏

i=1

νi(H) =
√

γα.(3.5)

Now using Theorem 2.3, if α is a rational number then α is an integer number,

because the characteristic polynomial of the adjacency matrix of a graph is a monic

polynomial with integer coefficients. Therefore, there exists a positive integer β, such

that n = 2β .

Remark 3.6. Suppose that G has a cycle whose vertices have degree 3, and

any two cycle vertices have no common neighbor outside of the cycle. Thus using

Corollary 3.3 and interlacing theorem, G must be isomorphic to SGn.

Lemma 3.7. Let G be Q–cospectral with SG2β , for positive integer β. Suppose that

k is an odd number and v is a pendent vertex. Then G has no connected component

H isomorphic to SGk − v.

Proof. By applying the interlacing theorem and Lemma 3.1, H has 2 + cos2π
k

+
√

1 + (1 + cos2π
k

)2 as its Q–eigenvalue. We show that Q(SGn) does not have such

eigenvalue. Assume otherwise, so there exists some i (1 ≤ i ≤ n = 2β) such that

2 + cos
2π

k
+

√

1 + (1 + cos
2π

k
)2 = 2 + cos

2πi

n
±

√

1 + (1 + cos
2πi

n
)2,

which implies that cos2π
k

= cos2πi
n

for some i. One may see that it is impossible for

an odd k and n = 2β , and the result follows.

By Remark 3.6, each non-bipartite connected component of G must contain at

least one vertex of degree 2. It follows that c ≤ n2 = 3, where c is the number of

non-bipartite connected components of G.

If c = 3, then G does not have a vertex of degree 3 outside of any cycle, by

Lemma 2.8. So G has an odd unicyclic connected component G1
∼= SGk − v, in which

v is a pendent vertex and k is an odd number. This is a contradiction by Lemma 3.7,

and consequently c ≤ 2.

Now suppose Gc (the bicyclic component of G) is θp,q,r with trees attached. Also

let κ be the number of edges such as e ∈ E(Gc), for which the graph Gc − e is an odd

unicyclic graph.

If c = 2, then ζ2n−1 = 2n2 = 42κ, and κ ≤ n − 1. Therefore, n2 ≤ 8(n − 1) and

it implies that n = 4, because n = 2β . On the other hand, for c = 1, similar to the
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above we have ζ2n−1 = 2n2 = 4κ, where κ ≤ n + 2. Hence the only possible case is

n = 4.

But for n = 4, by our assumption the graphs in Fig. 4 are the possible graphs. By

computing the quantity ζ2n−1, these graphs are not desired.

Fig. 4.

Also if Gc is γp,q,r with trees attached and c = 2, then using Lemma 2.8 and

Corollary 3.2, G has no vertex of degree 3 outside of any cycle. So we may suppose

that G has an odd unicyclic connected component G1
∼= SGk−v, where v is a pendent

vertex and k is an odd number. This is a contradiction by Lemma 3.7. Therefore,

c = 1 and by Equation (3.5), we have 4 = n
2 α and it follows that n ∈ {4, 8}.

Evidently, for n = 4, G must be isomorphic to the graph which is shown in Fig. 5.

We know, that is a contradiction with t(G) = 1.

Fig. 5.

Finally, for n = 8, we have two choices for deleting an edge from G to obtain a

TU–subgraph with 2n − 1 edges. One may either choose the edge e from the path

Pr where 0 ≤ r ≤ 4 or choose the edge e from cycles Cp or Cq where p + q ≤ 10.

Therefore, we have ζ2n−1(G) = 2n2 = 128 ≤ 42(r+1)+4(p+q) ≤ 120, a contradiction.

Hence, G can not contain an isolated vertex.

Accordingly we may summarize our results as follows.

Theorem 3.8. The Sun graph is determined by its Q−spectrum.
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[2] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs – Theory and Applications, Third

edition. Johann Ambrosius Barth. Heidelberg, 1995.
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