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Abstract. The paper studies the eigenvalue distribution of some special matrices, including

block diagonally dominant matrices and block H−matrices. A well-known theorem of Taussky on

the eigenvalue distribution is extended to such matrices. Conditions on a block matrix are also given

so that it has certain numbers of eigenvalues with positive and negative real parts.
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1. Introduction. The eigenvalue distribution of a matrix has important con-

sequences and applications (see e.g., [4], [6], [9], [12]). For example, consider the

ordinary differential equation (cf. Section 2.0.1 of [4])

dx

dt
= A[x(t) − x̂],(1.1)

where A ∈ Cn×n and x(t), x̂ ∈ Cn. The vector x̂ is an equilibrium of this system. It

is not difficult to see that x̂ of system is globally stable if and only if each eigenvalue

of −A has positive real part, which concerns the eigenvalue distribution of the matrix

A. The analysis of stability of such a system appears in mathematical biology, neural

networks, as well as many problems in control theory. Therefore, there is considerable

interest in the eigenvalue distribution of some special matrices A and some results are

classical. For example, Taussky in 1949 [14] stated the following theorem.
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Theorem 1.1. ([14]) Let A = (aij) ∈ Cn×n be strictly or irreducibly diagonally

dominant with positive real diagonal entries aii for all i ∈ N = {1, 2, · · · , n}. Then

for arbitrary eigenvalue λ of A, we have Re(λ) > 0.

Tong [15] improved Taussky’s result in [14] and proposed the following theorem

on the eigenvalue distribution of strictly or irreducibly diagonally dominant matrices.

Theorem 1.2. ([15]) Let A = (aij) ∈ Cn×n be strictly or irreducibly diagonally

dominant with real diagonal entries aii for all i ∈ N . Then A has |J+(A)| eigenvalues

with positive real part and |J−(A)| eigenvalues with negative real part, where J+(A) =

{i | aii > 0, i ∈ N}, J−(A) = {i | aii < 0, i ∈ N}.

Later, Jiaju Zhang [23], Zhaoyong You et al. [18] and Jianzhou Liu et al. [6]

extended Tong’s results in [15] to conjugate diagonally dominant matrices, generalized

conjugate diagonally dominant matrices and H−matrices, respectively. Liu’s result

is as follows.

Theorem 1.3. ([6]) Let A = (aij) ∈ Hn with real diagonal entries aii for all

i ∈ N . Then A has |J+(A)| eigenvalues with positive real part and |J−(A)| eigenvalues

with negative real part.

Recently, Cheng-yi Zhang et al. ([21], [22]) generalized Tong’s results in [15] to

nonsingular diagonally dominant matrices with complex diagonal entries and estab-

lished the following conclusion.

Theorem 1.4. ([21], [22]) Given a matrix A ∈ Cn×n, if Â is nonsingular diago-

nally dominant, where Â = (âij) ∈ Cn×n is defined by

âij =

{
Re(aii), if i = j,

aij , if i 6= j,

then A has |JR+
(A)| eigenvalues with positive real part and |JR−

(A)| eigenvalues

with negative real part, where JR+
(A) = {i | Re(aii) > 0, i ∈ N}, JR−

(A) = {i |

Re(aii) < 0, i ∈ N}.

However, there exists a dilemma in practical application. That is, for a large-scale

matrix or a matrix which is neither a diagonally dominant matrix nor an H−matrix,

it is very difficult to obtain the property of this class of matrices.

On the other hand, David G. Feingold and Richard S. Varga [2], Zhao-yong You

and Zong-qian Jiang [18] and Shu-huang Xiang [17], respectively, generalized the

concept of diagonally dominant matrices and proposed two classes of block diago-

nally dominant matrices, i.e., I−block diagonally dominant matrices [2] and ∐−block

diagonally dominant matrices [14], [15]. Later, Ben Polman [10], F. Robert [11],

Yong-zhong Song [13], L.Yu. Kolotilina [5] and Cheng-yi Zhang and Yao-tang Li [20]
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also presented two classes of block H−matrices such as I−block H−matrices[11] and

∐−block H−matrices[10] on the basis of the previous work.

It is known that a block diagonally dominant matrix is not always a diagonally

dominant matrix (an example is seen in [2, (2.6)]). So suppose a matrix A is not

strictly (or irreducibly) diagonally dominant nor an H−matrix. Using and appro-

priate partitioning of A, can we obtain its eigenvalue distribution when it is block

diagonally dominant or a block H−matrix?

David G. Feingold and Richard S. Varga (1962) showed that an I−block strictly

or irreducibly diagonally dominant diagonally dominant matrix has the same property

as the one in Theorem 1.1. The result reads as follows.

Theorem 1.5. ([2]) Let A = (Alm)s×s ∈ Cn×n
s be I−block strictly or irreducibly

diagonally dominant with all the diagonal blocks being M−matrices. Then for arbi-

trary eigenvalue λ of A, we have Re(λ) > 0.

The purpose of this paper is to establish some theorems on the eigenvalue distri-

bution of block diagonally dominant matrices and block H-matrices. Following the

result of David G. Feingold and Richard S. Varga, the well-known theorem of Taussky

on the eigenvalue distribution is extended to block diagonally dominant matrices and

block H−matrices with each diagonal block being non-Hermitian positive definite.

Then, the eigenvalue distribution of some special matrices, including block diagonally

dominant matrices and block H-matrices, is studied further to give conditions on

the block matrix A = (Alm)s×s ∈ Cn×n
s such that the matrix A has

∑
k∈J

+

P
(A) nk

eigenvalues with positive real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real

part; here J+
P (A) (J−

P (A)) denotes the set of all indices of non-Hermitian positive

(negative) definite diagonal blocks of A and nk is the order of the diagonal block Akk

for k ∈ J+
P (A) ∪ J−

P (A).

The paper is organized as follows. Some notation and preliminary results about

special matrices including block diagonally dominant matrices and block H−matrices

are given in Section 2. The theorem of Taussky on the eigenvalue distribution is

extended to block diagonally dominant matrices and block H-matrices in Section 3.

Some results on the eigenvalue distribution of block diagonally dominant matrices and

block H-matrices are then presented in Section 4. Conclusions are given in Section 5.

2. Preliminaries. In this section we present some notions and preliminary re-

sults about special matrices that are used in this paper. Throughout the paper, we

denote the conjugate transpose of the vector x, the conjugate transpose of the matrix

A, the spectral norm of the matrix A and the cardinality of the set α by xH , AH , ‖A‖

and |α|, respectively. Cm×n (Rm×n) will be used to denote the set of all m× n com-

plex (real) matrices. Let A = (aij) ∈ Rm×n and B = (bij) ∈ Rm×n, we write A ≥ B,
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if aij ≥ bij holds for all i = 1, 2, · · · ,m, j = 1, 2, · · · , n. A matrix A = (aij) ∈ Rn×n

is called a Z−matrix if aij ≤ 0 for all i 6= j. We will use Zn to denote the set of all

n×n Z−matrices. A matrix A = (aij) ∈ Rn×n is called an M−matrix if A ∈ Zn and

A−1 ≥ 0. Mn will be used to denote the set of all n× n M−matrices.

The comparison matrix of a given matrix A = (aij) ∈ Cn×n, denoted by µ(A) =

(µij), is defined by

µij =

{
|aii|, if i = j,

−|aij |, if i 6= j.

It is clear that µ(A) ∈ Zn for a matrix A ∈ Cn×n. A matrix A ∈ Cn×n is called

H−matrix if µ(A) ∈ Mn. Hn will denote the set of all n× n H−matrices.

A matrix A ∈ Cn×n is called Hermitian if AH = A and skew-Hermitian if AH =

−A. A Hermitian matrix A ∈ Cn×n is called Hermitian positive definite if xHAx > 0

for all 0 6= x ∈ Cn and Hermitian negative definite if xHAx < 0 for all 0 6= x ∈ Cn.

A matrix A ∈ Cn×n is called non-Hermitian positive definite if Re(xHAx) > 0 for all

0 6= x ∈ Cn and non-Hermitian negative definite if Re(xHAx) < 0 for all 0 6= x ∈ Cn.

Let A ∈ Cn×n, then H = (A+AH)/2 and S = (A−AH)/2 are called the Hermitian

part and the skew-Hermitian

part of the matrix A, respectively. Furthermore, A is non-Hermitian positive (neg-

ative) definite if and only if H is Hermitian positive (negative) definite (see [3,7,8]).

Let x = (x1, x2, · · · , xn)
T ∈ Cn. The Euclidean norm of the vector x is defined

by ‖x‖ =
√
(xHx) =

√∑n

i=1 |xi|2 and the spectral norm of the matrix A ∈ Cn×n is

defined by

‖A‖ = sup
06=x∈Cn

(
‖Ax‖

‖x‖

)
= sup

‖y‖=1

(‖Ay‖) .(2.1)

If A is nonsingular, it is useful to point out that

‖A−1‖−1 = inf
06=x∈Cn

(
‖Ax‖

‖x‖

)
.(2.2)

With (2.2), we can then define ‖A−1‖−1 by continuity to be zero whenever A is

singular. Therefore, for B ∈ Cn×n and 0 6= C ∈ Cn×m,

‖B−1C‖−1 = inf
06=x∈Cn

(
‖BHx‖

‖CHx‖

)
(2.3)

if B is nonsingular, and

‖B−1C‖−1 → 0 ⇒ ‖B−1C‖ → ∞(2.4)
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by continuity if B is singular.

A matrix A ∈ Cn×n(n ≥ 2) is called reducible if there exists an n×n permutation

matrix P such that

PAPT =

(
A11 A12

0 A22

)
,

where A11 ∈ Cr×r, A22 ∈ C(n−r)×(n−r), 1 ≤ r < n. If no such permutation matrix

exists, then A is called irreducible. A = (a11) ∈ C1×1 is irreducible if a11 6= 0, and

reducible, otherwise.

A matrix A = (aij) ∈ Cn×n is diagonally dominant by row if

|aii| ≥
n∑

j=1,j 6=i

|aij |(2.5)

holds for all i ∈ N = {1, 2, · · · , n}. If inequality in (2.5) holds strictly for all i ∈ N,

A is called strictly diagonally dominant by row; if A is irreducible and diagonally

dominant with inequality (2.5) holding strictly for at least one i ∈ N , A is called

irreducibly diagonally dominant by row.

By Dn, SDn and IDn denote the sets of matrices which are n×n diagonally dom-

inant, n× n strictly diagonally dominant and n× n irreducibly diagonally dominant,

respectively.

Let A = (aij) ∈ Cn×n be partitioned as the following form

A =




A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

. . .
...

As1 As2 · · · Ass


 ,(2.6)

where All is an nl×nl nonsingular principal submatrix of A for all l ∈ S = {1, 2, · · · , s}

and
∑s

l=1 nl = n. By Cn×n
s denote the set of all s × s block matrices in Cn×n

partitioned as (2.6). Note: A = (Alm)s×s ∈ Cn×n
s implies that each diagonal block

All of the block matrix A is nonsingular for all l ∈ S.

Let A = (Alm)s×s ∈ Cn×n
s and S = {1, 2, · · · , s}, we define index sets

J+
P (A) = {i | Aii is non−Hermitian positive definite, i ∈ S},

J−
P (A) = {i | Aii is non−Hermitian negative definite, i ∈ S}.

From the index sets above, we know that J+
P (A) = S shows that each diagonal block

All of A is non-Hermitian positive definite for all l ∈ S and J+
P (A) ∪ J−

P (A) = S
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shows that each diagonal block All of A is either non-Hermitian positive definite or

non-Hermitian negative definite for all l ∈ S.

Let A = (Alm)s×s ∈ Cn×n
s . Then A is called block irreducible if either its

I−block comparison matrix µI(A) = (wlm) ∈ Rs×s or its ∐−block comparison matrix

µ∐(A) = (mlm) ∈ Rs×s is irreducible, where

wlm =

{
‖A−1

ll ‖−1, l = m

−‖Alm‖, l 6= m
, mlm =

{
1, l = m

− ‖ A−1
ll Alm ‖, l 6= m

.(2.7)

A block matrix A = (Alm)s×s ∈ Cn×n
s is called I−block diagonally dominant if

its I−block comparison matrix comparison matrix, µI(A) ∈ Ds. If µI(A) ∈ SDs,

A is I−block strictly diagonally dominant; and if µI(A) ∈ IDs, A is called I−block

irreducibly diagonally dominant.

Similarly, a block matrix A = (Alm)s×s ∈ Cn×n
s is called ∐−block diagonally

dominant if its ∐−block comparison matrix, µ∐(A) ∈ Ds. If µ∐(A) ∈ SDs, A is

∐−block strictly diagonally dominant; and if µ∐(A) ∈ IDs, A is called ∐−block

irreducibly diagonally dominant.

A block matrix A = (Alm)s×s ∈ Cn×n
s is called an I−block H−matrix (resp., a

∐−block H−matrix) if its I−block comparison matrix µI(A) = (wlm) ∈ Rs×s (resp.,

its ∐−block comparison matrix µ∐(A) = (mlm) ∈ Rs×s) is an s× s M−matrix.

In the rest of this paper, we denote the set of all s×s I−block (strictly, irreducibly)

diagonally dominant matrices, all s × s ∐−block (strictly, irreducibly) diagonally

dominant matrices, all s×s I−blockH−matrices and all s×s ∐−blockH−matrices by

IBDs(IBSDs, IBIDs), ∐BDs(∐BSDs, ∐BIDs), IBHs and ∐BHs, respectively.

It follows that we will give some lemmas to be used in the following sections.

Lemma 2.1. (see [2,5]) If A block matrix A = (Alm)s×s ∈ IBSDs∪ IBIDs, then

A is nonsingular.

Lemma 2.2. IBSDs ∪ IBIDs ⊂ IBHs and ∐BSDs ∪ ∐BIDs ⊂ ∐BHs

Proof. According to the definition of I−block strictly or irreducibly diagonally

dominant matrices, µI(A) ∈ SDs ∪ IDs for any block matrix A ∈ IBSDs ∪ IBIDs.

Since SDs ∪ IDs ⊂ Hs (see Lemma 2.3 in [21]), µI(A) ∈ Hs. As a result, A ∈ IBHs

coming from the definition of I−block H−matrices. Therefore, IBSDs ∪ IBIDs ⊂

IBHs. Similarly, we can prove ∐BSDs ∪ ∐BIDs ⊂ ∐BHs.

Lemma 2.3. Let A = (Alm)s×s ∈ Cn×n
s . Then A ∈ ∐BHs (IBHs) if and

only if there exists a block diagonal matrix D = diag(d1I1, · · · , dsIs), where dl > 0,

Il is the nl × nl identity matrix for all l ∈ S and
∑s

l=1 nl = n, such that AD ∈

∐BSDs (IBSDs).
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Proof. Using Theorem 6.2.3 (M35) in [1, pp.136-137], the conclusion of this lemma

is obtained immediately.

Lemma 2.4. (see [7) If a matrix A ∈ Cn×n is non-Hermitian positive definite,

then for arbitrary eigenvalue λ of A, we have Re(λ) > 0.

Lemma 2.5. (see [16]) Let A ∈ Cn×n. Then

‖A‖ = ρ(AHA),(2.8)

the spectral radius of AHA. In particular, if A is Hermitian, then ‖A‖ = ρ(A).

3. Some generalizations of Taussky’s theorem. In this section, the famous

Taussky’s theorem on the eigenvalue distribution is extended to block diagonally

dominant matrices and block H-matrices. The following lemmas will be used in this

section.

Lemma 3.1. (see [8]) Let A = (aij) ∈ Cn×n be non-Hermitian positive definite

with Hermitian part H = (A+AH)/2. Then

‖A−1‖ ≤ ‖H−1‖.(3.1)

Lemma 3.2. Let A ∈ Cn×n be non-Hermitian positive definite with Hermitian

part H = (A+AH)/2. Then for arbitrary complex number α 6= 0 with Re(α) ≥ 0, we

have

‖(αI +A)−1‖ ≤ ‖H−1‖,(3.2)

where I is the identity matrix and ‖A‖ is the spectral norm of the matrix A.

Proof. Since A is non-Hermitian positive definite, for arbitrary complex number

α 6= 0 with Re(α) ≥ 0, we have αI + A is non-Hermitian positive definite. It then

follows from Lemma 3.1 that

‖(αI +A)−1‖ ≤ ‖[Re(α)I +H ]−1‖.(3.3)

Since H is Hermitian positive definite, so is Re(α)I+H . Thus, the smallest eigenvalue

of Re(α)I +H is τ(Re(α)I +H) = Re(α) + τ(H). Following Lemma 2.5, we have

‖[Re(α)I +H ]−1‖ = ρ([Re(α)I +H ]−1) =
1

τ(Re(α)I +H)

=
1

Re(α) + τ(H)
≤

1

τ(H)
= ρ(H−1)

= ‖H−1‖.

(3.4)
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Then it follows from (3.3) and (3.4) that ‖(αI + A)−1‖ ≤ ‖H−1‖, which completes

the proof.

Lemma 3.3. (see [2], The generalization of the Gersgorin Circle Theorem)

Let A ∈ Cn×n be partitioned as (2.6). Then each eigenvalue λ of A satisfies that

‖(λI −All)
−1‖−1 ≤

s∑

m=1,m 6=l

‖Alm‖(3.5)

holds for at least one l ∈ S.

Theorem 3.4. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) = S. If Â ∈ IBSDs,

where Â = (Âlm)s×s is defined by

Âlm =

{
Hll = (All +AH

ll )/2, l = m

Alm, otherwise,
(3.6)

then for any eigenvalue λ of A, we have Re(λ) > 0.

Proof. The conclusion can be proved by contradiction. Assume that λ be any

eigenvalue of A with Re(λ) ≤ 0. Following Lemma 3.3, (3.5) holds for at least one

l ∈ S. Since J+
P (A) = S shows that each diagonal block All of A is non-Hermitian

positive definite for all l ∈ S, it follows from Lemma 3.2 that

‖(λI −All)
−1‖ ≤ ‖H−1

ll ‖

and hence

‖(λI −All)
−1‖−1 ≥ ‖H−1

ll ‖−1(3.7)

for all l ∈ S. According to (3.5) and (3.7) we have that

‖H−1
ll ‖−1 ≤

s∑

m=1,m 6=l

‖Alm‖

holds for at least one l ∈ S. This shows µI(Â) = (wlm) /∈ SDs. As a result,

Â /∈ IBSDs, which is in contradiction with the assumption Â ∈ IBSDs. Therefore,

the conclusion of this theorem holds.

Theorem 3.5. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) = S. If Â ∈ IBHs, where

Â = (Âlm)s×s is defined in (3.6), then for any eigenvalue λ of A, we have Re(λ) > 0.

Proof. Since Â ∈ IBHs, it follows from Lemma 2.3 that there exists a block

diagonal matrix D = diag(d1I1, · · · , dsIs), where dl > 0, Il is the nl × nl identity

matrix for all l ∈ S and
∑s

l=1 nl = n, such that ÂD ∈ IBSDs, i.e.,

‖H−1
ll ‖−1dl >

s∑

m=1,m 6=l

‖Alm‖dm(3.8)
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holds for all l ∈ S. Multiply the inequality (3.8) by d−1
l , then

‖H−1
ll ‖−1 >

s∑

m=1,m 6=l

d−1
l ‖Alm‖dm =

s∑

m=1,m 6=l

‖d−1
l Almdm‖(3.9)

holds for all l ∈ S. Since J+
P (D−1AD) = J+

P (A) = S and (3.9) shows D−1ÂD ∈

IBSDs, Theorem 3.4 yields that for any eigenvalue λ of D−1AD, we have Re(λ) > 0.

Again, since A has the same eigenvalues as D−1AD, for any eigenvalue λ of A, we

have Re(λ) > 0. This completes the proof.

Using Lemma 2.2 and Theorem 3.5, we can obtain the following corollary.

Corollary 3.6. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) = S. If Â ∈ IBIDs,

where Â = (Âlm)s×s is defined in (3.6), then for any eigenvalue λ of A, we have

Re(λ) > 0.

The following will extend the result of Theorem 1.1 to ∐−block diagonally dom-

inant matrices and ∐−block H−matrices. First, we will introduce some relevant

lemmas.

Lemma 3.7. (see [3]) Let A ∈ Cn×n. Then the following conclusions are equiva-

lent.

1. A is Hermitian positive definite;

2. A is Hermitian and each eigenvalue of A is positive;

3. A−1 is also Hermitian positive definite.

Lemma 3.8. Let A ∈ Cn×n be nonsingular. Then

‖A−1‖−1 = τ(AHA),(3.10)

where τ(AHA) denote the minimal eigenvalue of the matrix AHA.

Proof. It follows from equality (2.8) in Lemma 2.5 that

‖A−1‖ = ρ[(AAH)−1] = ρ[(AHA)−1] =
1

τ(AHA)
,(3.11)

which yields equality (3.10).

Lemma 3.9. Let A ∈ Cn×n be Hermitian positive definite and let B ∈ Cn×m.

Then for arbitrary complex number α 6= 0 with Re(α) ≥ 0, we have

‖(αI +A)−1B‖ ≤ ‖A−1B‖,(3.12)

where I is identity matrix and ‖A‖ is the spectral norm of the matrix A.
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Proof. The theorem is obvious if B = 0. Since A is Hermitian positive definite

and α 6= 0 with Re(α) ≥ 0, αI +A is non-Hermitian positive definite. Hence, αI +A

is nonsingular. As a result, (αI + A)−1B 6= 0 and consequently ‖(αI + A)−1B‖ 6= 0

for B 6= 0. Thus, if B 6= 0, it follows from (2.1) and (2.2) that for arbitrary vector

x, y ∈ Cm, ‖x‖ = ‖y‖ = 1, we have

‖A−1B‖

‖(αI +A)−1B‖
=

sup
‖x‖=1

(‖A−1Bx‖)

sup
‖y‖=1

(‖(αI +A)−1By‖)

≥
‖A−1By‖

sup
‖y‖=1

(‖(αI +A)−1By‖)
(set x = y)

= inf
‖y‖=1

(
‖A−1By‖

‖(αI +A)−1By‖

)

= inf
06=z∈Cn

(
‖A−1z‖

‖(αI +A)−1z‖

)
(set z = By ∈ Cn)

= inf
06=u∈Cn

(
‖A−1(αI +A)u‖

‖u‖

)
(u = (αI +A)−1z ∈ Cn)

= ‖[A−1(αI +A)]−1‖−1 (from(2.2))

= ‖(αA−1 + I)−1‖−1.

(3.13)

According to Lemma 3.8,

‖(αA−1 + I)−1‖−1 = τ [(αA−1 + I)H(αA−1 + I)]

= τ(I + 2Re(α)A−1 + |α|2A−2).
(3.14)

Since A is Hermitian positive definite, it follows from Lemma 3.7 that A−1 and A−2 are

also. Therefore, α 6= 0, together with Re(α) ≥ 0, implies that 2Re(α)A−1 + |α|2A−2

is also Hermitian positive definite. As a result, τ(2Re(α)A−1 + |α|2A−2) > 0. Thus,

following (3.13) and (3.14), we get

‖A−1B‖

‖(αI +A)−1B‖
≥ ‖(αA−1 + I)−1‖−1

= τ(I + 2Re(α)A−1 + |α|2A−2)

= 1 + τ(2Re(α)A−1 + |α|2A−2)

> 1,

(3.15)

from which it is easy to obtain (3.12). This completes the proof.

Theorem 3.10. Let A = (Alm)s×s ∈ ∐BSDs ∪ ∐BIDs with J+
P (A) = S.

If Â = A, where Â is defined in (3.6), then for any eigenvalue λ of A, we have

Re(λ) > 0.

Proof. We prove by contradiction. Assume that λ is any eigenvalue of A with

Re(λ) ≤ 0. Then the matrix λI−A is singular. Since Â = A and (3.6) imply that the
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diagonal block All of A is Hermitian for all l ∈ S, J+
P (A) = S yields that the diagonal

block All of A is Hermitian positive definite for all l ∈ S. Thus λI − All is non-

Hermitian negative definite for all l ∈ S. As a result, D(λ) = diag(λI−A11, · · · , λI−

Ass) is also non-Hermitian negative definite. Therefore, the matrix

A (λ) := [D(λ)]−1(λI −A) = (Alm)s×s ∈ Cn×n
s

is singular, where All = Il, the nl × nl identity matrix and Alm = (λI − All)
−1Alm

for l 6= m and l,m ∈ S. It follows from Lemma 3.9 that

‖(λI −All)
−1Alm‖ ≤ ‖A−1

ll Alm‖(3.16)

for l 6= m and l,m ∈ S. Since A ∈ ∐BSDs ∪ ∐BIDs,

1 ≥
s∑

m=1,m 6=l

‖A−1
ll Alm‖(3.17)

holds for all l ∈ S and the inequality in (3.17) holds strictly for at least one i ∈ S.

Then from (3.16) and (3.17), we have

1 ≥
s∑

m=1,m 6=l

‖(λI −All)
−1Alm‖(3.18)

holds for all l ∈ S and the inequality in (3.18) holds strictly for at least one i ∈ S.

If A ∈ ∐BSDs, then the inequality in (3.17) and hence the one in (3.18) both

hold strictly for all i ∈ S. That is, A (λ) ∈ IBSDs. If A is block irreducible,

then so is A (λ). As a result, A ∈ ∐BIDs yields A (λ) ∈ IBIDs. Therefore,

A ∈ ∐BSDs ∪ ∐BIDs which implies A (λ) ∈ IBSDs ∪ IBIDs. Using Lemma

2.1, A (λ) is nonsingular and consequently λI − A is nonsingular, which contradicts

the singularity of λI −A. This shows that the assumption is incorrect. Thus, for any

eigenvalue λ of A, we have Re(λ) > 0.

Theorem 3.11. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) = S. If Â ∈ ∐BSDs ∪

∐BIDs, where Â is defined by (3.6), then for any eigenvalue λ of A, we have Re(λ) >

0.

Proof. Since Â ∈ ∐BSDs ∪ ∐BIDs, it follows from Lemma 2.2 that Â ∈ ∐BHs

and ÂH ∈ ∐BHs. Following Lemma 2.3, there exists a block diagonal matrix D =

diag(d1I1, · · · , dsIs), where dl > 0, Il is the nl × nl identity matrix for all l ∈ S and∑s

l=1 nl = n, such that ÂHD = (DÂ)H ∈ ∐BSDs. Again, since Â is ∐−block strictly

or irreducibly diagonally dominant by row, so is DÂ. Furthermore, (3.6) implies that

diagonal blocks of Â are all Hermitian, and hence, so are the diagonal blocks of

DÂ and (DÂ)H . Therefore, from the definition of ∐−block strictly or irreducibly
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diagonally dominant matrix by row, we have

1 ≥
s∑

m=1,m 6=l

‖(dlÂll)
−1(dlÂlm)‖ =

s∑

m=1,m 6=l

‖(dlÂll)
−1(dlAlm)‖(3.19)

and

1 >

s∑

m=1,m 6=l

‖(dlÂll)
−1(dmÂH

ml)‖ =

s∑

m=1,m 6=l

‖(dlÂll)
−1(dmAH

ml)‖(3.20)

hold for all l ∈ S. Therefore, according to (3.19) and (3.20), we have

1−
s∑

m=1,m 6=l

‖(dlAll + dlA
H
ll )

−1(dlAlm + dmAH
ml)‖

= 1−
s∑

m=1,m 6=l

‖(2dlÂll)
−1(dlAlm + dmAH

ml)‖

≥ 1−
1

2

s∑

m=1,m 6=l

‖(dlÂll)
−1(dlAml) + (dlÂll)

−1(dmAH
ml)‖

≥ 1−
1

2

s∑

m=1,m 6=l

[
‖(dlÂll)

−1(dlAml‖+ ‖dlÂll)
−1(dmAH

ml)‖
]

≥
1

2


(1−

s∑

m=1,m 6=l

‖(dlÂll)
−1(dlAml‖) + (1 −

s∑

m=1,m 6=l

‖(dlÂll)
−1(dmAH

lm‖)




> 0,

which indicates that DA+(DA)H = DÂ+(DÂ)H ∈ ∐BSDs. Again, since J
+
P (A) =

S, the diagonal block of A+AH , All+AH
ll = 2Âll is Hermitian positive definite for all

l ∈ S. As a result, the diagonal block of DA+ (DA)H , dlAll + dlA
H
ll = 2dlÂll is also

Hermitian positive definite for all l ∈ S. Thus, it follows from Theorem 3.10 that for

any eigenvalue µ of DA+ (DA)H , Re(µ) > 0. Since DA+ (DA)H is Hermitian, each

eigenvalue µ of DA+ (DA)H is positive. Then Lemma 3.7 yields that DA+ (DA)H

is Hermitian positive definite. From the proof above, we conclude that there exists

a Hermitian positive definite matrix D = diag(d1I1, · · · , dsIs), where dl > 0, Il is

the nl × nl identity matrix for all l ∈ S and
∑s

l=1 nl = n, such that DA + (DA)H

is Hermitian positive definite. It follows from Lyapunov’s theorem (see [4], pp.96)

that A is positive stable, i.e., for any eigenvalue λ of A, we have Re(λ) > 0, which

completes the proof.

Theorem 3.12. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) = S. If Â ∈ ∐BHs,

where Â is defined in (3.6), then for any eigenvalue λ of A, we have Re(λ) > 0.
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Proof. Similar to the proof of Theorem 3.5, we can obtain the proof of this

theorem by Lemma 2.3 and Theorem 3.11.

Using Theorem 3.5 and Theorem 3.12, we obtain a sufficient condition for the

system (1.1) to be globally stable.

Corollary 3.13. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (−A) = S. If Â ∈

∐BHs (IBHs), where Â is defined in (3.6), then the equilibrium x̂ of system (1.1) is

globally stable.

4. The eigenvalue distribution of block diagonally dominant matrices

and block H−matrices. In this section, some theorems on the eigenvalue distri-

bution of block diagonally dominant matrices and block H−matrices are presented,

generalizing Theorem 1.2, Theorem 1.3 and Theorem 1.4.

Theorem 4.1. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) ∪ J−
P (A) = S. If Â ∈

IBSDs, where Â is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues with positive

real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part.

Proof. Suppose every block Gersgorin disk of the matrix A given in (3.5)

Γl : ‖(All − λI)−1‖−1 ≤
s∑

m=1,m 6=l

‖Alm‖, l ∈ S.

Let

R1 =
⋃

k∈J
+

P
(A)

Γk, R2 =
⋃

k∈J
−

P
(A)

Γk.

Since J+
P (A) ∪ J−

P (A) = S, then R1 ∪R2 =
⋃
l∈S

Γl. Therefore, it follows from Lemma

3.3 that each eigenvalue λ of the matrix A lies in R1 ∪ R2. Furthermore, R1 lies on

the right of imaginary axis, R2 lies on the left of the imaginary axis in the imaginary

coordinate plane. Then A has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part in R1,

and
∑

k∈J−

P
(A) nk eigenvalues with negative real part in R2. Otherwise, A has an

eigenvalue λk0
∈ R1 with Re(λk0

) ≤ 0 such that for at least one l ∈ J+
P (A),

‖(All − λ0I)
−1‖−1 ≤

s∑

m=1,m 6=l

‖Alm‖.(4.1)

Then it follows from Lemma 3.2 that

‖H−1
ll ‖−1 ≤ ‖(All − λk0

I)−1‖−1(4.2)

for at least one l ∈ J+
P (A). It then follows from (4.1) and (4.2) that

‖H−1
ll ‖−1 ≤

s∑

m=1,m 6=l

‖Alm‖(4.3)
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for at least one l ∈ J+
P (A). Inequality (4.3) contradicts Â ∈ IBSDs. By the same

method, we can obtain the same result if there exists an eigenvalue with nonnegative

real part in R2. Hence, if Â ∈ IBSDs and J+
P (A)∪J−

P (A) = S, then for an arbitrary

eigenvalue λi of A, we have Re(λi) 6= 0 for i = 1, 2, · · · , n. Again, J+
P (A)∩ J−

P (A) = ∅

yields R1 ∩R2 = ∅. Since R1 and R2 are both closed sets and R1 ∩R2 = ∅, λi in R1

can not jump into R2 and λi ∈ R2 can not jump into R1. Thus, A has
∑

k∈J+

P
(A) nk

eigenvalues with positive real part in R1 and
∑

k∈J
−

P
(A) nk eigenvalues with negative

real part in R2. This completes the proof.

Theorem 4.2. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) ∪ J−
P (A) = S. If Â ∈

IBHs, where Â is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues with positive

real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part.

Proof. Since Â ∈ IBHs, it follows from Lemma 2.3 and the proof of Theorem 3.5

that there exists a block diagonal matrix D = diag(d1I1, · · · , dsIs), where dl > 0, Il is

the nl×nl identity matrix for all l ∈ S and
∑s

l=1 nl = n, such that D−1ÂD ∈ IBSDs,

i.e.,

‖H−1
ll ‖−1 >

s∑

m=1,m 6=l

d−1
l ‖Alm‖dm =

s∑

m=1,m 6=l

‖d−1
l Almdm‖(4.4)

holds for all l ∈ S. Since J+
P (D−1AD) = J+

P (A) and J−
P (D−1AD) = J−

P (A), The-

orem 3.4 yields that D−1AD has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part

and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part. Again, since A has the same

eigenvalues as D−1AD, A has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part and∑

k∈J
−

P
(A) nk eigenvalues with negative real part. This completes the proof.

Following Lemma 2.2 and Theorem 4.2, we have the following corollary.

Corollary 4.3. Let A = (Alm)s×s ∈ Cn×n
s with J+

P (A) ∪ J−
P (A) = S. If

Â ∈ IBIDs, where Â is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues with

positive real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part.

Now, we consider the eigenvalue distribution of ∐−block diagonally dominant

matrices and ∐−block H−matrices. In the following lemma, a further extension of

the Gersgorin Circle Theorem is given.

Lemma 4.4. If for each block row of the block matrix A = (Alm)s×s ∈ Cn×n
s ,

there exists at least one off-diagonal block not equal to zero, then for each eigenvalue

λ of A,

s∑

m=1,m 6=l

‖(All − λI)−1Alm‖ ≥ 1(4.5)

holds for at least one l ∈ S, where ‖(All−λI)−1Alm‖ → ∞ (defined in (2.4)) if All−λI
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is singular and Alm 6= 0 for l 6= m and l,m ∈ S.

Proof. The proof is by contradiction. Assume that λ is an arbitrary eigenvalue

of A such that

s∑

m=1,m 6=l

‖(All − λI)−1Alm‖ < 1(4.6)

holds for all l ∈ S. It follows from (4.6) that All − λI is nonsingular for all l ∈ S.

Otherwise, there exists at leas one l0 ∈ S such that Al0l0 − λI is singular. Since

there exists at least one off-diagonal block Al0m 6= 0 for m ∈ S in the l0th block

row, (2.4) yields ‖(Al0l0 − λI)−1Al0m‖ → ∞ and consequently,
∑s

m=1,m 6=l ‖(Al0l0 −

λI)−1Al0m‖ → ∞, which contradicts (4.6). Therefore, All − λI is nonsingular for

all l ∈ S, which leads to the nonsingularity of the block diagonal matrix D(λ) =

diag(A11 − λI, · · · , Ass − λI). Further, (4.6) also shows A − λI ∈ ∐BSDs Thus,

A (λ) := [D(λ)]−1(A − λI) = (Alm)s×s ∈ IBSDs. Then, we have from Lemma

2.1 that A (λ) is nonsingular. As a result, A − λI is nonsingular, which contradicts

the assumption that λ is an arbitrary eigenvalue of A. Hence, if λ is an arbitrary

eigenvalue of A, then A − λI cannot be ∐−block diagonally dominant, which gives

the conclusion of this lemma.

Theorem 4.5. Let A = (Alm)s×s ∈ ∐BSDs with J+
P (A) ∪ J−

P (A) = S. If

Â = A, where Â = (Âlm)s×s is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues

with positive real part and
∑

k∈J−

P
(A) nk eigenvalues with negative real part.

Proof. The proof proceeds with the following two cases.

(i) If for each block row of the block matrix A, there exists at least one off-

diagonal block not equal to zero, one may suppose that every block Gersgorin disk of

the matrix A given in (4.5) is

Gl : 1 ≤
s∑

m=1,m 6=l

‖(All − λI)−1Alm‖, l ∈ S.

Let

R̃1 =
⋃

k∈J
+

P
(A)

Gk, R̃2 =
⋃

k∈J
−

P
(A)

Gk.

Since J+
P (A) ∪ J−

P (A) = S, then R̃1 ∪ R̃2 =
⋃
l∈S

Gl. Therefore, it follows from Lemma

4.4 that each eigenvalue λ of the matrix A lies in R̃1 ∪ R̃2. Furthermore, R̃1 lies on

the right of imaginary axis, R̃2 lies on the left of the imaginary axis in the imaginary

coordinate plane. Then A has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part in

R̃1, and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part in R̃2. Otherwise, assume
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that A has an eigenvalue λk0
∈ R̃1 such that Re(λk0

) ≤ 0. Therefore, we have from

Lemma 4.4 that

1 ≤
s∑

m=1,m 6=l

‖(All − λ0I)
−1Alm‖(4.7)

holds for at least l ∈ J+
P (A). Since (3.6) and Â = A imply that the diagonal blocks

of A are all Hermitian, the diagonal block All of the block matrix A is Hermitian

positive definite for all l ∈ J+
P (A). Then it follows from Lemma 3.9 that

‖(λI −All)
−1Alm‖ ≤ ‖A−1

ll Alm‖(4.8)

for all l ∈ J+
P (A) and m 6= l, m ∈ S. Inequalities (4.7) and (4.8) yield that

1 ≤
s∑

m=1,m 6=l

‖A−1
ll Alm‖(4.9)

holds for at least l ∈ J+
P (A). Inequality (4.9) contradicts A ∈ ∐BSDs. In the same

method, we can obtain the same result if there exists an eigenvalue with nonnegative

real part in R̃2. Hence, if A ∈ ∐BSDs and J+
P (A) ∪ J−

P (A) = S, then for arbitrary

eigenvalue λi of A, we have Re(λi) 6= 0 for i = 1, 2, · · · , n. Again, J+
P (A)∩ J−

P (A) = ∅

yields R̃1 ∩ R̃2 = ∅. Since R̃1 and R̃2 are all closed set and R̃1 ∩ R̃2 = ∅, λi in R̃1

can not jump into R̃2 and λi ∈ R̃2 can not jump into R̃1. Thus, A has
∑

k∈J
+

P
(A) nk

eigenvalues with positive real part in R̃1 and
∑

k∈J
−

P
(A) nk eigenvalues with negative

real part in R̃2. This completes the proof of (i).

(ii) The following will prove the case when there exist some block rows of the

block matrix A with all their off-diagonal blocks equal to zero. Let ω ⊆ S denote

the set containing block row indices of such block rows. Then there exists an n × n

permutation matrix P such that

PAPT =

[
A(ω′) A(ω′, ω)

0 A(ω)

]
,(4.10)

where ω′ = S − ω, A(ω′) = (Alm)l,m∈ω′ has no block rows with all their off-diagonal

blocks equal to zero, A(ω) = (Alm)l,m∈ω is a block diagonal matrix and A(ω′, ω) =

(Alm)l∈ω′,m∈ω. It is easy to see that the partition of (4.10) does not destroy the

partition of (2.6). Further, (4.10) shows that

σ(A) = σ(A(ω′)) ∪ σ(A(ω)),(4.11)

where σ(A) denotes the spectrum of the matrix A. Since and A(ω′) is a block prin-

cipal submatrix of A and J+
P (A) ∪ J−

P (A) = S, J+
P [A(ω′)] ∪ J−

P [A(ω′)] = ω′. Further,
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A = Â ∈ ∐BSDs gives A(ω
′) = Â(ω′) ∈ ∐BSD|ω′|. Again, since A(ω

′) = (Alm)l,m∈ω′

has no block rows with all their off-diagonal blocks equal to zero, i.e., for each block

row of the block matrix A(ω′), there exists at least one off-diagonal block not equal

to zero, it follows from the proof of (i) that A(ω′) has
∑

k∈J
+

P
[A(ω′)] nk eigenvalues

with positive real part and
∑

k∈J
−

P
[A(ω′)] nk eigenvalues with negative real part.

Let’s consider the matrix A(ω). A(ω) being a block principal submatrix of the

block matrix A = (Alm)s×s ∈ ∐BSDs with J+
P (A) ∪ J−

P (A) = S gives J+
P [A(ω)] ∪

J−
P [A(ω)] = ω. Since A(ω) = (Alm)l,m∈ω is a block diagonal matrix, the diagonal

block All of A(ω) is either non-Hermitian positive definite or non-Hermitian negative

definite for each l ∈ ω, and consequently

σ(A(ω)) =
⋃

l∈ω

σ(All) =




⋃

l∈J
+

P
[A(ω)]

σ(All)




⋃



⋃

l∈J
−

P
[A(ω)]

σ(All)


 .(4.12)

The equality (4.12) and Lemma 2.4 shows that A(ω) has
∑

k∈J
+

P
[A(ω)] nk eigenvalues

with positive real part and
∑

k∈J
−

P
[A(ω)] nk eigenvalues with negative real part.

Since

J+
P (A) ∪ J−

P (A) = S = ω ∪ ω′

=
(
J+
P [A(ω)] ∪ J−

P [A(ω)]
)
∪
(
J+
P [A(ω′)] ∪ J−

P [A(ω′)]
)

=
(
J+
P [A(ω)] ∪ J+

P [A(ω′)]
)
∪
(
J−
P [A(ω) ∪ J−

P [A(ω′)]
) ,

we have

J+
P (A) = J+

P [A(ω)] ∪ J+
P [A(ω′)], J−

P (A) = J−
P [A(ω)] ∪ J−

P [A(ω′)].(4.13)

Again, ω′ = S − ω implies ω ∩ ω′ = ∅, which yields

J+
P [A(ω)] ∩ J+

P [A(ω′)] = ∅, J−
P [A(ω)] ∩ J−

P [A(ω′)] = ∅.(4.14)

According to (4.13), (4.14) and the partition (2.6) of A, it is not difficult to see that

∑
k∈J

+

P
(A) nk =

∑
k∈J

+

P
[A(ω)] nk +

∑
k∈J

+

P
[A(ω′)] nk,

∑
k∈J

−

P
(A) nk =

∑
k∈J

−

P
[A(ω)] nk +

∑
k∈J

−

P
[A(ω′)] nk.

(4.15)

From (4.15) and the eigenvalue distribution of A(ω′) and A(ω) given above, it is

not difficult to see that A has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part and∑

k∈J
−

P
(A) nk eigenvalues with negative real part. We conclude from the proof of (i)

and (ii) that the proof of this theorem is completed.

Theorem 4.6. Let A = (Alm)s×s ∈ ∐BHs with J+
P (A) ∪ J−

P (A) = S. If Â = A,

where Â = (Âlm)s×s is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues with

positive real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part.
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Proof. Since Â = A ∈ ∐BHs, it follows from Lemma 2.3 that there exists a block

diagonal matrix D = diag(d1In1
, d2In2

, · · · , dsIns
), where dl > 0, Inl

is the nl × nl

identity matrix for all l ∈ S and
s∑

l=1

nl = n, such that ÂD = AD ∈ ∐BSDs, i.e.,

1 >

s∑

m=1,m 6=l

‖(Alldl)
−1(Almdm)‖ =

s∑

m=1,m 6=l

‖(d−1
l Alldl)

−1(d−1
l Almdm)‖(4.16)

holds for all l ∈ S. Inequality (4.16) shows B = D−1AD = D−1ÂD = B̂ ∈ ∐BSDs.

Since B = D−1AD has the same diagonal blocks as the matrix A, it follows from The-

orem 4.5 that B has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part and

∑
k∈J

−

P
(A) nk

eigenvalues with negative real part, so does A.

Corollary 4.7. Let A = (Alm)s×s ∈ ∐BIDs with J+
P (A) ∪ J−

P (A) = S. If

Â = A, where Â = (Âlm)s×s is defined in (3.6), then A has
∑

k∈J
+

P
(A) nk eigenvalues

with positive real part and
∑

k∈J
−

P
(A) nk eigenvalues with negative real part.

Proof. The proof is obtain directly by Lemma 2.2 and Theorem 4.6.

5. Conclusions. This paper concerns the eigenvalue distribution of block di-

agonally dominant matrices and block block H−matrices. Following the result of

Feingold and Varga, a well-known theorem of Taussky on the eigenvalue distribution

is extended to block diagonally dominant matrices and block H−matrices with each

diagonal block being non-Hermitian positive definite. Then, the eigenvalue distribu-

tion of some special matrices including block diagonally dominant matrices and block

H-matrices is studied further to give the conditions on the block matrix A such that

the matrix A has
∑

k∈J
+

P
(A) nk eigenvalues with positive real part and

∑
k∈J

−

P
(A) nk

eigenvalues with negative real part.
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