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Abstract. The structure of all graphs having minimum rank at most k over a finite field with q

elements is characterized for any possible k and q. A strong connection between this characterization

and polarities of projective geometries is explained. Using this connection, a few results in the

minimum rank problem are derived by applying some known results from projective geometry.
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1. Introduction. Given a field F and a simple undirected graph G on n vertices

(i.e., an undirected graph without loops or multiple edges), let S(F,G) be the set of

symmetric n× n matrices A with entries in F satisfying aij 6= 0, i 6= j, if and only if

ij is an edge in G. There is no restriction on the diagonal entries of the matrices in

S(F,G). Let

mr(F,G) = min{rankA | A ∈ S(F,G)}.

Let Gk(F ) = {G | mr(F,G) ≤ k}, the set of simple graphs with minimum rank at

most k.

The problem of finding mr(F,G) and describing Gk(F ) has recently attracted

considerable attention, particularly for the case in which F = R (see [29, 17, 26, 25,

27, 13, 33, 5, 9, 22, 2, 11, 6, 7, 10, 18, 4]). The minimum rank problem over R is

a sub-problem of a much more general problem, the inverse eigenvalue problem for

symmetric matrices: given a family of real numbers, find every symmetric matrix that

has the family as its eigenvalues. More particularly, the minimum rank problem is a

sub-problem of the inverse eigenvalue problem for graphs, which fixes a zero/nonzero

pattern for the symmetric matrices considered in the inverse eigenvalue problem. The

minimum rank problem can also be thought of in this way: given a fixed pattern of

off-diagonal zeros, what is the smallest rank that a symmetric matrix having that

pattern can achieve?
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Fig. 1.1: A labeled full house graph

Up to the addition of isolated vertices, it is easy to see that G1(F ) = {Kn |
n ∈ N} for any field F . In [9] and [10], G2(F ) was characterized for any field F

both in terms of forbidden subgraphs and in terms of the structure of the graph

complements. The forbidden subgraph characterizations in these papers used ten or

fewer graphs for each value of k. Restricting our focus to finite fields, let Fq denote

the finite field with q elements. Ding and Kotlov [18] independently used structures

similar to the structures that we use in this paper to obtain some special cases of

some structural results in this paper, as well as an upper bound for the sizes of

minimal forbidden subgraphs characterizing Gk(Fq) for any k and any q. The latter

result implies that there are a finite number of forbidden subgraphs characterizing

Gk(Fq). For example, in [8], G3(F2) was characterized by 62 forbidden subgraphs. This

characterization and further computations confirm our intuition that the forbidden

subgraph characterizations of Gk(Fq) quickly become complicated as k increases.

In this paper, we will characterize the structure of graphs in Gk(Fq) for any k

and any q. The characterization is simply stated and has a very strong connection to

projective geometry over finite fields. At the end of the paper, we will list a few of

the ramifications of this connection to projective geometry.

We adopt the following notation dealing with fields, vector spaces, and matrices.

Given a field F , the group of nonzero elements under multiplication is denoted F× and

the vector space of dimension k over F is denoted F k. Given a matrixM , the principal

submatrix lying in the rows and columns x1, x2, . . . , xm is denoted M [x1, x2, . . . , xm].

To illustrate the field-dependence of minimum rank, we recall from [10] the full

house graph in Figure 1.1 (there called (P3 ∪ 2K1)
c), which is the only graph on 5 or

fewer vertices for which the minimum rank is field-dependent.
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If F 6= F2, there are elements a, b 6= 0 in F such that a+ b 6= 0. Then














a a a 0 0

a a+ b a+ b b b

a a+ b a+ b b b

0 b b b b

0 b b b b















∈ S(F, full house),

which shows that mr(F, full house) = 2. The case F = F2 gives a different result. Let

A be any matrix in S(F2, full house). Then for some d1, d2, . . . , d5 ∈ F2,

A =















d1 1 1 0 0

1 d2 1 1 1

1 1 d3 1 1

0 1 1 d4 1

0 1 1 1 d5















and det(A[{1, 2, 5}, {1, 3, 4}]) =

∣

∣

∣

∣

∣

∣

d1 1 0

1 1 1

0 1 1

∣

∣

∣

∣

∣

∣

= 1,

where A[{1, 2, 5}, {1, 3, 4}] is the submatrix of A lying in rows {1, 2, 5} and columns

{1, 3, 4}. Therefore mr(F2, full house) ≥ 3. Setting each di to 1 verifies the statement

that mr(F2, full house) = 3.

In spite of this dependence on the field, there are a number of results about

minimum rank that are field independent. For example, the minimum rank of a tree

is field independent (see any of [3], [31], or [14]). Many of the forbidden subgraphs

classifying G3(F2) that are found in [8] are also forbidden subgraphs for G3(F ) for any

field F . These results and others demonstrate that results obtained over finite fields

can provide important insights for other fields.

The presentation of material in this paper is oriented towards a reader that is

familiar with concepts from linear algebra and graph theory. In the rest of this section,

we will review some of our conventions in terminology from graph theory.

In this paper, graphs are undirected, may have loops, but will not have multiple

edges between vertices. To simplify our drawings, a vertex with a loop (a looped

vertex ) will be filled (black) and a vertex without a loop (a nonlooped vertex ) will

be empty (white). A simple graph is a graph without loops. Let G be a graph with

some loops and Ĝ be the simple version of G obtained by deleting all loops. We say

that a matrix in S(F, Ĝ) corresponds to the simple graph Ĝ. A matrix A ∈ S(F, Ĝ)

corresponds to G if aii is nonzero exactly when the vertex i has a loop in G. Note

that if a matrix corresponds to a looped graph, then it also corresponds to the simple

version of the graph.

We recall some notation from graph theory.

Definition 1.1. Given two graphs G and H with disjoint vertex sets V (G) and

V (H) and edge sets E(G) and E(H), the union of G and H , denoted G ∪ H , has
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v1 v2 v3 v4

(a) G (b)H, a blowup of G

Fig. 1.2: Graphs in Example 1.5

vertices V (G)∪V (H) and edges E(G)∪E(H). The join of G and H , denoted G∨H ,

has vertices V (G)∪V (H) and edges E(G)∪E(H)∪{uv | u ∈ V (G), v ∈ V (H)}. The
complement of the graph G, denoted Gc, has vertices V (G) and edges {uv | u, v ∈
V (G), uv 6∈ E(G)}. Note that a vertex is looped in G if and only if it is nonlooped

in Gc.

Definition 1.2. The simple complete graph on n vertices will be denoted by

Kn and has vertices {1, 2, . . . , n} and edges {xy | x, y ∈ V (Kn), x 6= y}. The simple

complete multipartite graph Ks1,s2,...,sm is defined as Kc
s1 ∨Kc

s2 ∨ · · · ∨Kc
sm .

Definition 1.3. Two vertices in a graph are adjacent if an edge connects them.

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a

graph is a set of pairwise nonadjacent vertices.

The next definition extends a standard definition introduced in [28] and is used

in random graph theory in connection with the regularity lemma.

Definition 1.4. A blowup of a graph G with vertices {v1, v2, . . . , vn} is a new

simple graph H constructed by replacing each nonlooped vertex vi in G with a (pos-

sibly empty) independent set Vi, each looped vertex vi with a (possibly empty) clique

Vi, and each edge vivj in G (i 6= j) with the edges {xy | x ∈ Vi, y ∈ Vj} in H .

Example 1.5. Let G be the graph labeled in Figure 1.2(a).

Let |V1| = 3, |V2| = 1, |V3| = 2, and |V4| = 0. Then we obtain the simple blowup

graph H in Figure 1.2(b). It is useful to see how matrices corresponding to a graph

and a blowup of the graph are related. Over F3, let

M =











0 2 0 0

2 1 1 0

0 1 1 1

0 0 1 1











and N =



















0 0 0 1 0 0

0 0 0 2 0 0

0 0 0 1 0 0

1 2 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 2



















.
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(a) (b)

Fig. 2.1: Graphs in Theorem 2.2

Then M is an example of a matrix corresponding to G and N is an example of a

matrix corresponding to H . Note that, for example, the entry m11 was replaced with

a 3 × 3 zero block in N , the entry m12 was replaced with a 3 × 1 nonzero block in

N , the entries in the last row and column of M were replaced with empty blocks

(i.e., erased), and the diagonal entries of N were changed to whatever was desired.

These substitutions of block matrices correspond to the vertex substitutions used to

construct H .

We will introduce our method by presenting a proof of a special case of a charac-

terization theorem from [10] which characterizes G2(F2). We will then generalize this

proof into a characterization of all simple graphs in Gk(Fq) for any k and q. After

giving examples for some specific k and q, we will describe the strong connection to

projective geometry and list some consequences of this connection.

2. A new approach to a recent result. We will introduce our method by

giving a proof of a special case of Theorems 5 and 6 of [10].

Theorem 2.1 ([10]). Let G be a simple graph on n vertices. Then mr(F2, G) ≤ 2

if and only if the simple version of Gc is either of the form

(Ks1 ∪Kp1,q1) ∨Kr

for some appropriate nonnegative integers s1, p1, q1, and r, or of the form

(Ks1 ∪Ks2 ∪Ks3) ∨Kr

for some appropriate nonnegative integers s1, s2, s3, and r.

We first rephrase Theorem 2.1 using blowup graph terminology.

Theorem 2.2 ([10]). Let G be a simple graph on n vertices. Then mr(F2, G) ≤ 2

(i.e., G ∈ G2(F2)) if and only if G is a blowup of either of the graphs in Figure 2.1.

In the proof of this result, we will need the following lemma and corollary, which

hold in any field. We will then give a proof of Theorem 2.2.
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Lemma 2.3 ([15, Theorem 8.9.1]). Let A be an n×n symmetric matrix of rank k.

Then there is an invertible principal k × k submatrix B of A and a k × n matrix U

such that

A = U tBU.

Corollary 2.4. Let A be an n × n symmetric matrix. Then rankA ≤ k if

and only if there is some invertible k × k matrix B and k × n matrix U such that

A = U tBU .

Proof. Let A have rank r ≤ k. Then by Lemma 2.3, there is an invertible r × r

matrix B1 and an r × n matrix U1 such that A = U t
1B1U1. Let B2 =

[

B1 O

O Ik−r

]

and U2 =

[

U1

O

]

(where O represents a zero matrix of the appropriate size). Then

A = U t
2B2U2. The reverse implication follows from the rank inequality rank(U tBU) ≤

rankB.

Recall that two square matrices A and B are congruent if there exists some invert-

ible matrix C such thatA = CtBC. It is straightforward to show that congruence is an

equivalence relation. Let B consist of one representative from each congruence equiva-

lence class of invertible symmetric k×k matrices. By Corollary 2.4, if A is a symmetric

n× n matrix with rankA ≤ k, then A ∈ {U tBU | B ∈ B, U a k × n matrix}.

We now proceed with the proof of Theorem 2.2.

Proof. [Proof of Theorem 2.2] First, we compute a suitable B, a set of represen-

tatives from the congruence classes of invertible symmetric 2× 2 matrices over F2. If

an invertible symmetric 2 × 2 matrix B over F2 has a nonzero diagonal entry, then

B =

[

1 1

1 0

]

, B =

[

0 1

1 1

]

, or B = I2. In any of these three cases, BtBB = I2, so

B is congruent to the identity matrix I2. If an invertible symmetric 2 × 2 matrix B

over F2 has all zeros on the diagonal, then the off-diagonal entries must be nonzero,

so B =

[

0 1

1 0

]

. In this case,

[

a c

b d

] [

0 1

1 0

] [

a b

c d

]

=

[

ac+ ac ad+ bc

ad+ bc bd+ bd

]

=

[

0 ad+ bc

ad+ bc 0

]

,

so any matrix congruent to B will have a zero diagonal. Therefore, a suitable B is

B =

{

I2,

[

0 1

1 0

]}

.
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Because U is a matrix with entries in F2, the columns of U are members of the

finite set
{[

1

0

]

,

[

0

1

]

,

[

1

1

]

,

[

0

0

]}

.

Let A be a symmetric k× k matrix. For any n×n permutation matrix P , the graphs

of A and P tAP are isomorphic. Therefore we may assume that identical columns of

U are contiguous and write U =
[

E1 E2 J O
]

where E1 is 2 × p matrix with

each column equal to

[

1

0

]

, E2 is 2 × q matrix with each column equal to

[

0

1

]

, J

is a 2× r matrix with each entry equal to 1, and O is a 2× t zero matrix. Then either

A =









ET
1

ET
2

JT

OT









[

E1 E2 J O
]

=









Jp O Jp,r O

O Jq Jq,r O

Jr,p Jr,q Or O

O O O Ot









or else

A =









ET
1

ET
2

JT

OT









[

0 1

1 0

]

[

E1 E2 J O
]

=









Op Jp,q Jp,r O

Jq,p Oq Jq,r O

Jr,p Jr,q Or O

O O O Ot









,

where J is an all-ones matrix, O is a zero matrix, and subscripts of J and O denote

the dimensions of the matrix.

Any simple graph corresponding to the first matrix is a blowup of the graph in

Figure 2.1(a), while any simple graph corresponding to the second matrix is a blowup

of the graph in Figure 2.1(b). Thus we have established Theorem 2.2.

Observation 2.5. Note that every block in the above matrices is either a O

matrix or a J matrix. Consequently, we could have obtained the zero/nonzero form

of the matrices with rank at most 2 by only considering U =

[

1 0 1 0

0 1 1 0

]

and

computing

A = U tU =









1 0 1 0

0 1 1 0

1 1 0 0

0 0 0 0









and

A = U tB2U =









1 0

0 1

1 1

0 0









[

0 1 1 0

1 0 1 0

]

=









0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0









.
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The nonzero diagonal entries correspond to loops in our graphs. This simplified

procedure again yields the graphs in Figure 2.1.

In the proof of Theorem 2.2, we noted that any U could be written in a standard

form. In Observation 2.5, we saw how the standard form of U could be simplified to

take advantage of the theorem being about blowup graphs. We will now discuss the

reasoning behind these constructions and show that an analogous standard form of

U exists for any finite field and any k.

Because we construct the graphs using representatives of congruence classes, it is

important for any simplified U to have the property that if B and B̂ are congruent,

then U tBU and U tB̂U correspond to isomorphic graphs. The following lemma shows

that if we take a matrix U where the columns consist of all vectors in F
k
q , like in

Observation 2.5, and if B and B̂ are congruent, then U tBU and U tB̂U correspond

to isomorphic graphs.

Lemma 2.6. Let U be the matrix with columns {v | v ∈ F
k
q}. Let B and C be

invertible k× k matrices with B symmetric. Then the graphs corresponding to U tBU

and U t(CtBC)U are isomorphic.

Proof. Since every vector in F
k
q appears as a column of U and the mapping x 7→ Cx

is one-to-one, CU is just a column permutation of U . This permutation induces a

relabeling of the graph U tBU to give the graph of (CU)tB(CU) = U t(CtBC)U .

Though this invariance property with respect to congruent matrices does not hold

for an arbitrary U , there is another smaller U which does have the same property.

We first need some preliminary material. Then we will introduce this new U in

Lemma 2.9.

Definition 2.7. Let F be a field. Two nonzero vectors v1, v2 ∈ F k are projec-

tively equivalent if there exists some nonzero c ∈ F such that v1 = cv2.

It is easy to check that projective equivalence is in fact an equivalence relation

on the vectors in V .

We pause to note that replacing a column of U with a projectively equivalent

column does not affect the graph corresponding to U tBU . To see this, let U =

[u1 u2 · · · un] and let i ∈ {1, 2, . . . , n}. Let Û be the matrix obtained from U by

replacing the column ui with cui for some nonzero c ∈ F . Then the i, j entry of

Û tBÛ , (cui)
tBuj if i 6= j or (cui)

tB(cui) if i = j, is zero if and only if the i, j entry of

U tBU , ut
iBuj, is zero. Thus the graphs associated with U tBU and Û tBÛ are equal.

Lemma 2.8. Let F be any field, let x ∈ F k, let x̄ denote the projective equivalence

class of x, and let P = ∪x∈Fk−~0{x̄}, the set of projective equivalence classes in F k.

Let C be an invertible matrix. Then the map f :P → P defined by f : x̄ 7→ Cx is a
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bijection.

Proof. The function f is well-defined since if Cx = y, then for any nonzero k ∈ F ,

C(kx) = kCx = ky = ȳ. If Cx1 = Cx2, then for some nonzero k ∈ F , kCx1 = Cx2,

which implies C(kx1 − x2) = 0, giving kx1 = x2 since C is invertible. Therefore

x1 = x2 and f is injective. Surjectivity of f also follows from the hypothesis that C

is invertible.

Lemma 2.9. Let x1, x2, . . . , xm be the projective equivalence classes of Fk
q − ~0,

with each xi as a chosen representative from its class. Let U = [x1 x2 · · · xm], the

matrix with column vectors x1, x2, . . . , xm. Let B and C be invertible k × k matrices

with B symmetric. Then the graphs corresponding to U tBU and U t(CtBC)U are

isomorphic.

Proof. Let T = CU . Denote the ith column of U by ui and the ith column of

T by ti. By Lemma 2.8, the sequence of projective equivalence classes t1, t2, . . . , tn is

just a permutation of the sequence u1, u2, . . . , un. Form the matrix S in which the ith

column, si, is uj if ti = uj, so that S is a column permutation of U and si = ti. Then

the graph corresponding to U t(CtBC)U = (CU)tB(CU) = T tBT is isomorphic to

the graph corresponding to StBS by the reasoning preceding Lemma 2.8, which is in

turn just a relabeling of the graph corresponding to U tBU .

We now find a standard form for any matrix U , as in our proof of Theorem 2.2.

Let U be a k × n matrix over Fq and let B be an invertible symmetric k × k matrix

over Fq. Let x1, x2, . . . , xm be the projective equivalence classes of Fk
q − ~0, with each

xi as a chosen representative from its class. For each nonzero column ui of U , replace

ui with the chosen representative of ui. Then permute the columns of U so that the

matrix is of the form Û = [X1 X2 · · · Xm O], where each Xi is a block matrix of

columns equal to xi and O is a zero block matrix. Note that some of these blocks

may be empty. Let G be the simple graph corresponding to U tBU and let Ĝ be the

simple graph corresponding to Û tBÛ . From our results above, G is isomorphic to Ĝ.

As illustrated in Observation 2.5, we can obtain the zero/nonzero structure of the

block matrix Û tBÛ by simply deleting all duplicate columns of Û . Deleting these du-

plicate columns of Û leaves a matrix that can be obtained from Ũ = [x1 x2 · · · xm 0]

by deleting the columns of Ũ corresponding to empty blocks of Û . Let G̃ be the

(looped) graph corresponding to Ũ tBŨ . Then Ĝ is a blowup of G̃, which implies that

G is a blowup of G̃.

Furthermore, let B be a set consisting of one representative from each congruence

class of invertible symmetric k × k matrices and let B̂ be the representative that

is congruent to B. Then from Lemma 2.9, the graphs corresponding to Ũ tBŨ and

Ũ tB̂Ũ are isomorphic.
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There is another simplification we can make. Notice that both graphs displayed

in Theorem 2.2 have an isolated nonlooped vertex. This vertex came from the zero

column vectors in U and corresponds to the fact that adding any number of isolated

vertices to a graph does not change its minimum rank. In any theorem like Theo-

rem 2.2, each graph from which we construct blowups will always have this isolated

nonlooped vertex and so will be of the form G ∪K1. Note that in constructing such

a graph G, it is enough to assume that Ũ in the above paragraphs does not have a

zero column vector.

Definition 2.10. Let x1, x2, . . . , xm be the projective equivalence classes of

F
k
q−~0, with each xi as a chosen representative from its class. Let B be a set consisting

of one representative from each congruence class of invertible symmetric k×k matrices.

Let U = [x1 x2 · · · xm], the matrix with column vectors x1, x2, . . . , xm. We define the

set of graphs gk(Fq) as the set of graphs corresponding to the matrices in {U tBU |
B ∈ B}.

We now have the following result (recall that K1 has no loop).

Theorem 2.11. A simple graph G is in Gk(Fq) if and only if G is a blowup of

some graph in {H ∪K1 | H ∈ gk(Fq)}.

Proof. Let G be a simple graph in Gk(Fq). Let A ∈ S(Fq, G) be a matrix with

rankA ≤ k. Then A = U tBU for some k×n matrix U and some invertible symmetric

k×k matrix B. Using the procedure outlined in the paragraphs following Lemma 2.9,

we see that G is a blowup of a graph G̃ corresponding to Ũ tBŨ , where Ũ and B are

defined as in the procedure. Lemma 2.9 then shows that G̃ ∈ gk(Fq).

Conversely, let G be a blowup of some graph in {H ∪K1 | H ∈ gk(Fq)} obtained

by replacing each vertex vi of H with a set of vertices Vi and K1 with any number

of vertices. Deleting isolated vertices of G does not change the minimum rank of G,

so without loss of generality, we will assume that G has no isolated vertices (which

implies that K1 was replaced with an empty set of vertices). Let x1, x2, . . . , xm be the

projective equivalence classes of Fk
q −~0, with each xi as a chosen representative from

its class. Let Ũ = [x1 x2 · · · xm] and let B be an invertible symmetric k × k matrix

such that Ũ tBŨ corresponds to the graph H . Form the matrix Û = [X1 X2 · · · Xm]

by replacing each column xi of Ũ with the block Xi, where the columns of Xi consist

of |Vi| copies of xi. Then Û tBÛ corresponds to G and rank Û tBÛ ≤ k since B has

rank k. Thus mr(Fq, G) ≤ k, so G ∈ Gk(Fq).

Now we will make this into a more explicit characterization of Gk(Fq) by finding

a suitable B for any k and any q, thus enabling us to explicitly find gk(Fq) for any k

and any q.
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3. Congruence classes of symmetric matrices over finite fields. Sym-

metric matrices represent symmetric bilinear forms and play an important role in

projective geometry. Two congruent symmetric matrices represent the same sym-

metric bilinear form with respect to different bases. Because of their fundamental

importance, congruence classes of symmetric matrices over finite fields have been

studied and characterized for a long time in projective geometry. In this section, we

have distilled the pertinent proofs of these characterizations from [1], [23], and [16]

to give a suitable B for invertible symmetric k × k matrices over Fq for any k and q.

In the next section, we will expound more on the connection between the minimum

rank problem and projective geometry.

We need the following elementary lemma.

Lemma 3.1. If a symmetric matrix B =

[

C D

Dt E

]

, where C is a square

invertible matrix, then B is congruent to

[

C O

O E′

]

, where O is a zero matrix and

E′ is a square symmetric matrix of the same order as E.

Proof. Let R = C−1D so that CR = D. Then
[

I O

−Rt I

] [

C D

Dt E

] [

I −R

O I

]

=

[

C D

−RtC +Dt −RtD + E

] [

I −R

O I

]

=

[

C −CR+D

−RtC +Dt RtCR −DtR−RtD + E

]

=

[

C O

O E −DtR

]

,

since −CR+D = O = (−CR +D)t = −RtC +Dt.

Lemma 3.2. Every symmetric matrix over Fq is congruent to a matrix of the

form diag(a1, a2, . . . , as, b1H1, b2H2, . . . , btHt), where ai, bi ∈ Fq, Hi =

[

0 1

1 0

]

,

and s and t are nonnegative integers.

Proof. If B is the zero matrix, then the result is true.

If B is not the zero matrix, then the diagonal of B has a nonzero entry or there is

some aij 6= 0, i 6= j, so that B has a principal submatrix of the form

[

0 aij
aij 0

]

=

aijH , where H =

[

0 1

1 0

]

.

In the first case, by using a suitable permutation, we may assume that b11 6= 0.

By Lemma 3.1, B is congruent to diag(b11, B
′).
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In the second case, again by using a suitable permutation, we may assume that

the upper left 2 × 2 principal submatrix is aijH . By Lemma 3.1, B is congruent to

diag(aijH,B′).

Continue this process inductively with B′. Then, again using a suitable permu-

tation, B is congruent to diag(a1, a2, . . . , as, b1H, b2H, . . . , btH).

We will now treat the even characteristic and odd characteristic cases separately.

3.1. Even characteristic. We first consider the case when Fq has even charac-

teristic. First, we need a well-known result.

Lemma 3.3. Every element in a field of characteristic 2 is a square.

Corollary 3.4. Every symmetric matrix is congruent to diag(Is, H1, H2, . . . , Ht).

Proof. By Lemma 3.2, a symmetric matrix A is congruent to a matrix

B = diag(a1, a2, . . . , as, b1H1, b2H2, . . . , btHt).

Let

C = diag(
1√
a1

,
1√
a2

, . . . ,
1√
as

,
1√
b1
I2,

1√
b2
I2, . . . ,

1√
bt
I2).

Then CtBC = diag(Is, H1, H2, . . . , Ht).

Let B be a symmetric matrix in Fq. Then according to Corollary 3.4, B is

congruent to a matrix C = diag(Is, H1, H2, . . . , Ht), where each Hi =
[

0
1
1
0

]

. Either

s = 0 or s > 0. If s > 0, then diag(Is, H1, H2, . . . , Ht), and thus B, is congruent to

Ik. To see this, let

A = diag(1, H) =





1 0 0

0 0 1

0 1 0



 and C =





1 1 1

1 0 1

0 1 1



 .

Then, since charFq = 2,

Ct(AC) =





1 1 0

1 0 1

1 1 1









1 1 1

0 1 1

1 0 1



 = I3.

If s = 0, then diag(H1, H2, . . . , Ht) and B have even order and B is congruent to

diag(H1, . . . , Hk/2).

The next lemma shows that these two cases are different.
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Lemma 3.5. If a symmetric matrix B has a zero diagonal, then every matrix

congruent to B has a zero diagonal.

Let B be a symmetric matrix having a zero diagonal. If v is the kth column of a

matrix C, then the (k, k) entry of CtBC is vtBv, which is zero, since

vtBv =
∑

i,j

bijvivj =
∑

i

biiv
2
i +

∑

i<j

bij(vivj + vivj) =
∑

i

biiv
2
i = 0.

The results in this subsection give us the following lemma.

Lemma 3.6. Let q be even. To determine gk(Fq), we may take B as follows: if

k is odd, then B = {Ik}; if k is even, then B = {Ik, diag(H1, H2, . . . , Hk/2)}, where

Hi =

[

0 1

1 0

]

.

3.2. Odd characteristic. We now consider the case when Fq has odd charac-

teristic. We first need a well-known result.

Lemma 3.7. If Fq has odd characteristic and ν ∈ Fq, then there exists c, d ∈ Fq

such that c2 + d2 = ν.

Proof. Let A = {c2 | c ∈ Fq} and B = {ν−d2 | d ∈ Fq}. Since the map σ:F×
q →

F
×
q given by σ:x 7→ x2 has kernel {1,−1}, there are (q − 1)/2 squares in Fq \ {0}.

Including zero, there are then (q+1)/2 squares in Fq. Thus |A| = |B| = (q+1)/2, so

A ∩B 6= ∅, and c2 = ν − d2 for some c, d ∈ Fq.

Since there are (q − 1)/2 nonzero squares in Fq, given a nonsquare ν ∈ Fq, the

set {νb2 | b ∈ Fq, b 6= 0} is a set of (q − 1)/2 nonsquares in Fq. Consequently, every

nonsquare is equal to νb2 for some b ∈ Fq.

The matrix aH for any a ∈ Fq is congruent to a diagonal matrix:

[

1 1

−1 1

] [

0 a

a 0

] [

1 −1

1 1

]

=

[

a a

a −a

] [

1 −1

1 1

]

=

[

2a 0

0 −2a

]

.

This fact combined with Lemma 3.2 shows that every symmetric matrix over Fq is

congruent to a diagonal matrix.

Lemma 3.8. Every invertible symmetric k × k matrix B over Fq is congruent to

either Ik or diag(Ik−1, ν), where ν is any nonsquare in Fq.

Let C be an invertible diagonal matrix congruent to B, with C = N tBN , and let

ν be any nonsquare in Fq.

By a permutation matrix P , letD = P tCP = diag(b21, b
2
2, . . . , b

2
s, νc

2
1, νc

2
2, . . . , νc

2
t ),
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where the first s elements of the diagonal of D are squares in Fq and the last t elements

are nonsquares in Fq.

LetQ = diag(b−1
1 , b−1

2 , . . . , b−1
s , c−1

1 , c−1
2 , . . . , c−1

t ). LetE = QtDQ = diag(Is, νIt).

Let c, d ∈ Fq such that c2 + d2 = ν. Let

R = ν−1

[

c d

−d c

]

.

Since detR = ν−2(c2 + d2) = ν−1 6= 0, R is invertible. Note that

Rt(νI2)R = νRtR = νν−2(c2 + d2)I2 = I2.

If t is even, let S = diag(Is, R1, R2, . . . , Rt/2), where Ri = R for each i. Then StES =

Ik. If t is odd, let S = diag(Is, R1, R2, . . . , R(t−1)/2, 1). Then StES = diag(Ik−1, ν) .

The next lemma shows that these two cases are in fact different and gives a simple

criteria to determine which congruence class any symmetric matrix is in.

Lemma 3.9. If detB is a square (nonsquare) and B̂ is congruent to B, then

det B̂ is a square (nonsquare).

Proof. Let B̂ = CtBC. Then det B̂ = (detC)2(detB). Thus detB is a square if

and only if det B̂ is a square.

Since det Ik = 1 is a square and det(diag(Ik−1, ν)) = ν is a nonsquare, we can

determine if a matrix is congruent to Ik or congruent to diag(Ik−1, ν) by whether the

determinant is a square or not.

It appears then that |B| = 2. However, we can do better in one case since we

only are concerned with whether an entry of U tBU is zero or nonzero and not with

the actual value of the entry.

Definition 3.10. Let B and B̂ be matrices. If B̂ = dCtBC for some invertible

matrix C and some nonzero constant d, then B and B̂ are projectively congruent.

Since multiplying by a nonzero constant preserves the zero/nonzero pattern in a

matrix over a field, if B and B̂ are projectively congruent, then U tBU and U tB̂U

give isomorphic graphs.

Lemma 3.11. If k is odd, then an invertible symmetric k×k matrix is projectively

congruent to Ik.

Proof. Let k = 2ℓ − 1. We can see that det(ν diag(Ik−1, ν)) = ν2ℓ−1ν = ν2ℓ is a

square. Thus diag(Ik−1, ν) is projectively congruent to Ik.

The results in this subsection give us the following lemma.
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Fig. 3.1: Graphs in Corollaries 3.14 and 3.15

Lemma 3.12. Let q be odd. To determine gk(Fq), we may take B as follows: if

k is odd, then B = {Ik}; if k is even, then B = {Ik, diag(Ik−1, ν)}, where ν is any

nonsquare in Fq.

3.3. Summary. Combining Lemmas 3.6 and 3.12, the results of this section can

be summarized as the following theorem.

Theorem 3.13. The set gk(Fq) is the set of graphs of the matrices in {U tBU |
B ∈ B}, where the columns of U are a maximal set of nonzero vectors in F

k
q such that

no vector is a multiple of another and B is given by:

1. if k is odd, B = {Ik}.
2. if k is even and charFq = 2, B = {Ik, diag(H1, H2, . . . , Hk/2)}, where Hi =
[

0 1

1 0

]

.

3. if k is even and charFq 6= 2, B = {Ik, diag(Ik−1, ν)}, where ν is any non-

square in Fq.

3.4. Examples of characterizations. As special cases of Theorem 3.13, we

present the following corollaries which calculate gk(Fq) for several k and q. In the

corollaries, we label a graph in gk(Fq) using the pattern FqRk, signifying that it is a

graph for the mr(Fq, G) ≤ k corollary. To compute these graphs, we used the software

program Sage [32] and the Sage functions listed in Appendix A.

In these theorems, recall that K1 does not have a loop.

Corollary 3.14. Let G be any simple graph. Let F2R3 be the graph in Fig-
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ure 3.1(a). Then mr(F2, G) ≤ 3 (i.e., G ∈ G3(F2)) if and only if G is a blowup graph

of F2R3 ∪K1.

As matrices over F2, let

U =





0 1 0 1 0 1 1

0 0 1 1 1 1 0

1 1 1 1 0 0 0



 and B =





1 0 0

0 1 0

0 0 1



 .

Then the graph F2R3 corresponds to the matrix

U tBU =























1 1 1 1 0 0 0

1 0 1 0 0 1 1

1 1 0 0 1 1 0

1 0 0 1 1 0 1

0 0 1 1 1 1 0

0 1 1 0 1 0 1

0 1 0 1 0 1 1























.

Similarly, straightfoward matrix calculations give the following corollaries.

Corollary 3.15. Let G be any simple graph. Let F3R3 be the graph in Fig-

ure 3.1(b). Then mr(F3, G) ≤ 3 (i.e., G ∈ G3(F3)) if and only if G is a blowup graph

of F3R3 ∪K1.

The next corollary gives the simplest previously-unknown result for which gk(Fq)

contains two graphs.

Corollary 3.16. Let G be any simple graph. Let F2R4A and F2R4B be the

graphs in Figure 3.2. Then mr(F2, G) ≤ 4 (i.e., G ∈ G4(F2)) if and only if G is a

blowup graph of either F2R4A ∪K1 or F2R4B ∪K1.

4. Connection to projective geometry. As mentioned previously, the clas-

sifications of symmetric matrices in Section 3 are standard classification results in

projective geometry. In this section, we first review appropriate terminology and

highlight this connection to projective geometry. We will define slightly more ter-

minology than is strictly necessary to help the reader see where these things fit into

standard projective geometry. We then give some examples of how results in projec-

tive geometry can help us understand gk(Fq) better. For further material, a definitive

treatise on projective geometry is contained in the series [23] and [24].

4.1. Definitions and the connection. We start with basic definitions from

projective geometry.
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Fig. 3.2: Graphs in Corollary 3.16

Definition 4.1. Let V = F
n+1
q , the vector space of dimension n + 1 over Fq.

For x, y ∈ V − ~0, we define an equivalence relation by

x ∼ y ⇐⇒ x = cy, wherec ∈ Fqandc 6= 0.

Denote the equivalence class containing x ∈ V − ~0 as x̄ = {cx | c ∈ Fqandc 6= 0}.
Geometrically, we can think of the class x̄ as the set of non-origin points on a line

passing through x and the origin in V . These equivalence classes form the projective

geometry PG(n, q) of (projective) dimension n and order q. The equivalence classes

are called the points of PG(n, q). Each subspace of dimension m+1 in V corresponds

to a subspace of (projective) dimension m in PG(n, q). If a projective geometry has

(projective) dimension 2, then it is called a projective plane.

Note that there is a shift by one in dimension between a vector space V and its

subspaces and the projective geometry associated with V and its subspaces. To help

the reader, we will use the nonstandard term projective dimension (or “pdim”) when

dealing with the dimension of a projective geometry.

Definition 4.2. Let S be the set of subspaces of PG(n, q). A correlation

σ : S → S is a bijective map such that for any subspaces R, T ∈ S, R ⊆ T implies

that σ(T ) ⊆ σ(R) and pdimσ(R) = n − 1 − pdimR. A polarity is a correlation σ of

order 2 (i.e., σ2 = 1, the identity map).

Note that any polarity σ maps points in S to hyperplanes (subspaces of projective

dimension n− 1 in S) and hyperplanes to points. Since σ2 = 1, we have Y = σ(x̄) if

and only if σ(Y ) = x̄, so σ induces a bijection between points and hyperplanes. This

bijection leads to the next definition.
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Definition 4.3. Let σ be a polarity on PG(n, q). Let x̄, ȳ be points in PG(n, q).

We say that σ(x̄) is the polar (hyperplane) of x̄ and x̄ is the pole of σ(x̄). If ȳ ∈ σ(x̄),

then x̄ ∈ σ(ȳ) and we say that x̄ and ȳ are conjugate points. If x̄ ∈ σ(x̄), then we say

that x̄ is self-conjugate or absolute. Similarly, if S is a subspace of PG(n, q), then S

is absolute if σ(S) ⊆ S or S ⊆ σ(S). A subspace of PG(n, q) consisting of absolute

points is called isotropic.

The next definition gives the connection with symmetric matrices.

Definition 4.4. Let B be an (n+1)× (n+1) invertible symmetric matrix over

Fq. Define σ : S → S by σ : R 7→ R⊥, where the orthogonality relation is defined by

the nondegenerate symmetric bilinear form represented by B (i.e., R⊥ = {ȳ | xtBy =

0forallx̄ ∈ R}). We call σ the polarity associated with B.

The fact that the σ in the previous definition is a polarity is easy to check.

LetM1 andM2 be symmetric matrices. Let σ1 and σ2 be the associated polarities,

respectively. Two polarities are equivalent if the matrices are projectively congruent,

i.e., σ1 is equivalent to σ2 if M1 = dCtM2C for some nonzero d and invertible matrix

C. Thus there is a unique polarity associated with each matrix given in Theorem 3.13.

We now summarize from [23, Section 2.1.5] the classification of polarities that are

associated with symmetric matrices. Let B be an invertible symmetric matrix over

Fq. Let σ be the polarity associated with B.

• If q is odd, then σ is called an ordinary polarity.

If B has even order, then the associated polarity is either a hyperbolic polarity

or an elliptic polarity. The correspondence between these types of polarities

and the matrices in B from Theorem 3.13(3) is slightly nontrivial and is

summarized in [23, Corollary 5.19].

If B has odd order, then σ is a parabolic polarity, which corresponds to B in

Theorem 3.13(1).

• If q is even and bii = 0 for all i, then σ is a null polarity (or in alternate

terminology, σ is a symplectic polarity). Note that this only occurs when B

has even order since otherwise B is not invertible. This case corresponds to

the non-identity matrix in the B in Theorem 3.13(2).

• If q is even and there is some bii 6= 0, then σ is a pseudo-polarity. This case

corresponds to the identity matrix in B in Theorem 3.13(1) or (2).

We pause to note that there are polarities that are not associated with symmet-

ric matrices. However, since we are only concerned about symmetric matrices, we

will restrict ourselves to this case. Information about polarities not associated with

symmetric matrices may also be found in [23].
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We now examine the connection to graphs by recalling the definition of a polarity

graph.

Definition 4.5. Let B be an invertible symmetric (n+1)× (n+1) matrix over

Fq and let σ be the associated polarity. The polarity graph of σ has as its vertices

the points of PG(n, q) and as its edges {x̄ȳ | xtBy = 0}. In a polarity graph, x̄

is adjacent to ȳ exactly when x̄ and ȳ are conjugate (i.e., x and y are orthogonal

with respect to B). In standard literature, loops are not allowed in polarity graphs.

However, for our purposes, loops convey needed information, so a vertex x̄ in a polarity

graph has a loop if and only if x̄ is absolute (i.e., xtBx = 0, where B is an invertible

symmetric matrix associated with the polarity).

In Theorem 3.13, the vertices of a graph in gk(Fq) represent the points of the

projective geometry PG(k − 1, q) and an edge is drawn if the corresponding points

are not conjugate (i.e., xtBy 6= 0). Thus, the graphs in Theorem 3.13 are exactly

the complements of polarity graphs. Recall that when dealing with looped graphs, a

vertex is looped in the complement of a graph if and only if it is nonlooped in the

original graph.

Using this connection, we can restate Theorem 3.13:

Theorem 4.6. The set gk(Fq) is the set of complements of the (looped) polarity

graphs of the polarities on PG(k− 1, q) that are associated with symmetric matrices.

4.2. Consequences of the connection. With the main theorem stated as

in Theorem 4.6, we can use a variety of known results about polarity graphs to

derive results about graphs in gk(Fq). In this section, we list a few consequences of

Theorem 4.6.

An elementary result in projective geometry gives us the size of the graphs in

gk(Fq). While this result could have been realized from the statement in Theo-

rem 3.13, it also naturally follows as a consequence of Theorem 4.6.

Theorem 4.7. Every graph in gk(Fq) has
qk−1
q−1 vertices.

Proof. There are qk − 1 vectors in F
k
q −~0. Since there are q− 1 nonzero constants

in Fq, there are q − 1 elements in each equivalence class in PG(k − 1, q), so there are
qk−1
q−1 points in PG(k − 1, q).

The following observation follows directly from Theorem 4.6 and restates the

criteria for an edge in a graph in gk(Fq) in several ways.

Observation 4.8. Let G ∈ gk(Fq) and let u and v be (not necessarily distinct)

vertices in G. Let σ be the polarity corresponding to G and let B be an invertible

symmetric matrix corresponding to σ. Then uv is an edge in G if and only if:
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1. utBv 6= 0 (equivalently, vtBu 6= 0), or equivalently,

2. u and v are not conjugate points, or equivalently,

3. u 6∈ σ(v) (equivalently, v 6∈ σ(u)).

Corollary 4.9. A graph G ∈ gk(Fq) is regular of degree qk−1 (using the con-

vention that a loop adds one to the degree of a vertex). Let v ∈ G and let σ be the

polarity associated with G. Since the hyperplane σ(v) contains qk−1
−1

q−1 points, this is

the degree of a v in the complement of G. Thus the degree of v in G is

qk − 1

q − 1
− qk−1 − 1

q − 1
= qk−1.

In light of Observation 4.8, determining the numbers of looped and nonlooped

vertices in G is equivalent to finding the numbers of absolute points of the polarities

of PG(k − 1, q).

Theorem 4.10. Let Fq be a finite field having characteristic 2. One graph in

gk(Fq) will have
qk−1

−1
q−1 nonlooped vertices. If k is even, then the additional graph in

gk(Fq) will have all nonlooped vertices.

Proof. In a field of characteristic 2, since

xtBx =
∑

i,j

bijxixj =
∑

i

biix
2
i +

∑

i<j

bij(xixj + xixj) =
∑

i

biix
2
i =

(

∑

i

√

biixi

)2

,

a point x̄ is absolute if and only if
∑

i

√
biixi = 0.

In a pseudo-polarity, the set of absolute points is the hyperplane
∑

i

√
biixi = 0.

Since a hyperplane of PG(k − 1, q) is a projective geometry of projective dimension

k − 2, there are qk−1
−1

q−1 nonlooped vertices in this graph.

In a null polarity, bii = 0 for all i. Therefore every vertex is nonlooped (i.e., there

are qk−1
q−1 nonlooped vertices). A null polarity occurs when k is even.

For the odd characteristic case, we will directly apply a standard result in pro-

jective geometry about the number of absolute points in ordinary polarities.

Theorem 4.11 ([24, Theorem 22.5.1(b)]). Let q be odd. Then the number of

absolute points in a polarity in PG(k − 1, q) is given by:

• (qm−1)(qm−1+1)
q−1 or (qm+1)(qm−1

−1)
q−1 if k = 2m is even;

• q2m−1
q−1 if k = 2m+ 1 is odd.

Corollary 4.12. Let q be odd. If k = 2m is even, then the two graphs in

gk(Fq) will have (qm−1)(qm−1+1)
q−1 and (qm+1)(qm−1

−1)
q−1 nonlooped vertices, respectively.

If k = 2m+ 1 is odd, then the graph in gk(Fq) will have
q2m−1
q−1 nonlooped vertices.
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We conclude by applying a few standard results for polarities over PG(2, q) (a

projective plane) to give results about g3(Fq) and the minimum rank problem. We

note that the polarity graphs of PG(2, q) for any q are the Erdős-Rényi graphs from

extremal graph theory (see [19], [20], or [12]). For a survey of interesting properties

of the Erdős-Rényi graphs and their subgraphs, see [30] or [34, Chapter 3].

Theorem 4.13. If G ∈ g3(Fq), then the nonlooped vertices in G form a clique.

Proof. Suppose that u and v are distinct nonadjacent nonlooped vertices in G.

Then u and v are absolute vertices and u ∈ σ(u) ∩ σ(v) and v ∈ σ(u) ∩ σ(v). This is

a contradiction since the intersection of any two distinct lines in PG(2, q) is a single

point.

If G ∈ g3(Fq), the formulas in Theorem 4.10 and Corollary 4.12 imply that G has

q + 1 nonlooped vertices. This combined with Corollary 4.9 and Theorem 4.13 gives

the following corollary.

Corollary 4.14. If G ∈ g3(Fq), then each nonlooped vertex is adjacent to q

nonlooped vertices and q2 − q looped vertices.

Theorem 4.13 also gives us the following theorem.

Theorem 4.15. Let G = Ks1,s2,...,sn , a simple complete multipartite graph. If

q ≥ n− 1, then mr(Fq, G) ≤ 3.

Proof. Let G = Ks1,s2,...,sn . Then G is a blowup graph of Kn, where each vertex

of Kn is nonlooped. Since the graph in g3(Fq) contains a clique of q + 1 nonlooped

vertices, if q + 1 ≥ n, then G is a blowup graph of the graph in g3(Fq).

We can now construct an interesting family of simple graphs.

Theorem 4.16. For every integer n ≥ 1, let Gn be a simple complete multipartite

graph H1 ∨ H2 ∨ · · · ∨ Hn where each Hi is an independent set with si > (n − 1)2

vertices. We then have mr(Fq, Gn) ≤ 3 if and only if q ≥ n− 1.

Proof. If q ≥ n− 1, then mr(Fq, Gn) ≤ 3 by Theorem 4.15.

Conversely, let q < n− 1. Let I be the graph in g3(Fq) and let I1 and I2 be the

subgraphs of I induced by the looped and nonlooped vertices of I, respectively. Since

I1 has q2 vertices, any blowup of I1 containing more than q2 vertices will contain an

edge by the pigeon-hole principle. Since the vertices in each Hi form an independent

set of size si > (n − 1)2 > q2, at least one vertex in each Hi must be a blowup of a

vertex in I2. Furthermore, since the vertices of each Hi have the same neighbors, we

can assume without loss of generality that all of the vertices of each Hi are blowups

of vertices of I1. Thus Gn is a blowup of I2. However, any blowup of I2 will be of

the form Kt1,t2,...,tq+1
since I has q+1 nonlooped vertices, but Gn is not of this form
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since q + 1 < n.

5. Conclusion. We have suceeded in classifying the structure of graphs in Gk(Fq)

for any k and any q. We have also shown how this classification relates to projective

geometry. We have applied a few results of projective geometry to give results in the

minimum rank problem.

We conclude with a short list of open questions and topics for further investiga-

tion. First, there are many results about polarity graphs that could potentially yield

results for the minimum rank problem. What other facts from projective geometry

can be applied to give results in the minimum rank problem over finite fields?

The structural characterization in this paper gives rise to a theoretical procedure

for determining the minimum rank of any graph over a finite field. How can this

procedure be efficiently implemented? How can the results of Ding and Kotlov [18]

be combined with the classification in this paper to yield results on minimal forbidden

subgraphs describing Gk(Fq)? The author has implemented such an algorithm and has

some preliminary results on the numbers of forbidden subgraphs describing Gk(Fq)

for different values of k and q.

Finally, there is still ongoing research investigating the structure of polarity

graphs. For example, Jason Williford [34], Michael Newman, and Chris Godsil [21]

have recently investigated the sizes of independent sets in polarity graphs. Are there

results in the minimum rank problem that would aid in answering questions about

the structure of polarity graphs?
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Appendix A. Sage code to generate graphs.

# This code i s w r i t t en f o r Sage 2 . 8 . 1 5 .

# See h t t p ://www. sagemath . org /

def b i l i n e a r f o rms (F ,mr ) :

5 # Construct a matrix space f o r our b i l i n e a r forms

MSpace = MatrixSpace (F ,mr)

# The i d e n t i t y matrix i s always

# a congruence c l a s s r e p r e s e n t a t i v e

forms = [MSpace . i d en t i t y ma t r i x ( ) ]

10 # Add the ex t ra matr ices in the even rank cases

i f (mod(mr,2)==0): # even rank

i f (F . c h a r a c t e r i s t i c ()==2): # ch a r a c t e r i s t i c 2

# Add diag(H1, H2, . . . , Hmr/2)

hype rbo l i c = matrix (F , [ [ 0 , 1 ] , [ 1 , 0 ] ] )

15 hype rbo l i c f o rm = matrix (F , [ ] )

for i in ( 1 . . I n t e g e r (mr / 2 ) ) :

hype rbo l i c f o rm = hyperbo l i c f o rm \
. block sum ( hype rbo l i c )

forms . append ( hype rbo l i c f o rm )

20 else : # odd c h a r a c t e r i s t i c

# Add diag(In−1, ν) , where ν i s a non−square

non ident i ty fo rm = MSpace . i d en t i t y ma t r i x ( )

# Find a non−square

for nu in F:

25 i f not nu . i s s q u a r e ( ) :
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break

i f nu . i s s q u a r e ( ) :

raise NotImplementedError , \
”Cannot f i nd a non−square in f i e l d . ”

30 non ident i ty fo rm [mr−1, mr−1] = nu

forms . append ( non ident i ty fo rm )

return forms

def g e t ma t r i c e s (F ,mr ) :

35 # U has one vec t or f o r every e qu i v a l en c e c l a s s

# in PG(mr − 1, q)

U = matrix (F , [ l i s t ( v )

for v in Pro j e c t i v eSpace (mr−1,F ) ] ) \
. t r anspo s e ( )

40 B = b i l i n e a r f o rms (F ,mr)

return U, B

def ge t g raphs (F,mr ) :

U, B = ge t ma t r i c e s (F ,mr)

45 produc t matr i c e s = [U. t r anspo s e ( )∗b∗U for b in B]

graphs = [ Graph(m) for m in produc t matr i c e s ]

for i in range ( l en ( graphs ) ) :

graphs [ i ] . l o ops ( true ) ;

graphs [ i ] . add edges ( [ [ j , j ] for j

50 in range ( l en ( graphs [ i ] ) ) \
i f produc t matr i c e s [ i ] [ j , j ]

!= 0 ] )

return graphs

55 def show graphs (F,mr ) :

for g in ge t g raphs (F ,mr ) :

# Ver t i ce s wi th l oops are b lack , o t her s are whi t e

v co l o r s={ ’ b lack ’ : g . l o o p v e r t i c e s ( ) ,\
’ white ’ : [ i for i in g . v e r t i c e s ( )

60 i f i not in g . l o o p v e r t i c e s ( ) ] }
g . show( layout=’ c i r c u l a r ’ , v e r t e x c o l o r s=vco lo r s , \

v e r t e x l a b e l s=f a l s e )

# To r e t r i e v e the matr ices f o r graphs in g3(F2) :

65 U, B = ge t ma t r i c e s (F=F in i t eF i e l d ( 2 ) , mr=3)
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# To r e t r i e v e the graphs in g3(F2) :

g r a p h l i s t = ge t g raphs (F=F in i t eF i e l d ( 2 ) , mr=3)

70 # To d i s p l a y the graphs wi th v e r t i c e s co lored app rop r i a t e l y :

show graphs (F=F in i t eF i e l d ( 2 ) , mr=3)
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