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Abstract. Let G be a simple connected graph with m edges, and the line graph of G with

degree sequence t1 ≥ t2 ≥ · · · ≥ tn. This paper presents a new upper bound for the Laplacian

spectral radius of G as follows:

µ1(G) ≤ min
1≤i≤m

{

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

}

.
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1. Introduction. Let G = (V (G), E(G)) be a simple undirected graph with n

vertices, m edges and degree sequence d1, d2, . . . , dn, where di = d(vi), the degree of

vi, is the number of edges incident with vi, for vi ∈ V (G). Let A(G) be the adjacency

matrix of G and D(G) be the diagonal matrix of vertex degrees. Then the Laplacian

matrix of G is L(G) = D(G) − A(G).

Let G∗ be the line graph of G, and denote by B(G) the adjacency matrix of G∗.

It is easy to see that B(G) is a real symmetric matrix, so its eigenvalues are real

numbers. Note that the edges of G are the vertices of G∗. If el = vivj ∈ E(G), then

the degree of el in G∗ is di + dj − 2, i.e., the row sum of B(G) corresponding to el.

Denote the ith row sum of B(G) by ti (1 ≤ i ≤ m). Without loss of generality, we

assume t1 ≥ t2 ≥ · · · ≥ tm.

Note that L(G) is positive semidefinite, symmetric and singular. Without loss of

generality, we assume that µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0 are the

eigenvalues of L(G). The eigenvalues of the L(G), especially the largest and the second

smallest eigenvalues, are important in graph theory, because they have relations to

numerous graph invariants including the connectivity, expandability, isoperimetric

number, maximum cut, genus, diameter and bandwidth-type parameters of a graph

(see, for example, [1, 4, 7] and the references therein).
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The largest eigenvalue of L(G) is called the Laplacian spectral radius of G. In

many applications, one needs good bounds for the Laplacian spectral radius µ1(G).

The following are some known upper bounds for µ1(G).

1. (Anderson and Morley [2]):

µ1(G) ≤ 2 + t1,(1.1)

where equality holds if and only if G is a regular or semiregular bipartite graph.

2. (Li and Zhang [6, 9]):

µ1(G) ≤ 2 +
√

t1t2,(1.2)

where equality holds if and only if G is a regular bipartite graph or semiregular

bipartite graph or the path with four vertices.

3. (Das [5, 12]):

µ1(G) ≤ max{ |N(vi) ∪ N(vj)| : 1 ≤ i < j ≤ n, vivj ∈ E(G)},(1.3)

and equality holds if and only if G ∼= F+, where F+ is the supergraph of a semiregular

graph F = (U,W ;E(F )) with the following property: if uv ∈ E(F+), then either

uv ∈ E(F ) or u, v ∈ U (resp. W ) with NW (u) = NW (v) (resp. NU (u) = NU (v)).

It is easy to see that the upper bounds (1.2) and (1.3) are both the improvements

of bound (1.1). But bounds in (1.2) and (1.3) are incomparable (see [10]). In the

paper, we give a new upper bound of the Laplacian spectral radius of G as follows:

µ1(G) ≤ min
1≤i≤m

{

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

}

,

which is better than the bound (1.2) in many cases, and is incomparable with the

bound (1.3).

2. Lemmas and results. We first give some lemmas that will be used in our

proof.

For a matrix M , we denote its largest eigenvalue by λ1(M). It is easy to see that

for a graph G, µ1(G) = λ1(L(G)).

Lemma 2.1. [8] Let A be a nonnegative irreducible n × n matrix with largest

eigenvalue λ1(A) and row sums s1, s2, . . . , sn. Then

min
1≤i≤n

si ≤ λ1(A) ≤ max
1≤i≤n

si.

Moreover, each of the equalities holds if and only if the row sums of A are all equal.
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Lemma 2.2. [13] Let G be a connected graph. Then

µ1(G) ≤ 2 + λ1(B(G)),

and equality holds if and only if G is a bipartite graph.

From Lemma 2.1 and Lemma 2.2, we can obtain the following upper bound of

µ1(G).

Lemma 2.3. [2] Let G be a connected graph. Then

µ1(G) ≤ 2 + t1.

Let G = (V (G), E(G)) be a graph. A subset S of V (G) is called an independent

set of G if there are no two vertices of S are adjacent in G. An independent set is

maximum if G has no independent set S′ with |S′| > |S|. The number of vertices

in a maximum independent set of G is called the independence number of G and

is denoted by α(G). A subset K of V (G) is a called a covering of G if every edge

of G has at least one end in K. A covering K is a minimum covering if G has no

covering K ′ with |K ′| < |K|. The number of vertices in a minimum covering of G is

the covering number of G and is denoted by β(G).

Lemma 2.4. [3] Let G be a graph with n vertices. Then

α(G) + β(G) = n.

Lemma 2.5. Let P
k,k
2 (k ≥ 1) be the graph as shown in Fig. 1. Then

µ1(P
k,k
2 ) =

k + 3 +
√

(k + 1)2 + 4k

2
.
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Proof. From equality (S6) in [11], we have the characteristic polynomial of L(P k,k
2 )

is

x(x − 1)2k−2[x3 − (2k + 4)x2 + (k2 + 4k + 5)x − 2k − 2].

Solving the equation x3 − (2k + 4)x2 + (k2 + 4k + 5)x − 2k − 2 = 0, yields

x = 1 + k or x =
k + 3 +

√

(k + 1)2 + 4k

2
or

k + 3 −
√

(k + 1)2 + 4k

2
.
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Note that µ1(P
k,k
2 ) is the largest root of the characteristic polynomial of L(P k,k

2 ) and

k + 3 +
√

(k + 1)2 + 4k

2
≥ k + 2.

It is easy to see that

µ1(P
k,k
2 ) =

k + 3 +
√

(k + 1)2 + 4k

2
.

Now we begin to show our main results.

Theorem 2.6. Let G be a connected graph. Then

µ1(G) ≤ ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2
,(2.1)

where 1 ≤ i ≤ m. When i = 1, the equality holds if and only if G is a regular or

semiregular bipartite graph. When 2 ≤ i ≤ m, the equality holds if and only if i = 2

and G ∼= P
k,k
2 (as shown in Fig. 1).

Proof. If i = 1 or ti = t1, then the inequality (2.1) is

µ1(G) ≤ 2 + t1.

By Lemma 2.3, it is true and the equality holds if and only if G is a regular or

semiregular bipartite graph.

Now suppose that 2 ≤ i ≤ m and t1 ≥ · · · ≥ ti−1 > ti ≥ · · · ≥ tm.

Let B = (bij)m×m be the adjacency matrix of the line graph of G. We can write

B as

(

B11 B12

B21 B22

)

,

where B11 is an (i− 1)× (i− 1) matrix and B22 is a (m− i + 1)× (m− i + 1) matrix.

Let

U =

(

xIi−1 0

0 Im−i+1

)

,

where x > 1, Ii−1 is an (i−1)×(i−1) unit matrix and Im−i+1 is a (m−i+1)×(m−i+1)

unit matrix. Then

B′ = U−1BU =

(

B11
1
x
B12

xB21 B22

)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 730-738, November 2010

http://math.technion.ac.il/iic/ela



ELA

734 Aimei Yu

and B are similar matrices and so they have the same eigenvalues. In particular,

λ1(B) = λ1(B
′). Let sj(B

′) (1 ≤ j ≤ m) be the row sum of B′, respectively. Then

we have the following results.

For 1 ≤ l ≤ i − 1,

sl(B
′) =

i−1
∑

j=1

blj +
1

x

m
∑

j=i

blj =
1

x

m
∑

j=1

blj + (1 − 1

x
)

i−1
∑

j=1

blj

=
1

x
tl + (1 − 1

x
)

i−1
∑

j=1

blj .

For i ≤ k ≤ m,

sk(B′) = x

i−1
∑

j=1

bkj +

m
∑

j=i

bkj =

m
∑

j=1

bkj + (x − 1)

i−1
∑

j=1

bkj

= tk + (x − 1)

i−1
∑

j=1

bkj .

Since x > 1 and t1 ≥ · · · ≥ ti−1 > ti ≥ · · · ≥ tm, we have

sl(B
′) ≤ 1

x
t1 + (1 − 1

x
)(i − 2) (1 ≤ l ≤ i − 1)(2.2)

and

sk(B′) ≤ ti + (x − 1)(i − 1) (i ≤ k ≤ m).(2.3)

It is easy to see that

max
1≤j≤m

sj(B
′) ≤ max

{

1

x
t1 +

(

1 − 1

x

)

(i − 2), ti + (x − 1)(i − 1)

}

.

The solution to

1

x
t1 +

(

1 − 1

x

)

(i − 2) = ti + (x − 1)(i − 1).

is

x =
2i − 3 − ti +

√

(2i − 3 − ti)2 + 4(i − 1)(t1 − i + 2)

2(i − 1)

=
2i − 3 − ti +

√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2(i − 1)
.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 730-738, November 2010

http://math.technion.ac.il/iic/ela



ELA

A New Upper Bound for the Laplacian Spectral Radius of a Graph 735

Since i ≥ 2 and t1 > ti, we have x > 1. Hence, by Lemma 2.2, we have

µ1(G) ≤ 2 + λ1(B) = 2 + λ1(B
′)

≤ 2 + ti + (x − 1)(i − 1)

= 2 +
ti − 1 +

√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

=
ti + 3 +

√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2
.

In order for the equality to hold, each of the above inequalities must be equality.

From Lemma 2.2, G is a bipartite graph. From (2.2), we have that tl = t1 when

1 ≤ l ≤ i − 1 and blj = 1 when 1 ≤ l ≤ i − 1, 1 ≤ j ≤ i − 1, l 6= j. From (2.3),

we have that tk = ti and bkj = 1 when i ≤ k ≤ m and 1 ≤ j ≤ i − 1. Thus

bkj = 1 when 1 ≤ k ≤ m, 1 ≤ j ≤ i − 1 and k 6= j, which implies t1 = m − 1. So

m − 1 = t1 = · · · = ti−1 > ti = ti+1 = · · · = tm. Since t1 = m − 1, there must be

an edge e of G such that each edge of G is incident with the ends of e. So β(G) ≤ 2.

From Lemma 2.4, we have α(G) ≥ n − 2. Noting that G is a bipartite graph and

m − 1 = t1 = · · · = ti−1 > ti = ti+1 = · · · = tm, we have i = 2 and G ∼= P
k,k
2 (as

shown in Fig. 1), where k ≥ 1 and 2k + 2 = n.

Conversely, if G ∼= P
k,k
2 , then t1 = 2k and ti = k for 2 ≤ i ≤ m. Take i = 2, then

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2
=

k + 3 +
√

(k + 1)2 + 4k

2
= µ1(G).

Denote by ∆(G∗) and ∆′(G∗) the maximum degree and second largest degree of

G∗, respectively. Let p be the number of vertices of G∗ with the maximum degree

∆(G∗). If G∗ is a regular graph, we let ∆(G∗) = ∆′(G∗).

Corollary 2.7. Let G be a connected graph. Denote by G∗ the line graph of G,

and denote by ∆(G∗) and ∆′(G∗) the maximum degree and second largest degree of

G∗, respectively. If there are p vertices of G∗ with the maximum degree ∆(G∗), then

µ1(G) ≤ ∆′(G∗) + 3 +
√

(∆′(G∗) + 1)2 + 4p(∆(G∗) − ∆′(G∗))

2
.

Proof. The result holds from Theorem 2.6 by taking ∆(G∗) = t1, ∆′(G∗) = ti

and p = i − 1.

Remark 2.8. From Corollary 2.7, we have

µ1(G) ≤ ∆(G∗) + ∆′(G∗)

2
+ 2,
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when 4p ≤ ∆(G∗) + ∆′(G∗) + 2.

Based on Theorem 2.6, we obtain a stronger result.

Theorem 2.9. Let G be a connected graph with m edges. Then

µ1(G) ≤ min
1≤i≤m

{

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

}

.(2.4)

Remark 2.10. The bound (2.4) is incomparable with the bound (1.3). As

illustrations, we consider two connected graphs G1 and G2 as shown in Fig. 2. Note

that the degree sequences of the line graph of G1 and G2 are (7, 6, 5, 4, 4, 4, 3, 3, 2) and

(4, 4, 4, 4, 4, 3, 3, 2), respectively.
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From inequalities (1.2), (1.3) and (2.4), we get different bounds of µ1(G) shown

in the following table. It is easy to see that if G ∼= G1, the bound (2.4) is better than

the bound (1.3) and if G ∼= G2, the bound (1.3) is better than the bound (2.4).

(1.2) (1.3) (2.4)

G1 8.48 8 7.41

G2 6 5 6

From graphs G1 and G2, we find that the bound (2.4) is no worse than the bound

(1.2). In fact, we can show that for any connected graphs. Moreover, we can show

that the bound (2.4) is better than the bound (1.2) in many cases.

If t1 = t2, from inequality (1.2), we have µ1(G) ≤ t1 + 2. From inequality (2.4),

we have

µ1(G) ≤ min
1≤i≤m

{

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

}

≤ t1 + 3 +
√

(t1 + 1)2 + 4(1 − 1)(t1 − t1)

2
= t1 + 2.
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In this case, the bound (2.4) is no worse than the bound (1.2).

If t1 > t2, from inequality (1.2), we have µ1(G) ≤ 2 +
√

t1t2. From inequality

(2.4), we have

µ1(G) ≤ min
1≤i≤m

{

ti + 3 +
√

(ti + 1)2 + 4(i − 1)(t1 − ti)

2

}

≤ t2 + 3 +
√

(t2 + 1)2 + 4(t1 − t2)

2
.

It is not difficult to show

t2 + 3 +
√

(t2 + 1)2 + 4(t1 − t2)

2
≤ 2 +

√
t1t2.

Assume

t2 + 3 +
√

(t2 + 1)2 + 4(t1 − t2)

2
> 2 +

√
t1t2.

Then we have

√

(t2 + 1)2 + 4(t1 − t2) > 1 − t2 + 2
√

t1t2.

Note that

1 − t2 + 2
√

t1t2 > 1 − t2 + 2
√

t2t2 = 1 + t2 > 0,

we have

(t2 + 1)2 + 4(t1 − t2) > (1 − t2)
2 + 4t1t2 + 4

√
t1t2(1 − t2),

i.e.,

4
√

t1(
√

t1 −
√

t2)(1 − t2) > 0.

Note that t1 > t2 ≥ 1, and we get a contradiction. So in this case, the bound (2.4) is

also no worse than the bound (1.2). From above proof, it is not difficult to see that

the bound (2.4) is better than the bound (1.2) if t1 > t2 ≥ 2.
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