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Abstract. Short proofs are given to various characterizations of the (circum-)Euclidean squared

distance matrices. Linear preserver problems related to these matrices are discussed.
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1. Introduction. Distance geometry is concerned with the interpoint distances

of configurations of n points in metric spaces, see [2]. It is natural to organize these

interpoint distances in the form of an n× n distance matrix, so the study of distance

geometry inevitably borrows tools from matrix theory.

Distance matrices have important applications in a variety of disciplines. Dis-

tance matrices were first introduced (anonymously) by A. Cayley [3] in 1841 to derive

a necessary condition involving matrix determinants for five points to reside in Eu-

clidean space. Nearly a century after Cayley’s contribution, a characterization of

distance matrices (re)discovered by G. Young and A.S. Householder [14] was the im-

petus for (classical) multidimensional scaling [6, 11, 13]. Originally developed by

psychometricians and statisticians, multidimensional scaling is a widely used tool for

data visualization and dimension reduction. Research on multidimensional scaling

continues to exploit facts about distance matrices, e.g., [10]. Analogously, in com-

putational chemistry and structural molecular biology, the problem of determining a
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molecule’s 3-dimensional structure from information about its interatomic distances

is the problem of finding a matrix of 3-dimensional Euclidean distances that satisfies

certain constraints, as in [4].

It turns out that it is more convenient to encode the squares of the distances

between the points, and define a Euclidean (squared) distance (ESD) matrix A = (aij)

as a matrix for which there exists x1, . . . , xn ∈ R
k such that aij = ‖xi − xj‖2 for a

certain positive integer k. Let Sn denote the set of n × n symmetric matrices and

let ESD(n) denote the subset of ESD matrices. Then ESD(n) is a convex cone in Sn

with many intriguing properties.

In this paper, we study ESD matrices and circum-Euclidean (squared) distance

(CESD) matrices, i.e., A = (‖xi − xj‖2) with ‖x1‖ = · · · = ‖xn‖. In Section 2, we

provide short proofs (some new) of a number of well-known characterizations of ESD

matrices. In Section 3, we give characterizations of (CESD) matrices. In Section 4, we

characterize linear maps leaving invariant subsets of ESD(n) and CESD(n). This can

be regarded as a special instance of the general research of linear preserver problems;

see [9].

2. Characterizations. Characterizations of distance matrices are mathemati-

cally elegant, but also genuinely useful to researchers in other disciplines. In the fol-

lowing, we provide short proofs of several well-known characterizations of Euclidean

(squared) distance matrices.

It follows immediately from the definition that an ESD matrix A = (aij) with

aij = ‖xi − xj‖2, where x1, . . . , xk ∈ R
k, is a real, symmetric, nonnegative, hollow

(aii = 0) matrix. These properties are necessary but not sufficient for a matrix to be

an ESD matrix (a matrix with these properties is called a pre-distance or dissimilarity

matrix). If k is the smallest dimension for which such a construction is possible, then

k is the embedding dimension of A. Furthermore, the choice of x1, . . . , xn is not

unique, for if x̃i = xi −x0 then x̃i − x̃j = xi −xj . Given w = (w1, . . . , wn)t ∈ R
n with

∑n
j=1

wj 6= 0, let x0 =
∑n

j=1
wjxj/

∑n
j=1

wj . Then
∑n

j=1
wj x̃j = 0 ∈ R

k, so we can

assume without loss of generality that
∑n

j=1
wjxj = 0 ∈ R

k. For notation simplicity,

we often assume that
∑n

j=1
wj = 1.

Let e1, . . . , en denote the coordinate unit vectors in R
n and let I denote the n×n

identity matrix. Set e = e1 + · · ·+ en and J = eet. Given w ∈ R
n such that etw = 1,

define the linear mapping τw : Sn → Sn by

τw(A) = −1

2

(

I − ewt
)

A
(

I − wet
)

.

Given w ∈ R
n, we say that x1, . . . , xn ∈ R

k is w-centered if and only if
∑n

j=1
wjxj = 0.

Theorem 2.1. Suppose that A is an n × n real, symmetric, hollow matrix. Let
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w be any vector in R
n such that etw = 1 and let U be any n × (n − 1) matrix for

which the n× n matrix V = ( e√
n
|U) is orthogonal. Then the following conditions are

equivalent.

(a) There exists a w-centered spanning set of R
k, {x1, . . . , xn}, for which A =

(‖xi − xj‖2).

(b) There exists a w-centered spanning set of R
k, {x1, . . . , xn}, for which τw(A) =

(xt
ixj).

(c) The matrix U tAU is negative semidefinite of rank k.

(d) The submatrix B in

Â0 =

(

1 0

0 V t

)(

0 et

e A

) (

1 0

0 V

)

=





0
√
n 0√

n ∗ ∗
0 ∗ B





is negative semidefinite of rank k.

(e) The matrix A0 =

(

0 et

e A

)

has has one positive and k+ 1 negative eigenval-

ues.

(f) There is an n× n permutation matrix P for which the matrix

(

0 et

e P tAP

)

has rank k + 2, and, for j = 2, . . . , k + 2, each j × j leading principal minor

is nonzero and has sign (−1)j−1.

Proof. We first establish the equivalence of conditions (a), (b), and (c).

(c) ⇒ (b). Let v1, . . . , vn denote the rows of V and let u1, . . . , un denote the rows

of U . It follows from

I = V V t = ( e√
n

U )

(

et/
√
n

U t

)

=
1

n
J + UU t

that UU t = I − 1

nJ . Hence, it follows from Jwet = eetwet = eet = J that

UU t
(

I − wet
)

=

(

I − 1

n
J

)

(

I − wet
)

=
(

I − wet
)

− 1

n
(J − J) =

(

I − wet
)

.

Because U tAU is a negative semidefinite matrix of rank k, we can find some

k × (n − 1) matrix Y of rank k such that − 1

2
U tAU = Y tY . Let W = U t(I − wet)

and let x1, . . . , xn denote the columns of X = YW . Then

n
∑

j=1

wjxj = Xw = Y U t
(

I − wet
)

w = Y U t(w − w) = 0

and

XtX = W tY tYW = −1

2
W tU tAUW = −1

2

(

I − wet
)t
UU tAUU t

(

I − wet
)
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= −1

2

(

I − ewt
)

A
(

I − wet
)

= τw(A).

It remains to show that x1, . . . , xn spans R
k. The range space of U is e⊥. If

z ∈ e⊥, then
(

I − wet
)

z = z;(2.1)

hence, U t and U t(I −wet) have the same range space. Furthermore, because Y U t =

(0|Y )V t, rank Y U t = rank Y = k. Hence,

rank X = rank YW = rank Y U t
(

I − wet
)

= rank Y U t = k.

(b) ⇒ (a). Define κ : Sn → Sn by

κ(B) = diag(B)J − 2B + Jdiag(B).

Let X = (x1| · · · |xn) and

H = κ
(

XtX
)

=
(

xt
ixi − 2xt

ixj + xt
jxj

)

=
(

‖xi − xj‖2
)

.(2.2)

Because J(I − wet) = J − J = 0 and X(I − wet) = X −Xwet = X,

τw(H) = −1

2

(

I − ewt
) (

DJ − 2XtX + JD
) (

I − wet
)

= XtX = τw(A).

Furthermore, it follows from (2.1) that
(

I − wet
)

(ei − ej) = ei − ej ,

so

Hij = −1

2
(ei − ej)

t
H (ei − ej) = (ei − ej)

t
τw(H) (ei − ej)

= (ei − ej)
t
τw(A) (ei − ej) = Aij ,

i.e., H = A.

Notice that this argument demonstrates that τw is injective on the hollow sym-

metric matrices.

(a) ⇒ (c). Let x0 =
∑n

j=1
xj/n and x̃i = xi − x0, so that x̃1, . . . , x̃n is an

e-centered spanning set of R
k with A = (‖x̃i − x̃j‖2). Let X̃ denote the k × n

matrix with columns x̃1, . . . , x̃n. Then X̃e = 0, so X̃V = (0|X̃U) and it follows that

rank X̃U = rank X̃ = k.

Because V is orthogonal, U te = 0 and therefore U tJ = U teet = 0 = JU . Apply-

ing (2.2),

U tAU = U t
(

JD − 2X̃tX̃ +DJ
)

U = −2U tX̃tX̃U = −2
(

X̃U
)t (

X̃U
)

is a negative semidefinite matrix of rank k.
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(c) ⇔ (d). Because U te = 0,

Â0 =

(

1 0

0 V t

) (

0 et

e A

) (

1 0

0 V

)

= V t
0A0V0(2.3)

=





1 0

0 et/
√
n

0 U t





(

0 et

e A

)(

1 0 0

0 e/
√
n U

)

=





0
√
n 0√

n etAe/n ∗
0 ∗ U tAU



 .

Thus, B = U tAU and conditions (c) and (d) are equivalent.

Now we establish the equivalence of conditions (d), (e), and (f).

(d) ⇒ (e). Because V is orthogonal, so is V0 and it follows from (2.3) that

A0 and Â0 have the same eigenvalues. By interchanging the first two rows of Â0 and

performing Gaussian elimination, we see that rank A0 = rank Â0 = 2+rank B = 2+k.

Because

(

0 0

0 B

)

has no positive eigenvalues and is a principal submatrix of Â0, it

follows from the interlacing inequalities that Â0, hence A0, has at most one positive

eigenvalue. But the leading 2×2 principal submatrix of A0 has a negative determinant

and therefore one positive and one negative eigenvalue; hence, by the interlacing

inequalities, A0 has at least one positive eigenvalue. Thus, A0 has exactly one positive

eigenvalue and, because rank A0 = k + 2, k + 1 negative eigenvalues.

(e) ⇒ (d). We have already argued that rank B = rank Â0 − 2 = rank A0 − 2 =

k + 2 − 2 = k. Given v ∈ R
n−1, we demonstrate that b = vtBv ≤ 0. Toward that

end, let

D =





0 1 0

1 0 0

0 0 vt



 Â0





0 1 0

1 0 0

0 0 v



 =





0
√
n 0√

n c ∗
0 ∗ b



 ,

where c = etAe/n. Notice that det(D) = −nb.

Let d1 ≥ d2 ≥ d3 denote the eigenvalues of D. Let Q be any orthogonal matrix

of the form

Q =





0 1 0

1 0 0

0 0 v

∣

∣

∣

∣

∣

∣

∗



 ,
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in which case QtÂ0Q =

(

D ∗
∗ ∗

)

has the same eigenvalues as Â0, i.e., the same

eigenvalues as A0. Because D is a principal submatrix of QtÂ0Q, it follows from the

interlacing inequalities that d3 ≤ d2 ≤ 0. Furthermore, it follows from the Rayleigh-

Ritz Theorem that d1 ≥ 0. We conclude that b = −det(D)/n = −d1d2d3/n ≤ 0.

(e) ⇒ (f). Any matrix of the form
(

0 et

e P tAP

)

,(2.4)

where P is an n × n permutation matrix, must have the same eigenvalues as A0. It

follows from (e) that any such matrix must have rank k + 2. We choose P so that,

for j = 2, . . . , k + 2, the j × j leading principal submatrices of (2.4) have no zero

eigenvalues. Then the 2 × 2 leading principal submatrix is

(

0 1

1 0

)

, which has a

positive eigenvalue. Hence, for j = 2, . . . , k+2, each j×j leading principal submatrix

will have one positive and j − 1 negative eigenvalues and the corresponding minors

will have signs (−1)j−1.

(f) ⇒ (e). Because (2.4) has rank k + 2, so does A0. Because the 2 × 2 leading

principal minor of (2.4) is negative, the 2 × 2 leading principal submatrix has one

positive and one negative eigenvalue. Because the 3 × 3 leading principal minor of

(2.4) is positive, it follows from the interlacing inequalities that the 3 × 3 leading

principal submatrix has one positive and two negative eigenvalues. Continuing in this

manner, we conclude that the (k + 2) × (k + 2) leading principal submatrix, hence

(2.4), hence A0, has one positive and k + 1 negative eigenvalues.

Let us make some remarks about the characterizations established in Theorem 2.1.

We have already noted that the requirement that x1, . . . , xn is w-centered entails no

loss of generality; hence, condition (a) is simply the definition of a k-dimensional ESD

matrix, i.e., an ESD matrix with embedding dimension k. Historically, condition (f)

was the first alternate characterization discovered. Condition (b) is useful in finding

a set of points satisfying the distance matrix. Theoretically, condition (c) is most

useful. In the literature, it is sometimes stated slightly differently.

Remark 2.2. In Theorem 2.1, the statement in condition (c) that U tAU is

negative semi-definite can be restated as
n
∑

i,j=1

aijyiyj ≤ 0 whenever
∑n

i=1
yi = 0, with

equality whenever y is in some n− 1 − k-dimensional subspace of e⊥.

Proof. Note that ety =
∑n

i=1
yi = 0 is equivalent to y = Ux for some x ∈ R

n−1.

Hence
∑n

i,j=1
aijyiyj = ytAy = xtU tAUx ≤ 0 exactly when U tAU is negative semi-

definite. Note that we can replace the inequality with an equality exactly when x is in
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the n−1−k-dimensional null space of U tAU , hence y is in some n−1−k-dimensional

subspace of e⊥.

Using either statement for condition (c), we see that ESD(n) is a convex cone in

Sn, with embedding dimension increasing up to n. It is not easy to check this only

using the definition of ESD matrices. Also, from conditions (c) and (e), we can easily

deduce the possible ranks of an ESD matrix.

Corollary 2.3 (Gower [7]). If A ∈ ESD(n) has embedding dimension k, then

rank(A) equals k + 1 or k + 2.

Proof. It follows from Theorem 2.1 (c) that U tAU has k negative eigenvalues.

Because U tAU is a submatrix of V tAV , it follows from the interlacing inequalities

that V tAV , hence A, has at least k negative eigenvalues. Furthermore, because

trace(A) = 0, A has at least one positive eigenvalue. Hence, rank(A) is at least k+1.

Finally, it follows from (e) that rank(A0) = k + 2. Because A is a submatrix of A0,

rank(A) is at most k + 2.

Gower [7, Theorem 6] distinguished between these two possible cases by demon-

strating that rank(A) = k+1 if and only if the points that generate A lie on a sphere.

We will give a proof of this fact and some related results in the next section.

3. Circum-Euclidean squared distance matrices. A matrix A ∈ ESD(n)

is CESD if A = (‖xi − xj‖2) such that all ‖x1‖ = · · · = ‖xn‖. Recall that C is a

correlation matrix if C is a positive semidefinite matrix with all diagonal entries equal

to one. We have the following characterization of CESD matrices, and the minimum

r such that A = (‖xi − xj‖2) with r = ‖x1‖ = · · · = ‖xn‖. Its proof depends heavily

on the canonical form of A in (c).

Theorem 3.1. Suppose that A ∈ ESD(n) has embedding dimension k. Then the

following are equivalent:

(a) A is a CESD matrix.

(b) There exist λ ≥ 0 and a correlation matrix C such that A = λ(eet − C),

equivalently, λeet −A is positive definite.

(c) The intersection of the null space of
(

I − J
n

)

A
(

I − J
n

)

and the range space

of A has dimension one.

(d) Let V = ( e√
n
|U) be an orthogonal matrix and

V tAV =

(

trB vt

v −B

)

.

Then there exists a vector z ∈ R
n−1 such that v = Bz, i.e., v lies in the

column space of B.

(e) rank(A) = k + 1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 739-752, December 2010

http://math.technion.ac.il/iic/ela



ELA

746 C.-K. Li, T. Milligan, and M. Trosset

(f) sup{wtAw : etw = 1} <∞.

(g) There is w ∈ R
n and β ∈ R with etw = 1 such that Aw = βe.

(h) Let V = ( e√
n
|U) be an orthogonal matrix such that

V tAV =



























b0 b1 · · · bk bk+1 · · · bn−1

b1 −λ1

...
. . . 0

bk −λk

bk+1

... 0 0

bn−1



























,(3.1)

b0 =
∑k

j=1
λj. Then bk+1 = · · · = bn−1 = 0.

(i) There exists an M such that
n
∑

i,j=1

aijyiyj ≤M

(

n
∑

i=1

xi

)2

for all y ∈ R
n.

Moreover, if these equivalent conditions hold and if A = (‖xi −xj‖2) with r = ‖x1‖ =

· · · = ‖xn‖, then

2nr2 ≥ trB + (vtB−1v)1/2 =



b0 +

k
∑

j=1

b2k/λj



 /n,

where B is the matrix in condition (d), and b0, b1, . . . , bk, λ1, . . . , λj are the quantities

in (c).

Proof. We prove the equivalence of these all but the last statement by pairs.

(a) ⇔ (b). If A = (‖xi − xj‖2) such that r = ‖x1‖ = · · · = ‖xn‖, then

A = (‖xi‖2 + ‖xj‖2 − 2xt
ixj) = λ(eet − C),

where λ = 2r2 and C = (xt
ixj)/r

2 is a correlation matrix.

Conversely, if A = λ(eet −C), where C is a correlation matrix. Then C = (yt
iyj)

for some unit vectors y1, . . . , yn. Let xi =
√

λ/2yi for i = 1, . . . , n. Then A =

(‖xi − xj‖2).

(b) ⇔ (h). Suppose V is such that V tAV has the form (3.1). Because Λ = U tAU

is negative semidefinite of rank k, λ1, . . . , λk > 0.
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Suppose (b) holds. Writing C = eet −A/λ, it follows from (3.1) that

V tCV =
1

λ



























nλ− b0 −b1 · · · −bk −bk+1 · · · −bn−1

−b1 λ1

...
. . . 0

−bk λk

−bk+1

... 0 0

−bn−1



























.(3.2)

Because λC, hence V tCV , is positive semidefinite, so are the principal submatrices

(

nλ− b0 −bi
−bi 0

)

,

which necessitates bi = 0 for i = k + 1, . . . , n− 1.

Conversely, suppose bk+1 = · · · = bn−1 = 0. Then the matrix V tCV in (3.2) is

positive semidefinite if and only if StV tCV S is positive definite where S is an invert-

ible matrix. In particular, let S = D−1P where D = diag(1,
√
λ1, . . . ,

√
λk, 1, . . . , 1)

and P is an orthogonal matrix so that the first two rows of P t are

(1, 0, . . . , 0) and
1

γ

(

0,
b1√
λ1

, . . . ,
bk√
λk

, 0, . . . , 0

)

,

respectively, where γ =
{

∑k
j=1

b2j/λj

}1/2

. Then

λP tD−1V tCV D−1P =

(

nλ− b0 −γ
−γ 1

)

⊕ Ik−1 ⊕ 0n−k−1,

which is positive semidefinite if and only if λ ≥
(

b0 +
∑k

j=1
b2k/λj

)

/n. It follows

that λC = λeet − A is positive semidefinite and C is a correlation matrix whenever

λ ≥
(

b0 +
∑k

j=1
b2k/λj

)

/n.

By the argument in the preceding paragraph, we see that whenever

A = (‖xi − xj‖2) = (‖xi‖2 + ‖xj‖2 − 2xt
ixj) = λ

(

eet − (xt
ixj/‖xi‖‖xj‖)

)

with r = ‖x1‖ = · · · = ‖xn‖, then λ = 2r2 ≥
(

b0 +
∑k

j=1
b2k/λj

)

/n. The last

assertion follows.

(h) ⇔ (d). The equivalence of (h) and (d) is clear.
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(h) ⇔ (e). Let L denote the leading (k + 1) × (k + 1) principal submatrix of

V tAV . Because λ1, . . . , λk > 0, L has at least k negative eigenvalues. But trace(L) =

trace(V tAV ) = trace(A) = 0, so b0 > 0 and L must have a positive eigenvalue.

Thus, rank(L) = k + 1 and rank(A) = rank(V tAV ) ≥ k + 1. It is obvious from

the form of (3.1) that rank(A) = rank(V tAV ) > k + 1 if and only if some bi 6= 0,

i ∈ {k + 1, . . . , n− 1}.

(h) ⇔ (f). Let V be the orthogonal matrix in (h). Then that etw = 1 if and

only if V tw = (1, w2, . . . , wn)t for some w2, . . . , wn ∈ R. So, (f) holds if and only if

bk+1 = · · · = bn = 0.

(d) ⇔ (g). It is easy to show that (d) and (g) are equivalent.

(h) ⇔ (c). Using the matrix representation in (h), we see that the intersection

of the range space of A and the null space of (I − eet/n)A(I − eet/n) contains the

vector e. It has dimension one if and only if bk+1 = · · · = bn = 0.

(b) ⇒ (i). Note that for λ ≥ 0 and correlation matrix C, that −λytCy ≤ 0. It

follows that
∑

aijyiyj = ytAy = λyteety − λytCy ≤ λ(
∑

yi)
2. Thus, condition (i)

holds with M = λ.

(i) ⇒ (f). If there exists an M such that
n
∑

i,j=1

aijyiyj ≤ M

(

n
∑

i=1

xi

)2

for all y ∈

R
n, then restrict y to those values such that

∑

yi = ety = 1. Then ytAy ≤ M < ∞
for all such y.

The equivalence of (a) and (e) was observed by Gower [7, Theorem 6]. The

equivalence of (a) and (d) of Theorem 3.1 and the last assertion were obtained in [12,

Theorem 3.1 and Corollary 3.1].

Alfakih and Wolkowicz [1, Theorem 3.3] used Gale transforms to characterize

those ESD matrices that can be represented as A = λ(eet − C). In particular, they

state condition (h) as AZ = 0, where Z is a Gale matrix associated with A. If

k = n− 1, then Z = (0, . . . , 0)t and AZ = 0, while (h) is vacuously true. If k < n− 1,

then let Z = (uk+1 · · ·un−1)Q, where u1, . . . , un−1 are the columns of U and Q is

nonsingular. Then U tAZ = 0 and, because the rows of U t form a basis for e⊥, the

columns of AZ lie in the span of e. Hence, AZ = 0 if and only if (bk+1, . . . , bn−1)
t =

etAZ = 0.

Using condition (b), one can deduce that CESD(n) is a convex cone. Note that

it is highly non-trivial to prove that CESD(n) is a convex cone using the definition.
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The next result is noted in [5, p. 535], as a corollary of an elegant but compli-

cated general theory of cuts and metrics. Here we provide a direct proof and some

refinements.

Theorem 3.2. The set CESD(n) is dense in ESD(n), i.e., ESD(n) equals the

closure of CESD(n).

Proof. Suppose A ∈ ESD(n) has rank m. If A has embedding dimension m− 1,

then A ∈ CESD(n). Otherwise, let A = (‖xi − xj‖2) such that x1, . . . , xn ∈ R
m−2 so

that
∑n

j=1
xj = 0. Let X be the (m− 2)×n matrix with x1, . . . , xn as column. Then

there is an (n−m+ 1) × n matrix so that the columns of Xt and Y t together form

an orthonormal basis for e⊥. For ε > 0, let Zε be the (n− 1)×n matrix with the top

m− 2 rows from the matrix X, and the bottom n−m+ 1 rows from the matrix εY .

Let y1, . . . , yn ∈ R
n−m+1 be the column of Y . Then

Aε = κ(Zt
εZε) = (‖xi − xj‖2) + ε2(‖yi − yj‖2)

has embedding dimension n − 1, and hence belongs to CESD(n). Evidently, Aε

approaches A as ε→ 0.

4. Linear preservers. In this section, we study linear maps leaving invariant

the cones of ESD(n) and CESD(n). Actually, using the correspondence between pos-

itive semidefinite matrices, ESD matrices and CESD matrices, we can obtain better

results. We begin by characterizing the linear operators that preserve PSD matrices

with specific ranks.

Theorem 4.1. Let K = {k1, . . . , km} 6= {0} be such that 0 ≤ k1 < · · · < km ≤
n− 1. Let

C = {C ∈ PSD(n− 1) : rank(C) ∈ K} .(4.1)

Then a linear operator T : Sn−1 → Sn−1 satisfies T (C) = C if and only if there exists

an invertible matrix R such that

T (C) = RtCR for all C ∈ Sn−1.

Proof. If T (C) = RtCR with R invertible, then it follows from Sylvester’s Law

of Inertia that T (C) has the same number of positive, negative and zero eigenvalues,

i.e., is PSD of the same rank. Thus, we see that T (C) = C. It remains to establish

the converse. Let

Cj = {C ∈ PSD(n− 1) : rank(C) = j} and Ĉk =

k
⋃

j=0

Cj .
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We claim that Ĉk = cl(Ck), the closure of Ck.

Because Ck ⊆ Ĉk and Ĉk is closed, we see that cl(Ck) ⊆ Ĉk. If C ∈ Ck, then

obviously C ∈ cl(Ck). If C ∈ Cj for j < k, then write C = Y t
j Yj for a j × (n − 1)

matrix Yj . Let Yk−j be any (k − j) × (n − 1) matrix such that (Y t
j |Y t

k−j) has rank

k, let c = 1/‖Y t
k−jYk−j‖, and let Ci = Y t

j Yj + (c/i)Y t
k−jYk−j . Then Ci ∈ Ck and

‖Ci − C‖ = 1/i→ 0 as i→ ∞, so each C ∈ Ĉk is the limit point of a sequence in Ĉk.

This proves that Ĉk ⊆ cl(Ck). It also demonstrates that int(Ĉk), the relative interior

of Ĉk, is contained in Ck. Because Ck ⊆ Ĉk and Ĉk is closed, cl(Ck) ⊆ Ĉk. We have

also shown that because Ck is open in Ĉk, int(Ĉk) = Ck.

Now suppose that T (C) = C. Because T is continuous,

T
(

Ĉkm

)

= T (cl (C)) = cl (C) = Ĉkm
.(4.2)

Because T is linear,

T (Ckm
) = T

(

int
(

Ĉkm

))

= int
(

Ĉkm

)

= Ckm
.(4.3)

From (4.3) and (4.2), we obtain

T
(

Ĉkm−1

)

= T
(

Ĉkm
− Ckm

)

= T
(

Ĉkm

)

− T (Ckm
) = Ĉkm

− Ckm
= Ĉkm−1.

We continue to “peel the onion” in this manner, i.e., using an inductive argument,

concluding that T (C1) = C1. It then follows from Theorem 3 in [8] that T is of the

form T (C) = ±RtCR. Because C and T (C) are positive semidefinite, we conclude

that T (C) = RtCR.

Next we set w = e and characterize the linear operators that preserve subsets of

Ge(n) containing matrices with specific ranks.

Theorem 4.2. Let K = {k1, . . . , km} 6= {0} be such that 0 ≤ k1 < · · · < km ≤
n− 1. Let

B = {B ∈ Ge(n) : rank(B) ∈ K} .(4.4)

Then a linear operator T : [Ge(n)] → [Ge(n)] satisfies T (B) = B if and only if there

exists an n× n matrix Q, with rank(Q) = n− 1 and Qe = Qte = 0, such that

T (B) = QtBQ for all B ∈ [Ge(n)].

Proof. Fix w = e and U , any n× (n− 1) matrix for which ( e√
n
|U) is orthogonal.

Then W = U t(I − eet

n ) = U t, so ψu(B) = U tBU and φu(C) = W tCW = UCU t.
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Let C = ψu(B), in which case B = φu(C). Then T (B) = B if and only if T ◦φu(C) =

φu(C) if and only if ψu ◦ T ◦ φu(C) = C. Because ψu and φu preserve rank, C ⊆
PSD(n−1) is a set of the form (4.1); hence, it follows from Theorem 4.1 that T (B) = B
if and only if there exists an invertible matrix R such that ψu ◦ T ◦ φu(C) = RtCR.

Suppose that there exists an (n − 1) × (n − 1) invertible matrix R such that

ψu ◦ T ◦ φu(C) = RtCR. Let Q = URU t. Then rank(Q) = n− 1, Qe = Qte = 0, and

T (B) = φu ◦ ψu ◦ T ◦ φu ◦ ψu(B) = φu ◦ ψu ◦ T ◦ φu

(

U tBU
)

= φu

(

RtU tBUR
)

= URtU tBURU t = QtBQ.

Conversely, suppose that there exists an n×nmatrix Q such that rank(Q) = n−1,

Qe = Qte = 0, and T (B) = QtBQ. Let R = U tQU . Then R is invertible and

ψu ◦ T ◦ φu(C) = ψu ◦ T
(

UCU t
)

= ψu

(

QtUCU tQ
)

= U tQtUCU tQU = RtCR.

Now, we characterize the linear operators that preserve matrices in ESD(n) with

specific embedding dimensions. Let dim(A) denote the embedding dimension of A ∈
ESD(n).

Theorem 4.3. Let K = {k1, . . . , km} 6= {0} be such that 0 ≤ k1 < · · · < km ≤
n− 1. Let

A = {A ∈ ESD(n) : dim(A) ∈ K} .

Then a linear operator T : [ESD(n)] → [ESD(n)] satisfies T (A) = A if and only if

there exists an n× n matrix Q, with rank(Q) = n− 1 and Qe = Qte = 0, such that

T (A) = −κ(QtAQ)/2 for all A ∈ [ESD(n)].

Proof. Let B = τe(A), in which case A = κ(B). Then T (A) = A if and only

if T ◦ κ(B) = κ(B) if and only if τe ◦ T ◦ κ(B) = B. Because of the equivalence of

conditions (a) and (b) in Theorem 2.1, B ⊆ Ge(n) is a set of the form (4.4); hence, it

follows from Theorem 4.2 that T (A) = A if and only if there exists an n× n matrix

Q, with rank(Q) = n− 1 and Qe = Qte = 0, such that

τe ◦ T ◦ κ(B) = QtBQ.(4.5)

Now we apply κ to both sides of (4.5), obtaining

T (A) = T ◦ κ(B) = κ
(

QtBQ
)

= κ
(

Qtτe(A)Q
)

= −1

2
κ

(

Qt

(

I − eet

n

)

A

(

I − eet

n

)

Q

)

= −1

2
κ

(

QtAQ
)

.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 739-752, December 2010

http://math.technion.ac.il/iic/ela



ELA

752 C.-K. Li, T. Milligan, and M. Trosset

By the fact that the closure of CESD(n) equals ESD(n), we have the following.

Theorem 4.4. A linear operator T : [CESD(n)] → [CESD(n)] satisfies

T (CESD(n)) = CESD(n)

if and only if there exists an n×n matrix Q, with rank(Q) = n−1 and Qe = Qte = 0,

such that

T (A) = −κ(QtAQ)/2 for all A ∈ [CESD(n)].
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