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Abstract. Let A and B be n × n real matrices with A symmetric and B skewsymmetric.

Obviously, every simultaneously neutral subspace for the pair (A, B) is neutral for each Hermitian

matrix X of the form X = µA + iλB, where µ and λ are arbitrary real numbers. It is well-known

that the dimension of each neutral subspace of X is at most In+(X) + In0(X), and similarly, the

dimension of each neutral subspace of X is at most In−(X) + In0(X). These simple observations

yield that the maximal possible dimension of an (A, B)-neutral subspace is no larger than

min{min{In+(µA + iλB) + In0(µA + iλB), In−(µA + iλB) + In0(µA + iλB)}},

where the outer minimum is taken over all pairs of real numbers (λ, µ). In this paper, it is proven

that the maximal possible dimension of an (A, B)-neutral subspace actually coincides with the above

expression.

Key words. Symmetric matrix, Skewsymmetric matrix, Hermitian matrix, Inertia, Neutral

subspace.
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1. Introduction and main result. Let F be the field of real numbers R, or the

field of complex numbers C. Denote by Fm×n the set of m × n matrices with entries

in F, and let (x, y) be the standard inner product in Fn (short for Fn×1).

Let A,B ∈ Rn×n, where A is symmetric and B is skewsymmetric. A subspace

M ⊆ Rn is called simultaneously neutral for A and B, or (A,B)-neutral, if

(Ax, y) = 0, (Bx, y) = 0 for all x, y ∈ M.

Simultaneously neutral subspaces for a pair of real symmetric/skewsymmetric ma-

trices, as well as those for a pair of complex hermitian matrices, play a key role in

the theory of algebraic Riccati equations (see e.g. [7] and references therein), and in

symmetric factorizations of matrix polynomials and rational matrix functions with
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certain symmetries [2, 3, 5, 6, 10]; in the latter application, the (A,B)-neutral sub-

spaces have the additional property that they are B−1A-invariant (and B is assumed

to be invertible). In this paper, we focus on the following problem: Find the maximal

possible dimension of (A,B)-neutral subspaces for symmetric/skewsymmetric pairs of

real matrices. We will describe this dimension in terms of inertia of complex hermitian

matrices; we denote by

In(A) = (In+(A), In−(A), In0(A))

the inertia of a hermitian matrix A ∈ Cn×n. Thus, In+(A), In−(A), and In0(A) stand

for the number of positive, negative, and zero eigenvalues of A, respectively, counted

with multiplicities.

The following observation will be useful:

Lemma 1.1. Let A,B ∈ Rn×n, A = AT , B = −BT . Then A + iB and A − iB

are similar, and in particular

(1.1) In (A + iB) = In (A − iB).

Proof. Observe that x + iy ∈ Cn, where x, y ∈ Rn, is an eigenvector of A + iB

corresponding to the eigenvalue t ∈ R if and only if y + ix is an eigenvector of A− iB

corresponding to the same eigenvalue t. Clearly, the set of vectors x1 + iy1, . . . , xp +

iyp is linearly independent if and only if the set y1 + ix1, . . . , yp + ixp is linearly

independent. Hence, A + iB and A − iB have the same eigenvalues with the same

multiplicities.

We now state our main result:

Theorem 1.2. Let A be symmetric, B skewsymmetric, A,B ∈ Rn×n. Then the

maximal dimension of an (A,B)-neutral subspace M ⊆ Rn coincides with

(1.2) min{min{In+(µA+ iλB)+ In0(µA+ iλB), In−(µA+ iλB)+ In0(µA+ iλB)}},

where the outer minimum is taken over all pairs of real numbers (λ, µ).

Thus, the maximal dimension of an (A,B)-neutral subspace is described in terms

of inertia of suitable combinations of A and B. Analogues of Theorem 1.2 in the

context of pairs of complex or quaternionic hermitian matrices A and B, where µA+

iλB of Theorem 1.2 is replaced by µA+λB, have been obtained in [9, 11]. We mention

in passing that an analogue of Theorem 1.2 for pairs of real symmetric matrices fails,

see [11] for more details.
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Remark 1.3.

(1) Note that the inner minimum in (1.2) is attained at some nonzero (λ0, µ0);

indeed, for λ = µ = 0, (1.2) takes value n. Since

In+ (tX) + In0 (tX) = In+ (X) + In0 (X), X ∈ C
n×n, X = X∗, t > 0,

and

In+ (X) + In0 (X) = In− (−X) + In0 (−X), X ∈ C
n×n, X = X∗,

we have that (1.2) is equal to

(1.3) min
0≤α<2π

{In+((cos α)A + i(sin α)B) + In0((cos α)A + i(sin α)B)}.

(2) Note that (1.2) is also equal to

min

{
min
t∈R

{In+(A + itB) + In0(A + itB)}(1.4)

min
t∈R

{In+(−A + itB) + In0(−A + itB)}

}
;

as well as to the formula analogous to (1.4) with the roles of A and B inter-

changed. To verify that, one needs to observe that by the continuity of the

spectrum there exists a real M > 0 such that

In+ (iB) + In0 (iB) ≥ In+

(
1

t
A + iB

)
+ In0

(
1

t
A + iB

)

= In+ (A + itB) + In0 (A + itB)

for all real numbers t > M .

(3) It follows from (1.1) that (1.3) is actually equal to

min
0≤α≤π

{In+((cos α)A + i(sin α)B) + In0((cos α)A + i(sin α)B)}.

The rest of the paper is devoted to the proof of Theorem 1.2. Preliminary results,

including the canonical form for pairs of real symmetric/skewsymmetric matrices, are

stated and sometimes proved in Sections 2 - 4. The proof of Theorem 1.2 itself is

given in Sections 5 and 6.

We fix some notation. By e1, . . . , en we denote the elements of the standard basis

of Fn, and by span (x1, . . . , xp) the linear span of vectors x1, . . . , xp. The symbol #G

stands for the cardinality of the set G. We denote by Ik and 0k the k×k identity and

zero matrices, respectively.
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2. Preliminaries on inertia of Hermitian matrices. If X ∈ Cn×n is Hermi-

tian, a subspace M ⊆ Cn is said to be X-neutral if (Xx, y) = 0 for all x, y ∈ M, or

equivalently (Xx, x) = 0 for all x ∈ M.

Proposition 2.1. Let X ∈ Cn×n be hermitian. Then an X-neutral subspace

M ⊆ Cn is maximal, in the sense that no subspace properly containing M is X-

neutral, if and only if

dim (M) = min{In+ (X) + In0 (X), In− (X) + In0 (X)}.

Proposition 2.1 is standard; see for example [4, Section 2.3], where it is proved

under the additional assumption that X is invertible.

Lemma 2.2. Let X be Hermitian matrix which is block partitioned as follows:

(2.1) X =




0k 0 X1

0 X0 X2

X∗
1 X∗

2 X3


 , or X =




X3 X2 X1

X∗
2 X0 0

X∗
1 0 0k


 ,

where the block X1 is k × k and invertible. Then

(2.2) In0 (X) = In0 (X0), In± (X) = k + In± (X0).

Proof. Say X is given by the first formula in (2.1). Replacing X with SXS∗,

where

S =




Ik 0 0

−X2X
−1
1 I 0

− 1
2X3X

−1
1 0 I


 ,

we may assume X2 = 0, X3 = 0. It is easy to see that

In±

[
0 X1

X∗
1 0

]
= k.

Now (2.2) is obvious.

3. Properties of Φα(A,B). In this section, we let A,B ∈ Rn×n, where A = AT ,

B = −BT .

For convenience, denote

Φα(A,B) := In+((cos α)A + i(sin α)B) + In0((cos α)A + i(sin α)B), 0 ≤ α < 2π.
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We list some elementary properties of the quantity Φα(A,B).

Lemma 3.1. (a) If Q is any finite subset of [0, 2π), then

min
0≤α<2π

(Φα(A,B)) = min
0≤α<2π, α6∈Q

(Φα(A,B)).

(b) Assume

A =

[
A1 0

0 A2

]
, B =

[
B1 0

0 B2

]
.

If

(3.1) Φα(A1, B1) = Φα′(A1, B1)

for all α, α′ ∈ [0, 2π) \ Q, where Q is a finite (or empty) set, then

(3.2) min
0≤α<2π

(Φα(A,B)) = min
0≤α<2π

(Φα(A1, B1)) + min
0≤α<2π

(Φα(A2, B2)).

Note that (3.2) is generally not valid without additional hypotheses on Aj and

Bj (such as (3.1)).

Proof. Proof of (a). Let α0 ∈ [0, 2π) be such that

(3.3) min
0≤α<2π

(Φα(A,B)) = Φα0
(A,B).

Continuity of eigenvalues of a Hermitian matrix X (as functions of the entries of X;

it is assumed that the eigenvalues are arranged in the nondecreasing order) implies

that

In+((cos α0)A + i(sin α0)B) + In0((cos α0)A + i(sin α0)B) ≥(3.4)

In+((cos β)A + i(sin β)B) + In0((cos β)A + i(sin β)B)

for all values of β ∈ [0, 2π) sufficiently close to α0. However, (3.3) implies that

the strict inequality is impossible in (3.4). Thus,

In+((cos β)A + i(sin β)B) + In0((cos β)A + i(sin β)B) = min
0≤α<2π

(Φα(A,B))

for all β sufficiently close to α0. We see that the minimum min0≤α<2π(Φα(A,B)) is

attained on a set that contains a nondegenerate interval. The statement (a) is now

clear.
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Proof of (b). We obviously have

Φα(A,B) = Φα(A1, B1) + Φα(A2, B2), ∀α ∈ [0, 2π).

So (the first equality follows from part (a)):

min
0≤α<2π

Φα(A,B) = min
0≤α<2π, α6∈Q

Φα(A,B) = min
0≤α<2π, α6∈Q

(Φα(A1, B1) + Φα(A2, B2))

which by (3.1) is equal to

Φα′(A1, B1) + min
0≤α<2π, α6∈Q

Φα(A2, B2),

where α′ ∈ [0, 2π) \ Q is fixed. By part (a) we have

Φα′(A1, B1) = min
α∈[0,2π)

Φα(A1, B1),

min
0≤α<2π, α6∈Q

Φα(A2, B2) = min
0≤α<2π

Φα(A2, B2),

and we are done.

Remark 3.2. The result of Lemma 3.1 (with essentially the same proof) remains

valid if the interval [0, 2π) is replaced by any nondegenerate subinterval, with or

without one of both endpoints, of [0, 2π).

Lemma 3.3. Assume that A and B have the following block form

A =




0k 0 A1

0 A0 A2

AT
1 AT

2 A3


 , B =




0k 0 B1

0 B0 B2

−BT
1 −BT

2 B3


 ,

where the blocks A1 and B1 are k×k. Assume furthermore that (cos α)A1+i(sin α)B1

is invertible for all but finitely many values α ∈ [0, 2π). Then

(3.5) min
0≤α<2π

Φα(A,B) = k + min
0≤α<2π

Φα(A0, B0).

Proof. Let

Q = {α ∈ [0, 2π) : (cos α)A1 + i(sin α)B1 is not invertible}.

By Lemma 3.1(a) we may replace the interval [0, 2π) with [0, 2π) \ Q in (3.5). By

Lemma 2.2, Φα(A,B) = k + Φα(A0, B0) for α ∈ [0, 2π) \ Q, and (3.5) follows.
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4. Canonical form. We present here the known canonical form of real sym-

metric/skewsymmetric matrix pencils

A + λB, A,B ∈ R
n×n, A = AT , −B = BT

under R-congruence:

A + λB 7→ ST AS + λST BS, S ∈ R
n×n is invertible.

(See e.g. [8] and references there.) The following notation will be used:

Ξ2 =

[
0 1

−1 0

]
;

Fq is the q × q real symmetric matrix with 1’s in positions (1, q), (2, q − 1), . . . , (q, 1)

and zeros elsewhere;

Gq =

[
Fq−1 0(q−1)×1

01×(q−1) 01

]
,

a q × q real symmetric matrix, and we take G1 = 0; we denote by J2m(a± ib), where

a and b are real and b > 0, the 2m × 2m almost upper triangular real Jordan block

of size 2m × 2m having eigenvalues a ± ib.

It will be convenient to list the elementary blocks first:

(sss0)

a square size zero matrix.

(sss1)

G2ε+1 + λ




0 0 Fε

0 01 0

−Fε 0 0


 .

(sss2)

Fk + λ




01 0 0

0 0 F k−1

2

0 −F k−1

2

0


 , k odd.

(sss3)

Fk + λ




01 0 0 0

0 0 0 F k−2

2

0 0 01 0

0 −F k−2

2

0 0


 , k even.
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(sss4)

Gℓ + λ

[
0 Fℓ/2

−Fℓ/2 0

]
, ℓ even.

(sss5)

[
0 Gℓ/2

Gℓ/2 0

]
+ λ

[
0 Fℓ/2

−Fℓ/2 0

]
, ℓ even and ℓ/2 odd.

(sss6)

[
0 γFℓ/2 + Gℓ/2

γFℓ/2 + Gℓ/2 0

]
+λ

[
0 Fℓ/2

−Fℓ/2 0

]
, ℓ even, γ ∈ R\{0}.

(sss7)




0 0 · · · 0 0 νΞm+1
2

0 0 · · · 0 −νΞm+1
2 −I2

0 0 · · · νΞm+1
2 −I2 0

...
... . .

. ...
...

...

(−1)m−1νΞm+1
2 −I2 0 · · · 0 0




+λ




0 0 · · · 0 Ξm
2

0 0 · · · −Ξm
2 0

...
... . . .

...
...

0 (−1)m−2Ξm
2 · · · 0 0

(−1)m−1Ξm
2 0 · · · 0 0




, ν > 0.

The pencil in (sss7) is 2m × 2m, where m is a positive integer. We denote

the pencil in (sss7) by

Ω2m(ν) + λΩ̃2m.

Note that the matrices Ω2m(ν) and Ω̃2m are symmetric and skewsymmetric,

respectively, for every m (and every real ν).

(sss8)

[
0 J2m(a ± ib)T

J2m(a ± ib) 0

]
+ λ

[
0 I2m

−I2m 0

]
,

where a, b > 0. The matrix pencil here is 4m × 4m.
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Theorem 4.1. Let A + λB be a real symmetric/skewsymmetric matrix pencil.

Then A + λB is R-congruent to a real symmetric/skewsymmetric pencil of the form

(4.1) (A0 + λB0) ⊕

r⊕

j=1

δj


Fkj

+ λ




01 0 0

0 0 F kj−1

2

0 −F kj−1

2

0







(4.2) ⊕

p⊕

t=1

ηt

(
Gℓt

+ λ

[
0 Fℓt/2

−Fℓt/2 0

])
⊕

q⊕

u=1

ζu(Ω2mu
(νu) + λΩ̃2mu

).

Here, A0 + λB0 is a direct sum of blocks of types (sss0), (sss1), (sss3), (sss5), (sss6),

and (sss8) in which several blocks of the same type and of different and/or the same

sizes may be present, and the kj’s are odd positive integers, the ℓt’s are even positive

integers, the νu’s are positive real numbers, δj , ηt, ζu are signs ±1, and the mu’s are

positive integers.

The blocks in (4.1) and (4.2) are uniquely determined by A + λB up to a permu-

tation of blocks.

Theorem 4.1 is found in many sources; see, for example, [8] for a detailed proof.

5. Proof of Theorem 1.2: particular case. In this section, we prove the

following particular case of Theorem 1.2:

Theorem 5.1. Let A = AT ∈ Rm×m, B = −BT ∈ Rm×m be of the form

A =
(
⊕q

j=1κj(−νjI2)
)
⊕ It, B =

(
⊕q

j=1κjΞ2

)
⊕ 0t,

where t is a nonnegative integer, νj are positive numbers, κj are signs ±1, and if

νj1 = νj2 then κj1 = κj2 . Then there exists an (A,B)-neutral subspace of dimension

min0≤α<2π Φα(A,B).

We will need preliminary results.

Lemma 5.2. Let

(5.1)

A =
(
⊕q

j=1κj(−νjI2)
)
⊕ It1 ⊕−It2 ∈ R

m×m, B =
(
⊕q

j=1τjΞ2

)
⊕ 0t1+t2 ∈ R

m×m,

where t1, t2 are nonnegative integers, νj are positive numbers, κj and τj are signs ±1,

and if νj1 = νj2 then κj1 = κj2 . Let

ρ+(A,B) := min
v∈R

{In+(A + viB) + In0(A + viB)}.

Then there exists an A-nonnegative B-neutral subspace M of Rm×m of dimension

ρ+(A,B).
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Recall that a subspace M is called A-nonnegative if 〈Ax, x〉 ≥ 0 for all x ∈ M.

Before the proof of the lemma, it will be convenient to consider an example first.

Example 5.3. Let

A0 = ν′I2 ⊕−ν′′I2, B0 = τ ′Ξ2 ⊕ τ ′′Ξ2,

where ν′ > ν′′ > 0 and τ ′, τ ′′ = ±1. It is easy to see that ρ+(A0, B0) = 2. Then there

exists an A0-nonnegative B0-neutral subspace of dimension two, for example,

span








1

0

1

0


 ,




0

1

0

±1








where the sign ±1 is taken +1 if τ ′ 6= τ ′′ and −1 if τ ′ = τ ′′.

Proof of Lemma 5.2. Without loss of generality, we assume that the νj are

arranged in the nondecreasing order:

ν1 ≤ ν2 ≤ · · · ≤ νq.

Let κ = κ1, and separate the blocks in (5.1) according to the signs:

κj = κ for j = 1, 2, . . . , p1;

κj = −κ for j = p1 + 1, p1 + 2, . . . , p2;

κj = κ for j = p2 + 1, p2 + 2, . . . , p3;

and so on, and finally

κj = ±κ for j = ps−1 + 1, ps−1 + 2, . . . , ps.

Here 1 ≤ p1 < p2 < · · · < ps = q. By the hypotheses of Lemma 5.2, νpℓ
< νpℓ+1 for

ℓ = 1, 2, . . . , s − 1.

In view of Lemma 1.1 and Remark 3.2, we have

ρ+(A,B) = min
v∈Ω

{In+(A + viB) + In0(A + viB)},

where

Ω := {v : v > 0 and v 6∈ {ν1, . . . , νq}},
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and since A + viB is invertible for v ∈ Ω, we also have

ρ+(A,B) = min
v∈Ω

{In+(A + viB)}.

Letting

A′ = ⊕q
j=1κj(−νjI2), B = ⊕q

j=1τjΞ2,

we clearly obtain

ρ+(A′, B′) + t1 = ρ+(A,B).

On the other hand, if M′ is an A′-nonnegative B′-neutral subspace of dimension

ρ+(A′, B′), then




M

Rt1

0t2




is an A-nonnegative B-neutral subspace of dimension ρ+(A′, B′) + t1. So, using

induction on the size of matrices A and B, we may (and do) assume that t1 = t2 = 0.

Observe that for τ = ±1 and ν > 0, we have

(5.2) In+(τ(−νI2) ± ivΞ2) =





0 if 0 ≤ v < ν and τ = 1,

1 if v > ν and τ = ±1,

2 if 0 ≤ v < ν and τ = −1.

Thus, for v ∈ Ω we have

In+(A + ivB) = 2#{j = 1, 2, . . . , q : νj > v and κj = −1}

+ #{j = 1, 2, . . . , q : νj < v}

= q + #{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1}.

Therefore,

ρ+(A,B) = q + min
v∈Ω

{#{j = 1, 2, . . . , q : νj > v and κj = −1}(5.3)

− #{j = 1, 2, . . . , q : νj > v and κj = 1}}.

In particular, ρ+(A,B) ≤ q. We now consider several cases.

Case (a): Assume ρ+(A,B) = q. Then in view of (5.3),

#{j = 1, 2, . . . , q : νj > v and κj = −1} ≥ #{j = 1, 2, . . . , q : νj > v and κj = 1}}
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for all v ∈ Ω. So, rearranging blocks in A and B (this amounts to a simultaneous row

and column permutation in A and B), we can bring A and B to the following form:

A′′ = ⊕q′

j=1(νj,1I2 ⊕−νj,2I2)
⊕

⊕q′′

j=1µjI2,

B′′ = ⊕q′

j=1(τj,1Ξ2 ⊕ τj,2Ξ2)
⊕

⊕q′′

j=1γjΞ2,

where νj,1 > νj,2 > 0 for j = 1, 2, . . . , q′; µj > 0 for j = 1, 2, . . . , q′′; τj,1, τj,2 and γj are

signs ±1; 2q′+q′′ = q. Clearly, every pair µjI2, γjΞ2 produces a one-dimensional µjI2-

nonnegative γjΞ2-neutral subspace, for example span

[
1

0

]
, and every pair νj,1I2 ⊕

−νj,2I2, τj,1Ξ2 ⊕ τj,2Ξ2 produces a two-dimensional (νj,1I2 ⊕ −νj,2I2)-nonnegative

(τj,1Ξ2⊕τj,2Ξ2)-neutral subspace in view of Example 5.3. Putting all these subspaces

together we obtain an A-nonnegative B-neutral subspace of the requisite dimension

q.

Case (b): Assume ρ+(A,B) < q and κps
= 1. Let

A′ = ⊕q−1
j=1κj(−νjI2), B = ⊕q−1

j=1τjΞ2.

Using formula analogous to (5.3) for the pair A′, B′, we have

ρ+(A′, B′) = q − 1 + min
v∈Ω

{#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q − 1 : νj > v and κj = 1}},

which is equal to

q − 1 + min{ min
v∈Ω, v<νq

{#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q − 1 : νj > v and κj = 1}},

min
v∈Ω, v>νq

{#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q − 1 : νj > v and κj = 1}}}

= q − 1 + min{ min
v∈Ω, v<νq

{#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1} + 1}, 0}

= q + min{ min
v∈Ω, v<νq

{#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1}},−1}.

In turn, this is equal to ρ+(A,B) in view of the formula (5.3) and our assumption

ρ+(A,B) < q. Using the induction hypothesis, we find A′-nonnegative B′-neutral

subspace M′ of dimension ρ+(A,B). Then

[
M′

0

]
⊂ R

m
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is an A-nonnegative B-neutral subspace of dimension ρ+(A,B).

Case (c): Assume ρ+(A,B) < q and κps
= −1.

Define the matrices A′
j , B

′
j , j = 1, 2, . . . , q, as follows: A′

j is obtained from A by

replacing the block κj(−νjI2) with κj(−νj) (leaving all other blocks in A intact), and

B′
j is obtained from B by replacing the block τjΞ2 with zero (leaving all other blocks

in B intact). Thus, A′
j , B

′
j ∈ R(m−1)×(m−1). Since A′

j , resp. B′
j , is obtained from A,

resp. B, by removing the 2(j − 1) + 1th row and column, the interlacing inequalities

for eigenvalues of principal submatrices of Hermitian matrices yield

In+(A + viB) − 1 ≤ In+(A′
j + ivB′

j) ≤ In+(A + viB), v ∈ Ω, j = 1, 2, . . . , q,

and therefore

ρ+(A,B) − 1 ≤ ρ(A′
j , B

′
j) ≤ ρ+(A,B), j = 1, 2, . . . , q.

On the other hand, a computation using (5.2) shows that for j0 = 1, 2, . . . , q, and for

v ∈ Ω:

In+(A′
j0 + ivB′

j0) = #{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = −1}

+ q − 1 + χj0 − #{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = 1},

where χj0 = 1 if κj0 = −1 and χj0 = 0 if κj0 = 1. Thus,

ρ+(A′
j0 , B

′
j0) = q

+min
v∈Ω

{−1 + χj0 + #{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = −1}

−#{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = 1}}.

If there is j0 such that

w := ρ+(A′
j0 , B

′
j0) = ρ+(A,B),

then we can use induction on the size m × m of the matrices A and B to show

that there exists a w-dimensional A′
j0

-nonnegative B′
j0

-neutral subspace Mj0 . Let

x1, . . . , xw ∈ Rm−1 be a basis for Mj0 , and write

xγ =




xγ,1

xγ,2

...

xγ,m−1


 , γ = 1, 2, . . . , w.
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Let

x̂1, . . . , x̂w ∈ R
m

be obtained from x1, . . . , xw, respectively, by inserting a zero between xγ,2(j0−1) and

xγ,2(j0−1)+1, γ = 1, 2, . . . , w. Then the subspace

M̂j0 := span {x̂1, . . . , x̂w}

is w-dimensional and A-nonnegative and B-neutral.

It remains therefore to consider the situation when

ρ+(A′
j0 , B

′
j0) < ρ+(A,B) ∀ j0 = 1, 2, . . . , q,

(in this case, necessarily

ρ+(A′
j0 , B

′
j0) + 1 = ρ+(A,B) ∀ j0 = 1, 2, . . . , q ),

in other words,

min
v∈Ω

{#{j = 1, 2, . . . , q : νj > v and κj = −1}(5.4)

− #{j = 1, 2, . . . , q : νj > v and κj = 1}}

= 1 + min
v∈Ω

{−1 + χj0 + #{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = −1}

−#{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = 1}}

holds for j0 = 1, 2, . . . , q. Thus, we assume that (5.4) holds. As we will see, this leads

to a contradiction.

Consider the function

f(v) = #{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1},

where v ∈ Ω. We have

ρ+(A,B) = min
v∈Ω

f(v) + q.

Select points λ0, . . . , λs so that

0 < λ0 < ν1, νp1
< λ1 < νp1+1, . . . , νps−1

< λs−1 < νps−1+1, νps
< λs.

Clearly, at least one of the points λj , j = 0, 1, . . . , s, is a point of (global) minimum

for f . Since f(λs) + q = q > ρ+(A,B), the point λs is not a point of minimum. Also,

it follows from our assumption κq = −1 that

f(λs) < f(λs−1), f(λs−1) > f(λs−2), f(λs−2) < f(λs−3),
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and so on. So, only the points λs−2, λs−4, λs−6, . . . can be points of (global) minimum

of f .

Suppose s is odd; then κ1 = −1, χ1 = 1, and λ0 is not a point of minimum for f .

The right hand side of (5.4) with j0 = 1 takes the form

1 + min
v∈Ω

{#{j = 1, 2, . . . , q : j 6= 1, νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1}}.

Clearly the minimum is achieved at one of the points λ0, . . . , λs. Thus,

1 + min
v∈Ω

{#{j = 1, 2, . . . , q : j 6= 1, νj > v and κj = −1}

− #{j = 1, 2, . . . , q : νj > v and κj = 1}}

= 1 + min{f(λ0) − 1, f(λ1), . . . , f(λs)}

= 1 + min{f(λ0), f(λ1), . . . , f(λs)}

(because λ0 is not a point of minimum for f), which is one more than the left hand

side of (5.4), a contradiction with (5.4).

Thus, suppose s is even. Then κ1 = 1. In this case, we select j0 so that κj0 = 1,

χj0 = 0. The right hand side of (5.4) takes the form

min
v∈Ω

{#{j = 1, 2, . . . , q : νj > v and κj = −1}(5.5)

−#{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = 1}}.

Let λy be the point of (global) minimum of f having the largest index y; then we let

j0 = jpy
+ 1. (Note that we cannot have y = s because λs is not a point of minimum

of f .) Again, the minimal value of

#{j = 1, 2, . . . , q : νj > v and κj = −1}

− #{j = 1, 2, . . . , q : j 6= j0, νj > v and κj = 1},

where v ∈ Ω, is achieved at one of the points λs−2, λs−4, . . .. So, (5.5) becomes

min
z=s−2,s−4,...

{#{j = 1, 2, . . . , q : νj > λz and κj = −1}(5.6)

−#{j = 1, 2, . . . , q : j 6= j0, νj > λz and κj = 1}}.

By the choice of j0 = jpy
+ 1, we see that (5.6) is equal to

1 + min
z=s−2,s−4,...

{#{j = 1, 2, . . . , q : νj > λz and κj = −1}(5.7)

−#{j = 1, 2, . . . , q : νj > λz and κj = 1}},
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which is one more than the left hand side of (5.4), a contradiction again.

The following result proved in [1] will be also needed for the proof of Theorem

5.1.

Proposition 5.4. Let A,B ∈ Rn×n, A = AT , B = −BT . Assume that there

exists a d-dimensional subspace M ⊆ Rn which is simultaneously A-nonnegative, i.e.,

(Ax, x) ≥ 0 for every x ∈ M, and B-neutral, i.e., (Bx, y) = 0 for all x, y ∈ M.

Assume also that there exists a d-dimensional subspace M′ ⊆ Rn which is simultane-

ously A-nonpositive and B-neutral. Then there exists a d-dimensional (A,B)-neutral

subspace.

Proof of Theorem 5.1. By Lemma 5.2, there exists an A-nonnegative B-neutral

subspace of dimension ρ+(A,B), and analogously there exists an A-nonpositive B-

neutral subspace of dimension ρ+(−A,B). Since (cf. Remark 1.3 (1) and (2))

d := min
0≤α<2π

Φα(A,B) = min{ρ+(A,B), ρ+(−A,B)},

it follows that there exist an A-nonnegative B-neutral subspace and an A-nonpositive

B-neutral subspace of the same dimension d. Now Proposition 5.4 implies that there

exists a d-dimensional (A,B)-neutral subspace.

6. Proof of Theorem 1.2: general case. Since by Proposition 2.1 an (A,B)-

neutral subspace cannot have dimension greater than (1.2), we only have to prove

existence of an (A,B)-neutral subspace M having dimension min0≤α<2π Φα(A,B).

First, note that Lemma 3.1 leads to the following observation:

Proposition 6.1. Under the hypotheses of Lemma 3.1 part (b), if there is an

(Aj , Bj)-neutral subspace Mj of dimension min0≤α<2π Φα(Aj , Bj), j = 1, 2, then

there is an (A,B)-neutral subspace M of dimension min0≤α<2π Φα(A,B).

Proof. Let

M =

[
M1

0

]
+

[
0

M2

]
,

and take advantage of (3.2).

Without loss of generality we may (and do) assume that A+λB is in the canonical

form as presented in Theorem 4.1.

Let v0 × v0 be the size of the zero block (if present) in A0 + λB0, let v1 × v1 be

the total size of blocks of types (sss3), (sss5), (sss6), (sss8) (if present) in A0 + λB0,

and let

(2ε1 + 1) × (2ε1 + 1), . . . , (2εs + 1) × (2εs + 1)
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be the sizes of blocks of type (sss1) (if present) in A0 + λB0.

We shall calculate inertia of linear combinations of matrices in the blocks of types

(sss0) - (sss8), and in each case show a neutral subspace of the requisite dimension.

The calculations are straightforward.

(1) If A′ + λB′ is the block (sss0), then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = 0, ∀ α ∈ [0, 2π).

Clearly, there exists an (A′, B′)-neutral subspace of dimension min0≤α<2π Φα(A′, B′).

(2) If A′ + λB′ is the block (sss1), then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = ǫ, ∀ α ∈ [0, 2π),

and span (eǫ+1, . . . , e2ǫ+1) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = ǫ + 1.

(3) If A′ + λB′ is the block (sss3), then

In+((cos α)A′+i(sin α)B′) = In−((cos α)A′+i(sin α)B′) =





k/2 if cos α 6= 0,

k/2 − 1 if cos α = 0,

and span (e1, . . . , ek/2) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = k/2.

(4) If A′ + λB′ is the block (sss5), then

In+((cos α)A′+i(sin α)B′) = In−((cos α)A′+i(sin α)B′) =





ℓ/2 if sinα 6= 0,

ℓ/2 − 1 if sinα = 0,

and span (e1, . . . , eℓ/2) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = ℓ/2.

(5) If A′ + λB′ is the block (sss6), then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = ℓ/2, ∀ α ∈ [0, 2π),

and span (e1, . . . , eℓ/2) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = ℓ/2.

(6) If A′ + λB′ is the block (sss8), then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = 2m, ∀ α ∈ [0, 2π),

and span (e1, . . . , e2m) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = 2m.
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(7) If

A′ + λB′ =


Fk + λ




01 0 0

0 0 F k−1

2

0 −F k−1

2

0







⊕ −


Fk′ + λ




01 0 0

0 0 F k′
−1

2

0 −F k′
−1

2

0





 ,

where k, k′ are odd, then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) =
k + k′

2
,

∀ α ∈ [0, 2π) such that cos α 6= 0.

Thus, span (e1, . . . , e(k−1)/2, e(k+1)/2 + ek+(k′+1)/2, ek+1, . . . , ek+(k′−1)/2) is an

(A′, B′)-neutral subspace of dimension min0≤α<2π Φα(A′, B′) = k+k′

2 .

(8) If A′ + λB′ is the block (sss4), then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = ℓ/2,

∀ α ∈ [0, 2π) such that sinα 6= 0,

and span (eℓ/2+1, . . . , eℓ) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = ℓ/2.

(9) If A′ + λB′ is the block (sss7) (of size 2m × 2m), with m even, then

In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = m,

∀ α ∈ [0, 2π) such that tanα 6= ±ν,

and span (e1, . . . , em) is an (A′, B′)-neutral subspace of dimension equal to

min0≤α<2π Φα(A′, B′) = m.

(10) Assume

A′ + λB′ = ξ1(Ω2m1
(ν) + λΩ̃2m1

) ⊕ ξ2(Ω2m2
(ν) + λΩ̃2m2

),

where ν > 0, m1,m2 are odd, and

(6.1) ξ1(−1)
m1−1

2 = −ξ2(−1)
m2−1

2 .

Then

(6.2) In+((cos α)A′ + i(sin α)B′) = In−((cos α)A′ + i(sin α)B′) = m1 + m2
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for all α ∈ [0, 2π) except those values for which tanα = ±ν. Indeed, a calculation

shows that the direct sum of the middle 2 × 2 block in

ξ1((cos α)Ω2m1
(ν) + i(sin α)Ω̃2m2

)

and of the middle 2 × 2 block in

ξ2((cos α)Ω2m2
(ν) + i(sin α)Ω̃2m2

)

is

(6.3) ξ1((cos α)νΞm1+1
2 + i(sin α)Ξ2) ⊕ ξ2((cos α)νΞm2+1

2 + i(sin α)Ξ2).

Now (6.2) follows easily from (6.3). Also, the 4 × 4 matrix (6.3) has the following

2-dimensional neutral subspace M0 independent of α (the hypothesis (6.1) is essential

here):

(6.4) M0 =





span (e1 + e3, e2 + e4) if m1 = 4k + 3, m2 = 4ℓ + 3,

span (e1 + e3, e2 + e4) if m1 = 4k + 1, m2 = 4ℓ + 1,

span (e1 + e4, e2 + e3) if m1 = 4k + 3, m2 = 4ℓ + 1,

span (e1 + e4, e2 + e3) if m1 = 4k + 1, m2 = 4ℓ + 3,

where k and ℓ are nonnegative integers. Let

M = span (e1, . . . , em1−1, e2m1+1, . . . , e2m1+m2−1, em1
+e2m1+m2

, em1+1+e2m1+m2+1)

if (m1 − 1)/2 and (m2 − 1)/2 have the same parity, and

M = span (e1, . . . , em1−1, e2m1+1, . . . , e2m1+m2−1, em1
+e2m1+m2+1, em1+1+e2m1+m2

)

if (m1 − 1)/2 and (m2 − 1)/2 have different parity. It follows from (6.4) that M is an

(A′, B′)-neutral subspace of dimension min0≤α<2π Φα(A′, B′) = m1 + m2.

Repeatedly using Proposition 6.1, items (1) - (10) above, and Theorem 4.1, and

replacing if necessary A and B by −A and −B, respectively, we see that the proof of

Theorem 1.2 is reduced to the consideration of the following case:

A + λB = ⊕q
j=1ξj(Ω2mj

(νj) + λΩ̃2mj
)(6.5)

⊕ ⊕s
i=1


Fki

+ λ




01 0 0

0 0 F ki−1

2

0 −F ki−1

2

0





 ,

where m1, . . . ,mq are odd and k1, . . . , ks are odd, and ξj are signs ±1 (the cases when

q = 0, i.e, the first part of (6.5) is missing, or s = 0, i.e., the second part of (6.5)
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is missing, are not excluded); also, if νj1 = νj2 then the signs of the corresponding

blocks in (6.5) are the same.

Applying a suitable simultaneous permutation of rows and columns to A+λB in

(6.5), we obtain A′ + λB′ in the following block form:

(6.6) A′ + λB′ =




0k 0 A1 + λB1

0 A0 + λB0
∗

AT
1 − λBT

1
∗ ∗


 ,

where

k =




q∑

j=1

(mj − 1)


+

(
s∑

i=1

ki − 1

2

)
.

In (6.6), A1 + λB1 is a k × k block diagonal matrix pencil with the diagonal blocks

of the forms



· · · 0 0 νjΞ
mj+1
2

· · · 0 −νjΞ
mj+1
2 −I2

· · · νjΞ
mj+1
2 −I2 0

. . .
...

...
...




+ λ




· · · 0 0 Ξ
mj

2

· · · 0 −Ξ
mj

2 0

· · · Ξ
mj

2 0 0

. . .
...

...
...


 ,

where j = 1, 2, . . . , q, and of the forms

F ki−1

2

+ λG′
ki−1

2

, i = 1, 2, . . . , s,

where

G′
m =

[
01 0

0 Fm−1

]
∈ R

m×m;

and

A0 + λB0 :=
(
⊕q

j=1ξj(−1)
mj−1

2 (νjΞ
mj+1
2 + λΞ

mj

2 )
)
⊕ Is

=
(
⊕q

j=1ξj(−νjI2 + λΞ2)
)
⊕ Is.

Note that (cos α)A1 + i(sin α)B1 is invertible for all but finitely many values of α ∈

[0, 2π). By Lemma 3.3, we have

(6.7) min
0≤α<2π

Φα(A′, B′) = k + min
0≤α<2π

Φα(A0, B0).

On the other hand, by Theorem 5.1, there exists an (A0, B0)-neutral subspace M0 of

dimension min0≤α<2π Φα(A0, B0). Then clearly

M :=




Rk

0

0


+




0

M0

0



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is an (A′, B′)-neutral subpace of dimension k + min0≤α<2π Φα(A0, B0). In view of

(6.7), we have proved Theorem 1.2 for the pair (A,B).
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