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Abstract. Let G = (V, E) be a multigraph with no loops on the vertex set V = {1, 2, . . . , n}.

Define S+(G) as the set of symmetric positive semidefinite matrices A = [aij ] with aij 6= 0, i 6= j,

if ij ∈ E(G) is a single edge and aij = 0, i 6= j, if ij /∈ E(G). Let M+(G) denote the maximum

multiplicity of zero as an eigenvalue of A ∈ S+(G) and mr+(G) = |G|−M+(G) denote the minimum

semidefinite rank of G. The tree cover number of a multigraph G, denoted T (G), is the minimum

number of vertex disjoint simple trees occurring as induced subgraphs of G that cover all of the

vertices of G. The authors present some results on this new graph parameter T (G). In particular,

they show that for any outerplanar multigraph G, M+(G) = T (G).

Key words. Minimum rank graph, Maximum multiplicity, Minimum semidefinite rank, Outer-

planar graphs, Tree cover number.
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1. Introduction. Let G = (V,E) be an undirected graph with no loops but

possibly multiple edges (a multigraph) with vertex set V = {1, 2, . . . , n}. A matrix

A = [aij ] is combinatorially symmetric when aij = 0 if and only if aji = 0. Given

a multigraph G, we say G is the graph of the combinatorially symmetric matrix

A = [aij ] when

• aij 6= 0 whenever i 6= j and i and j are adjacent by a single edge, and

• aij = 0 whenever i 6= j and i and j are not adjacent.

Note that the entry aij for i 6= j is not restricted if ij ∈ E is a multiple edge and that

the main diagonal entries of A play no role in determining G. Define S(G, F) as the set

of all n-by-n matrices that are real symmetric if F = R or complex Hermitian if F = C
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whose graph is G, and S+(G, F) the corresponding subsets of positive semidefinite

(psd) matrices. When A ∈ S(G, F), there is no restriction on the diagonal entries.

If A ∈ S+(G, F) the diagonal entry aii ≥ 0 and if there is a nonzero off-diagonal

entry in the ith row of A, then aii > 0. By M(G, F) (resp., M+(G, F)) we denote

the largest possible nullity of any matrix A ∈ S(G, F) (resp., A ∈ S+(G, F)). The

smallest possible rank of any matrix A ∈ S(G, F) is the minimum rank of G, denoted

mr(G, F), or alternately hmr(G) if F = C is the Hermitian minimum rank of G.

The smallest possible rank of any matrix A ∈ S+(G, F) is denoted mr+(G, F), or

alternately msr(G) for F = C is the minimum semidefinite rank of G. From the

definitions above, it follows that M(G, F) + mr(G, F) = M+(G, F) + mr+(G, F) = |G|

where |G| denotes the order of G. Moreover, it is also evident that, for any graph G,

mr(G, F) ≤ mr+(G, F) and M(G, F) ≥ M+(G, F).

Many of the results of this paper hold for both F = R and F = C. When this

occurs, we will either use F to mean either field, or will omit the field reference entirely

from the notation of the preceding paragraph.

Of recent interest is to gain a better understanding of the relationship between

the minimum rank and minimum semidefinite rank of graphs, and it does appear

that techniques from one problem may be adapted to the other and vice-versa. For

example, making use of the zero-forcing number of a graph (see [5, 10]). Also, of inter-

est is to gain a better understanding of the possible connections between mr+(G, F)

or M+(G, F) and various graph parameters. One existing connection that has been

proved is that mr+(G, F) is exactly the clique cover number of the graph G (i.e., the

minimum number of cliques needed to cover all of the edges of G), whenever G is a

chordal graph (see [3]).

In the case of conventional minimum rank, it has long been known that for trees,

the minimum rank of G is precisely the order of G minus the path cover number of G.

The path cover number of a simple graph G, P (G), is the minimum number of vertex

disjoint paths occurring as induced subgraphs of G that cover all of the vertices of G.

Consequently, it is known that M(T, R) = P (T ) for every (simple) tree T (see [9]).

This result was extended to the case of unicyclic graphs in [1], where it was

proved that M(U, R) = P (U) or P (U)− 1, for any unicyclic graph U , and both cases

were characterized. More recently, Sinkovic has shown that for a (simple) outerplanar

graph G, M(G, R) ≤ P (G) and has given a family of outerplanar graphs for which

equality holds [11]. Unfortunately, it is known that M and P are not comparable in

general (see [1]). Furthermore, M+ and P are not comparable in general.

For the graph in Figure 1.1, it can be shown that M = M+ = 3 and T = P = 2.

On the other hand, if G is the 5-sun (see Figure 4.2), it can be shown that M =

M+ = T = 2 and P = 3.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 10-21, January 2011

http://math.technion.ac.il/iic/ela



ELA

12 F. Barioli, S.M. Fallat, L.H. Mitchell, and S.K. Narayan

u u

u u
u

��
@@ ��

@@

Fig. 1.1. Comparing M+, M and P .

Our goal is to study the minimum semidefinite rank of all outerplanar graphs.

Along these lines, it is known that the minimum semidefinite rank of trees on n

vertices is n−1 (see [12]), and that for any unicyclic graph on n vertices, the minimum

semidefinite rank is then n− 2. Thus, it is clear that the minimum semidefinite rank

of both trees and unicyclic graphs has little to do with the path cover number, but it

does appear to be connected with a different, new, parameter.

The tree cover number of G, denoted T (G), is the minimum number of vertex

disjoint simple trees occurring as induced subgraphs of G that cover all of the vertices

of G. We emphasize that the induced trees in a tree cover of a multigraph G must

be simple trees. We can similarly extend the definition of path cover number to

multigraphs as the minimum number of vertex disjoint simple paths occurring as

induced subgraphs of G that cover all of the vertices of G. Certainly, it is the case

that T (G) ≤ P (G). Furthermore, it is clear that the tree cover number of a simple

tree is one and the tree cover number of a simple unicyclic graph is two. Thus, in

both of these cases we have M+(G) = T (G).

Example 1.1. The graphs in Figure 1.2 give examples of the tree cover number.

In (A), the tree cover number is three. In (B), the temptation is to view the three

single edges as one tree covering all vertices, but such a tree is not induced, so the

tree cover number is two. (A) also illustrates Lemma 3.1.
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Fig. 1.2. Calculating the tree cover number: Examples.

In Section 3, we prove our main result that for any outerplanar (multi)graph

G, M+(G) = T (G), and in Section 4, we discuss the relationship between T (G),

M(G) and P (G) for both outerplanar graphs and more general classes of graphs. In

Section 2, we include and discuss some relevant background material in graph theory,

vector representations of a multigraph, and orthogonal removal of a vertex v from a

multigraph G.
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2. Preliminaries.

2.1. Graph theory. A subgraph of G induced by R ⊂ V , denoted G[R], has

the vertex set R and edge set consisting of those edges of G where both vertices are

elements of R. If R = V (G) \ {v}, we denote G[R] by G − v. The neighborhood

of a vertex v of a graph G, denoted N(v), is the set of vertices of G adjacent to v.

The closed neighborhood of a vertex v, N [v], is N(v) ∪ {v}. We define the simple-

neighborhood of a vertex v, denoted N1(v), to be those vertices u ∈ N(v) such that u

is adjacent to v by a single edge. In a simple graph, N1(v) = N(v) for every vertex v.

Definition 2.1. A vertex v is called singly-isolated in G if N1(v) is an empty

set.

The degree of a vertex v in G, dG(v), is the cardinality of N(v). Note that, in

multigraphs, dG(v) may be strictly less than the number of edges incident to v. If

dG(v) = 1, then v is said to be a pendant vertex. Also, a vertex v is called simplicial

if N(v) is a clique.

Definition 2.2. A graph is outerplanar if it has a crossing-free embedding in

the plane such that all vertices are on the same face.

Equivalently, an outerplanar graph has no subgraph homeomorphic to K4 or

K2,3 (see [13, p. 256]). The following observation is well-known in graph theory and

can be easily proved:

Remark 2.3. Every outerplanar graph G has a vertex v with dG(v) ≤ 2.

Further, every subgraph of an outerplanar graph is outerplanar. In addition,

observe that any tree or unicyclic graph is an outerplanar graph.

2.2. Vector representations of G. A set of vectors ~V = {~v1, . . . , ~vn} in F
m is

a vector representation of the multigraph G when 〈~vi, ~vj〉 6= 0 if i and j are joined by

a single edge and 〈~vi, ~vj〉 = 0 if i and j are not adjacent. Let X =
[

~v1 . . . ~vn

]

be

the matrix whose columns are vectors from ~V . Then X∗X is a psd matrix, called the

Gram matrix of ~V , with regard to the usual inner product of F
m, and, by construction,

A = X∗X ∈ S+(G, F). By rank ~V , we mean the dimension of Span(~V ). Since

any psd matrix A ∈ Mn(F) may be factored as Y ∗Y for some Y ∈ Mn(F) with

rankA = rankY [7], each psd matrix is the Gram matrix of a suitable set of vectors.

Therefore, the smallest m for which there exists a vector representation of G in F
m

is equal to mr+(G, F).
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2.3. Orthogonal removal. Given a vector representation ~V of G, with ~v 6= 0

representing vertex v, replace each vector ~w ∈ ~V with the orthogonal projection

~w −
〈~v, ~w〉

〈~v,~v〉
~v

to yield a set of vectors denoted ~V ⊖ ~v. It is easy to see rank ~V = rank(~V ⊖ ~v) + 1.

A graph corresponding to ~V ⊖ ~v, denoted G⊖ v, is defined as follows: in the induced

subgraph G − v of G, between any u,w ∈ N(v), add e − 1 edges, where e is the

sum of the number of edges between u and v and the number of edges between

w and v. The analysis above also establishes M+(G) ≤ M+(G ⊖ v). Notice that

M+(G ⊖ v) − M+(G) may be arbitrarily large. For example, M+(K2,n) = 2 when

n ≥ 2. If n is large, then orthogonally removing a vertex v of G = K2,n such that

dG(v) = n gives M+(G ⊖ v) = M+(Kn+1) = n. However, we have the following

result, already shown when F = C [3, Lemma 3.4], and whose proof remains valid

when F = R:

Lemma 2.4. Suppose v is a simplicial vertex of a connected multigraph G that is

not singly isolated. Then M+(G) = M+(G ⊖ v).

For a vertex of degree at most two, we may arrive at the same conclusion.

Lemma 2.5. If G is a multigraph, v is a vertex of G that is not singly isolated,

and dG(v) ≤ 2, then M+(G) = M+(G ⊖ v).

Proof. Suppose v is a vertex that is not singly-isolated and dG(v) ≤ 2, so that

dG(v) is either one or two. If v is pendant (i.e., dG(v) = 1), then G ⊖ v = G − v,

and mr+(G) = mr+(G ⊖ v) + 1 is well known [2, 4]. When dG(v) = 2, if the vertices

u,w ∈ N(v) = N1(v) are not adjacent in G, then mr+(G) = mr+(G ⊖ v) + 1, as the

proof in the complex case [8, Proposition 2.4] also works over the reals. If dG(v) = 2

and u,w ∈ N(v) are adjacent in G, then v is simplicial, and the result follows from

Lemma 2.4.

In the remaining case where dG(v) = 2, u,w ∈ N(v) 6= N1(v) are not adjacent in

G, we show that M+(G) = M+(G⊖v). Note that u and w will be adjacent by multiple

edges in G⊖ v. Let ~X ′ be a vector representation of G⊖ v such that mr+(G⊖ v, F) =

rank ~X ′. Let ~u′, ~w′ be the vectors in ~X ′ corresponding to vertices u,w ∈ N(v). If

〈~u′, ~w′〉 6= 0, then we are in the case considered above [8, Proposition 2.4]. Suppose

〈~u′, ~w′〉 = 0, uv is a single edge and wv is a multiple edge. Then let ~v be a unit vector

orthogonal to every vector in ~X ′ and define ~u = ~u′ +~v. Then ( ~X ′ \ {~u′})∪ {~u,~v} is a

vector representation ~X of G (with ~v representing vertex v and ~u representing vertex

u) and ~X ′ is the vector representation derived from ~X by the orthogonal removal of

~v. Therefore, mr+(G, F) ≤ rank ~X = rank ~X ′+1 = mr+(G⊖v, F)+1, or equivalently,

M+(G) = M+(G ⊖ v).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 10-21, January 2011

http://math.technion.ac.il/iic/ela



ELA

Minimum Semidefinite Rank of Outerplanar Graphs and Tree Cover Number 15

3. Outerplanar graphs. In this section, we demonstrate our main observation,

that for an outerplanar graph G, M+(G) = T (G).

We begin by considering the relationship between the tree cover number of a

graph and the graph obtained by vertex deletion and orthogonal removal.

Lemma 3.1. If v is a singly-isolated vertex in a multigraph G, then T (G − v) =

T (G) − 1.

Proof. Any tree cover of G must consist of a tree cover of G − v and the tree

{v}.

Proposition 3.2. If v is a vertex of a multigraph G that is not singly-isolated,

and N1(v) induces (in G) a complete graph or has exactly two vertices that are not

adjacent, then T (G ⊖ v) ≥ T (G).

Proof. Let {T1, . . . , Tk} be a tree cover of G⊖v. From the definition of orthogonal

removal of a vertex, the subgraph of G⊖v induced by the vertices of N(v) is complete.

By our assumption on N1(v), (G⊖v)[N(v)] contains at most one single edge and that

single edge must belong to the induced subgraph (G ⊖ v)[N1(v)]. Thus, there exists

at most one tree Ti in the tree cover such that Ti covers two vertices of N(v). If Ti

covers at most one vertex in N(v), then, since orthogonal removal only alters edges

among vertices in N(v), Ti will remain as a simple induced tree in G. If no tree covers

two vertices of N(v), let u ∈ N1(v), and without loss of generality, let T1 cover u. If

there exists a tree T1 that covers two vertices u,w ∈ N(v), then uw must be a single

edge in G ⊖ v that belongs to T1 and, as a result, u,w ∈ N1(v) and u and w are not

adjacent in G. In either case, define T ′

1 = G[V (T1)∪{v}]. Then T ′

1 is still an induced

simple tree, since in the second case if there were a cycle using uv and vw, then it

must come from a cycle of T1 in G⊖ v using uw. Now, {T ′

1, T2, . . . , Tk} is a tree cover

of G with the same cardinality.

For a vertex of degree at most two, we can say even more.

Proposition 3.3. If v is a vertex of a multigraph G such that v is not singly

isolated in G and dG(v) ≤ 2, then T (G ⊖ v) = T (G).

Proof. From Proposition 3.2 we may deduce that T (G ⊖ v) ≥ T (G). Let

{T1, . . . , Tk} be a tree cover of G. Without loss of generality, let v be covered by T1. If

dG(v) = 1 and N(v) = N1(v) = {u}, only the edge uv is changed in G⊖v, and it either

does not belong to T1 or is a pendant edge, so that T ′

1 = (G⊖v)[V (T1)\{v}], T2, . . . , Tk

are induced simple trees (T ′

1 possibly empty) that cover G⊖ v. If N(v) = {u,w} and

u and w are not covered by the same tree, T ′

1 = (G ⊖ v)[V (T1) \ {v}], T2, . . . , Tk are

induced simple trees (T ′

1 possibly empty) that cover G ⊖ v, since only the number

of edges between u and w can change passing from G to G ⊖ v. Suppose then that
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N(v) = {u,w} and u and w are covered by the same tree Tj . If Tj = T1, then u and w

are not adjacent in G and N(v) = N1(v) so that T ′

1 = (G⊖ v)[V (T1) \ {v}], T2, . . . , Tk

are again induced simple trees that cover G⊖v (for T ′

1, any induced cycle in G⊖v using

uw would come from a cycle of T1 in G using uv and vw). Finally, suppose Tj 6= T1,

so that T1 = {v}, and u and w are adjacent by a single edge in G. Consider Tj . Re-

moving the single edge uw from Tj leaves two connected components, which are also

induced simple trees. Label these T ′

1 and T ′

j . Then T ′

1, T2, . . . , Tj−1, T
′

j , Tj+1, . . . , Tk

are induced simple trees that cover G ⊖ v. In each case, the exhibited tree cover of

G ⊖ v has cardinality at most k.

We are now in a position to establish our main observation.

Theorem 3.4. If G is a multigraph that is outerplanar, then M+(G) = T (G).

Proof. We will induct on the order of G. When |G| = 1, the result is clear. If

|G| = k, from Remark 2.3, G has a vertex v with dG(v) ≤ 2.

Suppose v is singly-isolated. Then G − v is outerplanar and

M+(G) = M+(G − v) + 1 = T (G − v) + 1 = T (G)

using the induction hypothesis and Lemma 3.1.

If v is not singly-isolated, then we apply Proposition 3.3. Since G⊖v is outerplanar

(this follows easily since the degree of v is at most two, so that orthogonally removing

v is either deleting an isolated vertex, deleting a pendent vertex, or essentially edge

contraction), using the induction hypothesis, in addition to Lemma 2.5, we get that

M+(G) = M+(G ⊖ v) = T (G ⊖ v) = T (G).

Combining Theorem 3.4 with Sinkovic’s result on the path cover number of out-

erplanar graphs gives:

Corollary 3.5. For any outerplanar graph G, we have

T (G) = M+(G) ≤ M(G) ≤ P (G).

Specializing to the case of trees or unicyclic graphs we then have:

Corollary 3.6. If G is a tree, then M+(G) = T (G) = 1, and if G is a unicyclic

graph, then M+(G) = T (G) = 2.

As a by-product of Theorem 3.4 we actually have a mechanism for computing

T (G) for any outerplanar graph G. Starting with a given outerplanar graph G on n
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vertices, we will produce a sequence of n vertex removals (either conventional vertex

deletion or orthogonal removal), say v1, v2, . . . vn. If k of the vertices from the sequence

v1, v2, . . . vn were the result of a conventional vertex removal, then we have

M+(G) = T (G) = k.

This follows since the only time M+ is changed during the sequence of removals is

when a vertex is simply deleted (assuming the vertex – at that stage – is singly

isolated), and the increment is always by 1. Moreover, since both M+(G) and T (G)

are well-defined it also follows that every such sequence of vertices will have exactly

k conventional vertex removals.

4. More on the tree cover number. Given the interesting connection estab-

lished above between M+ and T for outerplanar graphs, and the fact that T (G) is

a new parameter developed here, we investigate further the properties of T (G) for

general graphs.

We begin by demonstrating that M+ and T need not be equal in general.

Example 4.1. Note that strict inequality is possible in the conjectured inequal-

ity M+(G) ≥ T (G). For example, for the Möbius ladder ML8 (see Figure 4.1),

mr+(ML8) = 5 [10], hence M+(ML8) = 3 but the tree cover number T (ML8) = 2.

u u u u

u u u u


 	

� �

�
�

�

@
@

@

Fig. 4.1. The Möbius ladder ML8.

The Mobius ladder above in Figure 4.1 satisfies M+ > T . So we ask the natural

question as to whether there exists a graph for which T > M+? At present, we

know of no such graph, and as a result, we conjecture that M+(G) ≥ T (G), for any

multigraph G.

Proposition 4.2. If G is a chordal multigraph, then M+(G) ≥ T (G).

Proof. We will induct on the order of G. If |G| = 1 the result is clear. Let

|G| = k. Since G is chordal, G has a simplicial vertex v. Suppose v is singly-isolated.

Then G − v is chordal and M+(G) = M+(G − v) + 1 ≥ T (G − v) + 1 = T (G)

using the induction hypothesis and Lemma 3.1. If v is not singly-isolated, then

M+(G) = M+(G ⊖ v) ≥ T (G ⊖ v) ≥ T (G) by Lemma 2.4, the induction hypothesis,

and Proposition 3.2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 10-21, January 2011

http://math.technion.ac.il/iic/ela



ELA

18 F. Barioli, S.M. Fallat, L.H. Mitchell, and S.K. Narayan

A consequence to the above Proposition is: If G is a chordal multigraph, then

|G| ≥ T (G)+ cc(G). It is interesting to note that while this inequality involves graph

parameters, it came as a result of considering minimum semidefinite rank.

Proposition 4.3. If G = (L ∪ R,E) is a simple connected bipartite graph with

n = |L| ≥ |R| = m and M+(G) = m, then M+(G) ≥ T (G).

Proof. Label the vertices of R as v1, . . . , vm. Choose a tree cover of cardinality

m as follows. Let S1 be the star induced by N [v1], and for 1 < i ≤ m, let Si be the

star induced by

N [vi] \





i−1
⋃

j=1

V (Sj)



 .

For example, simple bipartite graphs for which |
⋂

v∈R N(v)| ≥ |R| meet the

conditions of Proposition 4.3 [6, Proposition 2.2].

Recall that, if G1 and G2 are disjoint graphs, the union and the join of G1 and

G2, denoted respectively by G1 ∪ G2 and G1 ∨ G2, are the graphs defined by

V (G1 ∪ G2) = V (G1 ∨ G2) = V (G1) ∪ V (G2);

E(G1 ∪ G2) = E(G1) ∪ E(G2);

E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ E,

where E consists of all the edges (u, v) with u ∈ V (G1), v ∈ V (G2). It is evident that

T (G1 ∪ G2) = T (G1) + T (G2) and that M+(G1 ∪ G2) = M+(G1) + M+(G2). Hence,

if the inequalities T (Gi) ≤ M+(Gi), i = 1, 2 hold, then the corresponding inequality

also holds for their union. As it turns out we can make a similar statement about the

join of two graphs.

Proposition 4.4. Suppose G and H are two graphs without isolated vertices

that satisfy T (G) ≤ M+(G) and T (H) ≤ M+(H). Then

T (G ∨ H) ≤ M+(G ∨ H).

Proof. We have assumed that both G and H have no isolated vertices, so that

the equality (see [6])

mr+(G ∨ H) = max{mr+(G),mr+(H)},

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 10-21, January 2011

http://math.technion.ac.il/iic/ela



ELA

Minimum Semidefinite Rank of Outerplanar Graphs and Tree Cover Number 19

holds. In this case we then have

T (G ∨ H) ≤ T (G) + T (H)

≤ M+(G) + M+(H)

= |G| − mr+(G) + |H| − mr+(H)

= |G| + |H| − (mr+(G) + mr+(H))

≤ |G| + |H| − (max{mr+(G),mr+(H)})

= |G| + |H| − mr+(G ∨ H)

= M+(G ∨ H).

We may also apply similar reasoning to the case of vertex sums of graphs. Let

G1, . . . , Gh be disjoint graphs. For each i, we select a vertex vi ∈ V (Gi) and join

all Gi’s by identifying all vi’s as a unique vertex v. The resulting graph is called the

vertex-sum at v of the graphs G1, . . . , Gh.

Theorem 4.1. Let G be vertex-sum at v of graphs G1 and G2. Assume that

T (G1) ≤ M+(G1) and T (G2) ≤ M+(G2). Then

T (G) ≤ M+(G).

Proof. It is straightforward to verify that T (G) ≤ T (G1) + T (G2) − 1, since the

vertex sum of two trees is again a tree. Thus, it follows that

T (G) ≤ T (G1) + T (G2) − 1

≤ M+(G1) + M+(G2) − 1

= |G1| − mr+(G1) + |G2| − mr+(G2) − 1

= |G1| + |G2| − 1 − (mr+(G1) + mr+(G2))

= M+(G) (by [2]).

So, any such graph for which T > M+ will need to be at least 2-connected.

What about the connection between T and P for general graphs? It is clear that

T ≤ P , but when does T = P for a given graph? For example, if G is outerplanar

and P = T , then we may conclude that

P (G) = T (G) = M+(G) = M(G).

However, even for outerplanar graphs, we need not expect equality between the pa-

rameters T and P . Consider the example of the 5-sun, see Figure 4.2. In this case,

T = 2 but P = 3. Even if we restrict further to the 2-connected case, then there
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Fig. 4.2. 5-sun.

does exist an outerplanar 2-connected graph for which T < P . Consider the graph in

Figure 4.3. For this graph, it can be verified that P = M = 4 and that T = M+ = 3.
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Fig. 4.3. 2-connected outerplanar graph with P > T .
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