Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 1020-1030, October 2011

http://math.technion.ac.il/iic/ela

CHARACTERIZATION OF P-PROPERTY FOR SOME
Z-TRANSFORMATIONS ON POSITIVE SEMIDEFINITE CONE*

R. BALAJIT

Abstract. The P-property of the following two Z-transformations with respect to the positive
semidefinite cone is characterized:

1 — S, where S : — i1s a nilpotent linear transformation,

i) I — S, wh S . §nxn snxn il li fi i

(i) I-— L;\I, where L4 is the Lyapunov transformation defined on S"*™ by L4 (X) = AX +
XAT.

(Here S™*™ denotes the space of all symmetric n X n matrices and I is the identity transformation.)
Key words. P-property, Stein-type transformations, Lyapunov transformations.

AMS subject classifications. 90C33, 17C55.

1. Introduction. An n X n matrix is said to be a Z-matrix if all the off-diagonal
entries are non-positive. Several interesting properties on Z-matrices can be found in
[1]. For a square matrix of order n, by an easy verification, we find that the following
are equivalent:

1. Ais a Z-matrix.
2. If £ € R™ and y € R™ then,

x>0, y>0 (entrywise non-negative), and Ty=0 = yTAz<0.

Motivated by the above fact, we consider Z-transformations with respect to positive
semidefinite cone.

Let S™*™ be the vector space of n X n symmetric matrices with real entries. A
linear transformation L : S"*™ — S™*™ is called a Z-transformation with respect to
the positive semidefinite cone if

X=0, Y>0 and XY =0 = (L(X),Y):=trace(L(X)Y)<0.

(Here X > 0 means X is symmetric and positive semidefinite.) Significances of Z-
transformations (especially in mathematical programming) can be found in [2]. An
important result on Z-transformations is the following:
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THEOREM 1.1 (Theorem 6 [2]). Let L : S"*™ — S"™*" be a Z-transformation.
Then the following are equivalent.

1. There exists a X = 0 such that L(X) = 0.

2. For every @Q = 0, there exists a unique X = 0 such that L(X) = Q.

3. For every Q € S™*™, there exists a X = 0 such that Y := L(X) +Q > 0 and
XY =0.

We will say that a transformation S (defined on S"*™) has the property (c) if:
X=0= S(X)*=0.

Transformations of the type I — S, where I is the identity transformation on S**” and
S is a linear transformation with property (c¢) are called Stein-type transformations.
These transformations are important examples of Z-transformations. For a Stein-type
transformation it is known that all the statements of Theorem 1.1 are equivalent to
the condition p(S) < 1, where p(S) is the spectral radius of S (see [3]).

A transformation L : S"*™ — S™*™ is said to have the P-property if the following
condition is satisfied:

XL(X)=L(X)X and XL(X)=<0 = X=0.

One of the unsolved problem on Z-transformations (see [2]) is to show that all the
items in Theorem 1.1 are equivalent to the condition that L has the P-property. Even
for the Stein-type transformations, the problem remains unsolved. More precisely,
if I — S is a Stein-type transformation such that p(S) < 1, then the problem of
determining whether I — S has the P-property has no answer. It is natural to consider
the simplest case, when p(S) = 0. In other words, assuming S is nilpotent, we ask
whether the Stein-type transformation I — .S has the P-property. First, we settle this
question in this paper.

If S is a Z-transformation satisfying any of the items in Theorem 1.1, we find
that S~! has property (c¢). We now ask whether I — S~! has the P-property if S is
a Z-transformation with property (c) and such that p(S™!') < 1. One of the well-
studied Z-transformations is the Lyapunov transformation for which we know that all
the items of Theorem 1.1 are equivalent to the fact that A is a positive stable matrix
(See the definitions below for Lyapunov transformation and positive stable matrix).
Ifs = L217 where L4 is the Lyapunov transformation corresponding to a positive
stable matrix A with the property p(L;‘l) < 1, then for the Stein-type transformation
I— L;ll, we show that I — Lzl has the P-property.

2. Preliminaries. All the matrices appearing here are assumed to be real. The
following notations and definitions will be useful in the sequel.
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DEFINITION 2.1. Let A be a square matrix. Then A is said to be positive
stable if every eigenvalue of A has a positive real part.

DEFINITION 2.2. For a square matrix A, the corresponding Lyapunov trans-
formation L, : S™*™ — S"*" is defined by L4(X) := AX + X AT .

If @ is an n x n matrix, and a = {1,...,k} (k < n), Que will denote the
k x k leading principal submatrix of Q.

DEFINITION 2.3. Let L : S"*™ — S"*" be a linear transformation. For any
a={1,...,k}, we define a linear transformation L, : S*** — SF*F by

Laa(Z) = [L(X)laa (Z € S**F),

where corresponding to Z € S¥**_ X € S"*" is the unique matrix such that

Zii i, J) € a X
Xy, — (i,j) Eaxa
0 else.

We call L, the principal subtransformation corresponding to «.

If 3 € R, then we define 87 := max(3,0) and 8~ := max(—/3,0). Suppose
D is a diagonal matrix with diagonal entries d;. Then D will denote the
diagonal matrix whose diagonal entries are d;“. Similarly, D~ will denote the
diagonal matrix whose entries are d; .

If X € S™*" then there exists an orthogonal matrix U such that UXUT = D,
where D is diagonal. Now we define X* := UDU” and X~ := UDU".
It is easy to see that for every X € S**" X = X* — X—; X* and X~ are
positive semidefinite.

We will use the fact that if T is a linear transformation on S”*" with property
(¢), then its spectral radius is an eigenvalue of T' (see Theorem 0 in [4]).

Let T : S®*™ — S™*" be a linear transformation. Then T is a nilpotent
transformation if there exists a positive integer m such that 7™ = 0.

3. Results. We prove our main results now.

3.1. Case 1. We intend to show that I — .S has the P-property if S is nilpotent
and has property (¢). The result is trivial if S = 0 and so in the rest of the discussion,
we assume S is nonzero. Let v be the least positive integer satisfying

(3.1)

S¥ =0, and S”7'#£0.

First we prove the following basic lemma.

LEMMA 3.1. Let S be a nilpotent transformation. Assume that S has property

(c).

Then the following are true:

(a) If Q > 0, then @ ¢ Image(S).



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 1020-1030, October 2011
http://math.technion.ac.il/iic/ela

P-property for Some Z-Transformations on Positive Semidefinite Cone 1023

(b) If rank S(X) = m, then there exists a P = 0 such that rank S(P) > m. In
fact, if X € S™*™, then

rank S(X) <rank S(|X]),
where | X|:=XT +X".

Proof. Let S satisfy (3.1). Suppose S(P) = @ for some @ = 0. If X > 0, then
there exists € > 0 such that @ — eX > 0. Since S has the property (¢) and satisfies
(3.1), we have:

(3.2) S"THQ — eX) + SV HeX) =0,

(3.3) S"HQ —eX) =0, and S" " (eX) = 0.

In view of (3.2) and (3.3), S*~1(X) = 0. Therefore for any Y € S"*",
SUHY) = §v Y ) — §v YT ) =0

and so S¥~1 = 0 which is a contradiction to (3.1). This proves (a).

For any two positive semidefinite matrices U and V in S™*",
(3.4) rank(U — V) < rank(U + V).

The above inequality can be proved as follows. Let x € R™ be an element in the null
space of U + V. This gives Uz = —Vz and thus, 27Uz = —27Vz. Since U and V
are symmetric and positive semidefinite, we get Uz = 0 = Vz and thus,

nullity (U 4+ V) < nullity (U — V).
By rank nullity theorem, (3.4) follows.

By setting U = S(X ) and V = S(X ) in (3.4), we find from the property (c) of
S that the positive semidefinite matrix P := X+ 4+ X~ satisfies m < rank S(P). This
proves (b). O

We now prove the first main result.

THEOREM 3.2. Suppose S : S™*" — S"*" is a nilpotent transformation with
property (¢). Then I — S has the P-property.

Proof. We prove the result by induction on n. If n = 2, the result is true (see
Theorem 13 in [2]). For k < n, we will assume that the result holds and now we prove
for k =n. Let Qp € S"*™ be such that

rank S(Qg) > rank S(Q) for all Q € S™*™.
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In view of Item (b) in Lemma 3.1, without any loss of generality, we assume Qg = 0.
If £ = rank S(Qo), then Item (a) of Lemma 3.1 implies & < n. There exists an
orthogonal matrix U such that

US(QuUT = [ Do } |

0 0

D e Skxk being diagonal and nonsingular. Define S : S7%™ — S"*7 by
S(X):=USUTxu)UT.

If Qo = UQoUT, then

@)= ol

By an easy verification, we find that S is nilpotent and has property (c). Further,
(3.5) rank g(@)) > rank S(Q) for all Q € S™*™.

We now claim that for any X € S"*",

(3.6) 5(X) = [ g g ] . for some E € SF*F,

Let @ = 0and I := g(Q) As F =[f;;] = 0, fi; = 0if and only if the ith column

~

of F'is zero. Suppose f;; > 0 for some ¢ > k. Then
rank S(Qq + Q) = rank(S(Qo) + 5(Q)) >k + 1> k.

Thus, we have rank S(Qo + Q) > rank 5(Qo) which is a contradiction to (3.5). So,
for any @ > 0,

} E' e SF*F,

Since for any X € S"*", §(X) = §(X+) — g(X’), using the c-property of S, we see
that (3.6) holds.

X, X

Let X =
et |:X2T X,

] (X; € S¥*F) be such that X (X — S(X)) < 0. If

§(X):[€ 8].
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Then from

2 L ox ]l x]-lo o))

it follows that X7 X5 + X2 < 0, and therefore, X5 and X3 are zero matrices. So,
F = Soa(X1), where o = {1,...,k}. From (3.7) we now have

(3.8) X1(X1 — Saa(X1)) < 0.

We next claim that Spq has the property (c). Let Xy € SEXk be positive semidef-

inite and
~ Xo O
Yy = .

Since S has property (c), Yj is a positive semidefinite matrix. Noticing that Saa(Xo)
is a leading principal submatrix of Yj, we conclude Suq(Xo) is positive semidefinite.
This proves our claim.

Now we assert that S, is nilpotent. Since S, has property (c), 7 := p(gaa) is
an eigenvalue of S,4. Let Xg € be a nonzero matrix in S¥** such that

Saa(X()) = rXp.

In view of (3.6) and the definition of Saq,

§ X() 0 _ TXO 0
o o)) [ 0o o]
Hence, r is an eigenvalue of S. Since S is nilpotent, r = 0. Thus, gaa is nilpotent.

By our induction assumption, I — S,, must have P-property and hence from
(3.8), X7 = 0; thus, X = 0. This proves that I — S has the P-property. It is easy to
see that I — S has the P-property if and only if I — S has the P-property. The proof
is now complete. O

COROLLARY 3.3. Let {A1,..., AL} be a finite set of n x n nilpotent matrices.
Assume that A;A; = AjA; for alli and each A; is nilpotent. Then the transformation
X =YY | AiX AT has the P-property.

Proof. Let Ma,(X) = A;XAT. Then, using A;A; = Aj;A;, we verify that
Ma,Ma, = Ma;Ma,. Now it is easy to see that Z?:l M 4, is nilpotent, and hence,
X — Y7 | A; X AT has the P-property. O
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3.2. Case 2. Now we shall show that if a matrix A is positive stable and
p(L;‘l) < 1, then I — L;ll has the P-property. Note that by Lyapunov theorem
(cf. Theorem 6 [3] ), L;" will have the property (c). Hence, I — L;* is a Stein-type
transformation and satisfy all the items in Theorem 1.1. Before proving the main
result, we will prove some intermediate lemmas.

LEMMA 3.4. Let A be a positive stable matriz of order n and p(Lzl) < 1. Then

1. trace A > 2.
2. If there exist a nonsingular X and Y := X — L;*(X) such that XY =YX
and XY =0, then X must be indefinite.

Proof. If )\ is an eigenvalue of A, then it is straightforward to verify that A+ \* is an
eigenvalue of L 4. In other words, 2 Re(\) is an eigenvalue of the linear transformation
L 4. Our assumptions on A now imply that

1
— <1
< 3Re(y) =P

and hence, Re(\) > 1. As A is a real matrix, we now deduce that the sum of all the
eigenvalues of A is greater than % This proves 1.

Suppose X = 0 is a nonsingular matrix such that XY < 0. Because XY =Y X
there exists an orthogonal matrix U such that X = UDUT and Y = UEU7T, where
D and FE are diagonal matrices and now XY = 0 implies that

(3.9) DE = 0.

The matrix D must be positive definite as X is a nonsingular positive semidefinite
matrix and by (3.9), we conclude E =< 0; hence,

Y <0.

This means that X — L,*(X) < 0. The matrix A is positive stable, and hence by
Lyapunov theorem I — L', is a Z-transformation. From the assumption p(L ') < 1,
it follows from Item 2 of Theorem 1.1 that

(I-LHX)=0 = X<=0.
Therefore, X cannot be positive semidefinite. This is a contradiction.

In a similar manner, it follows that X cannot be negative semidefinite. This
proves 2. O

LEMMA 3.5. If A is positive stable and p(LZl) < 1, then

1. There does not exist a nonsingular matriz X commuting with ¥ = X —
L M(X), such that XY < 0.
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2. If X is either positive semidefinite or negative semidefinite and if ¥ := X —
L N(X) is such that XY =Y X, then

XY 0= X=0.

Proof. Let X be a nonsingular matrix such that XY =Y X and XY =< 0, where
Y := X — L;*(X). In view of previous lemma, X must be indefinite.

As XY =Y X and XY =<0, there is an orthogonal matrix U such that

D 0

0 -—-F

XUT =
UU[ 0 o

o[ 2]

where the matrices D and E are positive definite; F' and G are positive semidefinite.
Further D, FE, F, and G are diagonal. Note that X — Y = L;ll(X), and thus,
X =La(X —Y). We now have

[ ]3 _OE } =UXUT =ULs(X -Y)UT
=ULA(UT(U(X -V Y UDHU)UT
3.10
(3.10) —ULAU" [ DXF _EO_G ] T
:LUAUT(|: D—gF _EO_G })

Let d;, e;, f; and g; be the diagonal entries of D, F, ' and G, respectively.
Assume that the order of D and F is v. If ay1, a9, ..., ay, are the diagonal entries
of UAUT, then we find from the above equations that

dy .
Ok =1,
v = | T T

m lfk:V+1,...,n.

Thus, trace A = trace (UAUT) < % This contradicts Lemma 3.4. Therefore item 1
is proved.
The proof of item 2 follows easily by replacing E = 0 in the above. O

THEOREM 3.6. Let A be an n X n positive stable matrix with real entries. If L 4
is the corresponding Lyapunov transformation then the following are equivalent:

() p(L3) < 1.
(ii) T —L3" has the P-property.
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Proof. Since I—L7" is a Stein-type-transformation, (ii) = (i) follows immediately
from the fact that p(L ;") is an eigenvalue of L. We now prove (i) = (ii).
Let X be such that
X(X - L (X)=0.

Put Y .= X — L;‘l(X). In view of Lemma 3.4 and Lemma 3.5, we see that X must
be indefinite and X is singular. Since X and Y commute and XY = 0, there is an
orthogonal matrix U such that

D 0 0 -F 0 0
vxvur'=1{0 —-E 0|, vyvtf=1 o G o |,
0 0 0 0 0 L

where the matrices D and E are positive definite; F' and G are positive semidefinite.
Further, D, E, F, G and L are diagonal. Assume that D and E are of order v; and
Vg, respectively.

Now working similarly as in (3.10) of previous lemma, it is easy to show that

D 0 0 D+F 0 0
(3.11) 0 —E 0| =Lyayr 0 -E-G 0
0 0 0 0 0 ~L

Put A = UAUT. 1t is straightforward to verify that p(Lz) = p(La). First we consider
the case L = 0. We now define two diagonal matrices of order vy + vy viz.

~ D 0 ~ D+ F 0
R I E-E e S

It is easy to note that D and E are nonsingular.

Let A= { il 212 }, where A; is of order v4 + v5. Since L = 0, from (3.11), we
3 4
have
D 0 —I; E 0 '
0 0 0 0

From the above equation, we have

n ) AT AT
(312) lD 0 A\E + EA EA}

AsE 0

)

0 0

hence, AsFE = 0. The matrix E must be nonsingular and therefore A3 = 0. Thus,
every eigenvalue of A; must be an eigenvalue of A and so A; is positive stable. We
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claim that r := p(L;hl) < 1. Since A; is positive stable, L;‘f will have the property
(¢) (by Lyapunov theorem) and so r is an eigenvalue of L;hl. Let V' be such that
L;l}(V) — V. Let V be the n x n matrix defined by

~ vV o
V= .
o)
It is easy to see that L;(‘N/) = rV and since p(LyY) = p(L;) < 1, we deduce r < 1.
From (3.12), we have D = A, E + EAT, and thus, sz(ﬁ) — E. Now we have
D(D - L;}(D)) = D(D - E)
[D 0 —F 0
0 —-E 0 G
=0.
Thus, D is a nonsingular matrix such that D and D — Lzll(f)) commute and
D(D — L;!(D)) = 0. This contradicts the previous lemma.

We now consider the case where L is nonzero. First assume L is nonsingular.
Since L is a diagonal matrix, the diagonal entries of L must be nonzero now. In this
case using (3.11), we compute the diagonal entries ayy of A:

dg P
Q(dk+fk) 1f]€—1,...7V1
={¢ __ €k L _
Ak 3(en £ 9r) iftk=v1+1,...,v1 + 15
0 itk > v + .

Now it is easy to see that trace A < %(le +1) < % which contradicts Lemma 3.4.

Finally, we consider the case L is singular but nonzero. In this case, we can write
UXUT and UYUT as follows:

D 0 00 -F 0 0 0

0 —E 0 0 0 G 0 0
UXUT = UyuT =

0O 0 0 0| 0 0 Ly 0]

0O 0 0 0 0 0 0 0

where the matrix L, is nonsingular. Suppose the order of L; is v3. Let the matrix A
be partitioned conformally (as above in UXU” and UYU7T) into

A A Az Ay
~ Aoy Azp Az Aoy
Azr Azx Azz Az
Ay Ay Agz Ay
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Following the same arguments as above, we see that A4, Ao, and Ay3 are zero
matrices. Further if A is the (11 +v2+v3) X (11 + 12 +v3) leading principal submatrix
of A, then we see that

D 0 0 —F 0 0
(3.13) 0 —-E 0 |=1L; 0 G 0 :
0 0 0 0 0 L

A is positive stable and p(L;) < 1. Invoking Lemma 3.4, we find that

~ 1
trace A > §(u1 + vy + v3).

However, calculating the trace of A by finding the sum of all the diagonal entries of
A from (3.13), we see that

—_

trace A < 5(1/1 + ).

This is a contradiction. The proof is now complete. O
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