
ELA

EXPONENTS AND DIAMETERS OF STRONG

PRODUCTS OF DIGRAPHS∗

BYEONG MOON KIM† , BYUNG CHUL SONG† , AND WOONJAE HWANG‡

Abstract. The exponent of the strong product of a digraph of order m and a digraph of order n

is shown to be bounded above by m+n− 2, with equality for Zm ⊠Zn. The exponent and diameter

of the strong product of a graph and a digraph are also investigated.
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1. Introduction. Let D = (V,A) be a digraph on n vertices. Throughout this

paper, we assume that D has no loops and no multiple arcs. A walk from u to v in

D is a sequence u = u0, u1, . . . , uk = v of vertices such that there is an arc from ui to

ui+1 in D for each i. We denote the walk by u → u1 → u2 → · · · → uk−1 → v and

its length is k. We use the notation u
k

−→ v when there exits a walk in D of length k

from u to v. The digraph is primitive if there is a k such that u
k

−→ v for each pair

of vertices u and v. Conventionally u
0

−→ u is permitted. We say that the smallest

such value of k is the exponent of D, which is denoted by exp(D). Wielandt [9] found

that the maximum exponent of a primitive digraph on n vertices is Wn = n2−2n+2.

See [1] for more details. Suppose that two digraphs D = (VD, AD) and E = (VE , AE)

are given. Let V = VD × VE . We define

A1 = {((u1, u2), (v1, v2)) ∈ V × V |((u1, v1) ∈ AD and u2 = v2)

or ((u2, v2) ∈ AE and u1 = v1)},

and

A2 = {((u1, u2), (v1, v2)) ∈ V × V |(u1, v1) ∈ AD and (u2, v2) ∈ AE}.

The strong product D ⊠ E of D and E is the digraph (V,A1 ∪ A2). The Cartesian

product D × E and the direct product D ⊗ E of D and E are defined by (V,A1)
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and (V,A2) respectively. The strong product of graphs is used to define the concept

of Shannon capacity which plays an important role in the information theory [8].

Definitions and related results on the product of graphs are provided in [2]. In 1979,

Lamprey and Barnes [6] showed that exp(D × E) ≤ (n + m)2 − 4(n + m) + 5 for

digraphs D and E on n and m vertices, respectively. They also showed exp(D⊗E) =

max{exp(D), exp(E)} for primitive digraphs D and E. In 1987, Kwasnik [5] studied

the exponent of other types of products such as the disjunction and lexicographic

products of graphs. Recently, it has been proved in [3] that if D and E are digraphs

on m and n vertices, respectively, and D×E is primitive, then exp(D×E) ≤ mn−1.

In [3] it was also showed that exp(G×D) = exp(G) + diam(D) for a primitive graph

G and a strongly connected bipartite digraph D, and they computed the exponent of

the Cartesian product of two cycles [4]. In this paper, we show

exp(D ⊠ E) ≤ n + m − 2 (1.1)

for strongly connected digraphs D and E on n and m vertices, respectively. Let Zn

and Zm be the directed cycles of order n and m respectively. We also prove that

exp(Zn ⊠ Zm) = n + m − 2.

As a consequence, the bound in (1.1) is tight. A graph G is considered as a digraph

by treating the edges of G as bidirectional. In particular, a cycle Cn of length n is

considered as a digraph in the same manner. For a connected graph G and a strongly

connected digraph E, we show exp(G⊠E) is diam(G⊠E) or diam(G⊠E)+1, and we

find the condition under which the latter case holds. As a consequence, we compute

exp(Cn ⊠ Zm).

2. Upper bound on the exponent of strong products of two digraphs.

Lemma 1. Let D and E be digraphs, u, v ∈ VD and z, w ∈ VE. If u
t

−→ v in D

and z
s

−→ w in E, then (u, z)
α

−→ (v, w) in D⊠E for all α with max{t, s} ≤ α ≤ t+s.

Proof. We may assume that t ≤ s. Let u → u0 → u1 → · · · → ut = v in D and

z = z0 → z1 → · · · → zs = w in E. If i = α− s for 0 ≤ i ≤ t, then (u, z) = (u0, z0) →

(u1, z1) → · · · → (ut−i, zt−i) → (ut−i, zt−i+1) → · · · → (ut−i, zs) → (ut−i+1, zs) →

· · · → (ut, zs) = (v, w) is a walk of length t − i + s − (t − i) + t − (t − i) = s + i = α

in D ⊠ E.

Lemma 2. Let D and E be strongly connected digraphs, u, v ∈ VD and z, w ∈ VE.

If there are a cycle C passing through v of length k in D, u
t

−→ v′ in D for some vertex

v′ of C, and z
s

−→ w in E for some s ≥ k− 1, then, for all α with max{t+k, s} ≤ α,

(u, z)
α

−→ (v, w) in D ⊠ E.

Proof. Since v and v′ are vertices of C, v′
l

−→ v in D for some l with 0 ≤ l ≤ k−1.

So t + l ≤ t + k. Since α − t − l ≥ α − t − k ≥ 0, there is a q ≥ 0 such that
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kq ≤ α − t − l ≤ kq + k − 1. Since u
t

−→ v′
l

−→ v
kq
−→ v, u

kq+t+l
−→ v in D. Since

z
s

−→ w in E and max{kq + t + l, s} ≤ α ≤ kq + t + l + k − 1 ≤ kq + t + l + s, by

Lemma 1, (u, z)
α

−→ (v, w) in D ⊠ E.

Theorem 1. Let D and E be strongly connected digraphs on n and m vertices

(n,m ≥ 2), respectively. Then D ⊠ E is primitive and

exp(D ⊠ E) ≤ n + m − 2.

Proof. It suffices to show that for each pair of vertices (u, z), (v, w) ∈ D ⊠ E and

for each α ≥ n + m − 2, we have (u, z)
α

−→ (v, w) in D ⊠ E. Let k be the minimum

length of the cycles in D passing through v, and C be one such cycle. Let t be the

distance from u to C in D. Then k + t ≤ n.

Let l be the minimum length of the cycle in E passing through w and s be the

distance from z to w. Then l, s ≤ m. If s ≥ k − 1, then, by α ≥ n ≥ t + k and

α ≥ m ≥ s, Lemma 2 implies that (u, z)
α

−→ (v, w). If s < k−1, then there is a q ≥ 0

such that lq < k − s − 1 ≤ l(q + 1). Then l(q + 1) + s = l + lq + s ≤ l + k − 2 ≤

m + k − 2 ≤ n + m − 2 ≤ α. Since z
s

−→ w
l(q+1)
−→ w, z

l(q+1)+s
−→ w. By Lemma 2,

(u, z)
α

−→ (v, w).

Theorem 2. For n,m ≥ 2,

exp(Zn ⊠ Zm) = n + m − 2.

Proof. Let Zn be a directed cycle v0 → v1 → · · · → vn−1 → v0 and Zm be a

directed cycle w0 → w1 → · · · → wm−1 → w0. We may assume n ≤ m. Let r be

the residue of m − 2 modulo n. Suppose (v0, w0)
n+m−3
−→ (vr, wn−2). Let (v0, w0) =

(x0, y0) → (x1, y1) → · · · → (xn+m−3, yn+m−3) = (vr, wn−2) be a path in Zn ⊠ Zm

from (v0, w0) to (vr, wn−2). Then there are i0 < i1 < · · · < is and j0 < j1 < · · · < jt

such that i0 = j0 = 0, for all p, q with 0 ≤ p ≤ s − 1 and 0 ≤ q ≤ t − 1, xip
=

xip+1 = · · · = xip+1−1 6= xip+1
, yjq

= yjq+1 = · · · = yjq+1−1 6= yjq+1
and xis

= xis+1 =

· · · = xn+m−3, yjt
= yjt+1 = · · · = yn+m−3. Then for all i = 0, 1, . . . , n + m − 3,

(xi, yi) = (xip
, yjq

) for some p and q. If 0 ≤ i ≤ n + m − 4 and (xi, yi) = (xip
, yjq

),

since (xi+1, yi+1) 6= (xi, yi), xi+1 = xip+1
or yi+1 = yjq+1

. So if (xi, yi) = (xip
, yjq

), we

can show i ≤ p + q, by induction. If xip
= vl and l 6= n − 1, since (xip

, xip+1
) ∈ AZn

,

xip+1
= vl+1. If xip

= vn−1, since xip
= vn−1 → xip+1

, xip+1
= v0. Since xi0 = v0, we

can show by induction that if xip
= vl, p ≡ l (mod n). Similarly, we can show that if

yjq
= wk, q ≡ k (mod m). Since yjt

= wn−2, t ≡ n−2 (mod m). Since t ≤ n+m−3

and n ≤ m, t = n − 2. Since xis
= vr, s ≡ r (mod n). So s ≡ r ≡ m − 2 (mod n).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1106-1111, November 2011

http://math.technion.ac.il/iic/ela



ELA

Exponents and Diameters of Strong Products Digraphs 1109

Since s ≤ n+m−3, s ≤ m−2. So n+m−3 ≤ s+ t ≤ (m−2)+(n−2) = n+m−4.

This is a contradiction. So (v0, w0)
n+m−3

9 (vr, wn−2). Thus, using Theorem 1,

exp(Zn ⊠ Zm) = n + m − 2.

3. Exponents and diameters of strong products of digraphs. For any

u, v ∈ VD, the distance dist(u, v) from u to v is the smallest k such that there is

a walk from u to v of length k. The diameter diam(D) of the strongly connected

digraph D is the maximum of dist(u, v) for all u, v ∈ VD.

Proposition 1. If D and E are strongly connected digraphs, then

diam(D ⊠ E) = max{diam(D),diam(E)}.

Proof. If u, v ∈ VD and z, w ∈ VE , then by Lemma 1, we have

dist((u, z), (v, w)) ≤ max{dist(u, v),dist(z, w))}.

Thus, diam(D ⊠ E) ≤ max{diam(D),diam(E))}.

Conversely, if u, v ∈ VD, z, w ∈ VE , and dist((u, z), (v, w)) = α, then (u, z) =

(u0, z0) → (u1, z1) → · · · → (uα, zα) = (v, w) for some (ui, zi) ∈ VD⊠E where

i = 1, 2, . . . , α. Thus, there are 0 = i0 < i1 < i2 < · · · < is ≤ α such that

uip
= uip+1 = · · · = uip+1−1 6= uip+1 for all p = 0, 1, . . . , s − 1. Since u =

ui0 → ui1 → · · · → uis
= uα = v, dist(u, v) ≤ s ≤ α = dist((u, z), (v, w)). So

diam(D) ≤ diam(D ⊠E). Similarly, diam(E) ≤ diam(D ⊠E). Thus, diam(D ⊠E) =

max{diam(D),diam(E))}.

Lemma 3. Let G be a connected graph and D be a strongly connected digraph.

If (u, z), (v, w) ∈ VG⊠D, ((u, z), (v, w)) ∈ AG⊠D and z 6= w, then (u, z)
k

−→ (v, w) in

G ⊠ D for all k ≥ 1.

Proof. Since z 6= w, (z, w) ∈ AD. Since G is connected, there is x ∈ VG such

that {u, x} ∈ EG. Since (u, z) → (x, z) → (u, z), (u, z)
2t
−→ (u, z) for all t ≥ 0. If

u = v, since (u, z)
2t
−→ (u, z)

1
−→ (u,w) and (u, z)

2t
−→ (u, z)

1
−→ (x, z)

1
−→ (u,w),

(u, z)
2t+1
−→ (u,w) = (v, w) and (u, z)

2t+2
−→ (u,w) = (v, w) for all t ≥ 0. If u 6= v,

u → v. Since (u, z)
2t
−→ (u, z)

1
−→ (v, w) and (u, z)

2t
−→ (u, z)

1
−→ (u,w)

1
−→ (v, w),

(u, z)
2t+1
−→ (v, w) and (u, z)

2t+2
−→ (v, w) for all t ≥ 0.

Theorem 3. If G is a connected graph and D is a strongly connected digraph

such that |VG| ≥ 2 and |VD| ≥ 2, then exp(G⊠D) is diam(G⊠D) or diam(G⊠D)+1.

Moreover, exp(G⊠D) = diam(G⊠D)+1 if and only if G and D satisfy the following:

1. diam(D) ≥ diam(G),
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2. there is v ∈ VD such that v
l

9 v for all l = 1, 2, . . . ,diam(D),

3. either G is not primitive or G is primitive and exp(G) > diam(D).

Proof. Let diam(G) = m and diam(D) = n. For all u, v ∈ VD, there is u′ ∈ VD

such that (u, u′) ∈ AD. Since diam(D) = n, u′
t

−→ v for some t ≤ n. For all x, y ∈ VG,

x
s

−→ y for some s ≤ m. If α = max{m,n}, by Lemma 1, (x, u′)
l

−→ (y, v) for some

l ≤ α. If k ≥ α+1, by Lemma 3, (x, u)
k−l
−→ (x, u′). Since (x, u)

k−l
−→ (x, u′)

l
−→ (y, v),

(x, u)
k

−→ (y, v). So exp(G ⊠ D) ≤ α + 1 = diam(G ⊠ D) + 1. Since diam(G ⊠ D) ≤

exp(G ⊠ D), exp(G ⊠ D) is diam(G ⊠ D) or diam(G ⊠ D) + 1.

If exp(G⊠D) = α+1, then there are (x, u), (y, v) ∈ VG⊠D such that (x, u)
α
9 (y, v)

in G ⊠ D. If u
l

−→ v for some l with 1 ≤ l ≤ α, then there is u′ ∈ VD such that

(u, u′) ∈ AD and u′
l−1
−→ v. If x 6= y, then there is x′ ∈ VG such that {x, x′} ∈ EG

and x′
s−1
−→ y where s = dist(x, y). If max{s, l} = p, then p ≤ α. By Lemmas

1 and 3, (x′, u′)
p−1
−→ (y, v) and (x, u)

α−p+1
−→ (x′, u′). So (x, u)

α
−→ (y, v). This is

a contradiction. If x = y, by Lemma 3, (x, u)
α−l+1
−→ (x, u′). Since (x, u)

α−l+1
−→

(x, u′)
l−1
−→ (x, v), (x, u)

α
−→ (x, v) = (y, v). This is a contradiction. So u

l
9 v for all l

such that 1 ≤ l ≤ α. If u 6= v, let d = dist(u, v). Then 1 ≤ d ≤ α and u
d
9 v. This is

a contradiction. So u = v and G and D satisfy condition (2).

Since D is strongly connected, there is ũ ∈ VD such that (ũ, u) ∈ AD. If

dist(u, ũ) = r ≤ α, since u
r+1
−→ u, r + 1 ≥ α + 1. Since r ≤ n ≤ α, r = n = α.

So n ≥ m. Thus, G and D satisfy condition (1). Since (x, u)
α
9 (y, u), x

α
9 y in G.

So G and D satisfy condition (3).

Conversely, if G and D satisfy conditions (1), (2) and (3), then there is u ∈ VD

such that u
l

9 u for all l such that 1 ≤ l ≤ n = α, and there are x, y ∈ VG

such that x
α
9 y in G. If (x, u)

α
−→ (y, u), then (x, u) = (x0, u0) → (x1, y1) →

· · · → (xα, yα) = (y, u) for some x0, x1, . . . , xα ∈ VG and u0, u1, . . . , uα ∈ VD. If

u0 = u1 = · · · = uα = u, since x = x0 → x1 → · · · → xα = y, x
α

−→ y. This is a

contradiction. If ui 6= u for some i, there are 0 = i0 < i1 < · · · < is ≤ α such that

uip
= uip+1 = · · · = uip+1−1 6= uip+1

for all p = 0, 1, . . . , s− 1 and uis
= uis+1 = · · · =

uα. Since u = ui0 → ui1 → · · · → uis
→ uα = u, u

s
−→ u. Since ui 6= u for some i,

1 ≤ s ≤ α. This is a contradiction. So (x, u)
α
9 (y, u). Thus, exp(G ⊠ D) = α + 1.

Corollary 1. If G and H are connected graphs, then

exp(G ⊠ H) = diam(G ⊠ H)

except when both G and H are complete graphs.

Proof. If exp(G ⊠ H) = diam(G ⊠ H) + 1, since v
2

−→ v for all v ∈ VH , by

Theorem 3, 1 ≤ diam(G) ≤ diam(H) = 1. So G and H are complete graphs.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1106-1111, November 2011

http://math.technion.ac.il/iic/ela



ELA

Exponents and Diameters of Strong Products Digraphs 1111

Note that the strong product of two complete graphs is also a complete graph,

whose exponent is 2.

Corollary 2.

exp(Cn ⊠ Zm) =















⌊n
2 ⌋, if n ≥ 2m

m − 1, if n is odd and n ≤ m

m, if n is even and n ≤ 2m − 2, or n is odd

and m + 1 ≤ n ≤ 2m − 1.

Proof. If exp(Cn ⊠ Zm) = diam(Cn ⊠ Zm) + 1, diam(Cn) = ⌊n
2 ⌋ ≤ diam(Zm) =

m − 1. So n ≤ 2m − 1. Moreover, Cn is not primitive, or Cn is primitive and

exp(Cn) = n − 1 > diam(Zm) = m − 1. So n is even, or n is odd and n ≥ m + 1.

Thus, if n is even, n ≤ 2m − 2. And if n is odd, m + 1 ≤ n ≤ 2m − 1. In this case,

exp(Cn ⊠ Zm) = (m − 1) + 1 = m. Otherwise, exp(Cn ⊠ Zm) = diam(Cn ⊠ Zm) =

max{⌊n
2 ⌋,m − 1} =

{

⌊n
2 ⌋, n ≥ 2m

m − 1, if n ≤ 2m − 1.

Acknowledgments The authors would like to thank the anonymous referee

for valuable comments and suggestions. This work was supported by the Research

Institute of Natural Science of Gangneung-Wonju National University.

REFERENCES

[1] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press,

Cambridge, 1991.
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