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Abstract. Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper,

S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively.

Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian

spectra, respectively.
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1. Introduction. In this paper, G = (V,E) is an undirected simple graph. The

neighbor set of a vertex u is denoted by N(u). Let d(u) be the degree of vertex u,

namely, d(u) = |N(u)|. If d(u) = 1, then u is called a pendant vertex of G. Suppose the

degree of vertex vi equals di, for i = 1, 2, . . . , n. Throughout this paper, we enumerate

the degrees in non-increasing order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. Sometimes we write

di(G) in place of di, in order to indicate the dependence on G. By v1v2 ∈ E(G),

we mean an edge, of which the end vertices are v1 and v2. Let G1 ∪ G2 denote the

(disconnected) graph consisting of two components G1 and G2, and kG be the graph

consisting of k (where k ≥ 0 is an integer) copies of the graph G. The join G1 ∨G2 of

two disjoint graphs G1 and G2 is the graph having vertex set V (G1∨G2) = V (G1∪G2)

and edge set E(G1 ∨G2) = E(G1)∪E(G2)∪{uv : u ∈ V (G1), v ∈ V (G2)}. As usual,

Kn, Pn and Cn denote the complete graph, path and cycle of order n, respectively.

Specially, K1 denotes an isolated vertex. A graph is a cactus, or a treelike graph, if

any pair of its cycles has at most one common vertex [1, 20]. If all cycles of the cactus

G have exactly one common vertex, then G is called a bundle [1]. Let S(n, c) be the

bundle with n vertices and c cycles of length 3 depicted in Figure 1.1, where n ≥ 2c+1

and c ≥ 0. By the definition, it follows that S(n, c) = K1 ∨ (cK2 ∪ (n − 2c − 1)K1).
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Fig. 1.1. The bundle S(n, c).

The adjacency matrix A(G) = [aij ] of G is an n× n symmetric matrix of 0’s and

1’s with aij = 1 if and only if vivj ∈ E(G). Let D(G) be the diagonal matrix whose

(i, i)-entry is di, where 1 ≤ i ≤ n. The Laplacian matrix of G is L(G) = D(G)−A(G),

and the signless Laplacian matrix of G is Q(G) = D(G) + A(G). Sometimes, Q(G) is

also called the unoriented Laplacian matrix of G (see, e.g., [10, 22]).

It is well known that L(G) is positive semidefinite so that its eigenvalues can be

arranged as follows:

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) = 0.

Research on the signless Laplacian matrix has recently become popular [3, 5,

10, 22]. It is easy to see that Q(G) is also positive semidefinite [5] and hence its

eigenvalues can be arranged as:

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) ≥ 0.

If there is no confusion, sometimes we write λi(G) as λi, and µi(G) as µi. In the

following, let SL(G) and SQ(G) denote the spectra, i.e., eigenvalues of L(G) and

Q(G), respectively.

A graph G is said to be determined by its Laplacian spectrum (resp. adjacency

spectrum, signless Laplacian spectrum) if there does not exist a non-isomorphic graph

H such that H and G share the same Laplacian spectrum (resp. adjacency spectrum,

signless Laplacian spectrum). The question “which graphs are determined by their

spectra?” is proposed by van Dam and Haemers in [6]. Up to now, only a few

families of graphs are known to be determined by their spectra [6, 9]. For example,

the path, the complement of a path, the complete graph, and the cycle were proved

to be determined by their adjacency spectra [6, 9]. The path, the complete graph, the

cycle, the star and some quasi-star graphs, together with their complement graphs

were shown to be determined by their Laplacian spectra [6, 9, 15, 21]. Let Km
n be the

graph obtained by attaching m pendant vertices to a vertex of the complete graph

Kn−m, and Un,p be the graph obtained by attaching n − p pendant vertices to a

vertex of Cp. Recently, Zhang and Zhang in [23] confirmed that Km
n together with its
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complement are determined by their Laplacian and adjacency spectra, respectively,

and Un,p is determined by its Laplacian spectrum. Moreover, they proved that Un,p

is determined by its adjacency spectrum if p is odd. Very recently, the authors of [24]

showed that Hn,p, which is obtained by appending a cycle Cp to a pendant vertex of

a path Pn−p, is determined by its signless Laplacian spectrum.

S(n, c) is an extremal graph in some classes of graphs. For instance, S(n, c) is

the graph with the maximal spectral radius, the maximal Merrifield-Simmons index,

the minimal Hosoya index, the minimal Wiener index, and the minimal Randić index

in the set of all connected cacti on n vertices with c cycles [1, 14]. In this paper, by

using a new method different from [6, 9, 15, 21, 23, 24], we show that S(n, c) together

with its complement are determined by their Laplacian spectra, and we also prove

that S(n, c) together with its complement are determined by their signless Laplacian

spectra.

2. S(n, c) and its complement are determined by their Laplacian spec-

tra. The following lemmas are well-known:

Lemma 2.1. [12, 18] If G1 and G2 are two disjoint graphs on k and m vertices

respectively, with Laplacian eigenvalues 0 = λk(G1) ≤ λk−1(G1) ≤ · · · ≤ λ1(G1) and

0 = λm(G2) ≤ λm−1(G2) ≤ · · · ≤ λ1(G2) respectively, then the Laplacian eigenvalues

of G1∨G2 are given by 0, λk−1(G1)+m, . . . , λ1(G1)+m,λm−1(G2)+k, . . . , λ1(G2)+k,

and m + k.

Lemma 2.2. [13] If G = (V,E) is a graph of order n, then λ1(G) ≤ n. Moreover,

λ1(G) = n ≥ 2 if and only if G = G1 ∨G2, where each of G1 and G2 has at least one

vertex.

Let G′ = G + e be the graph obtained from G by inserting a new edge e into G,

and G − u be the graph obtained from G by deleting the vertex u ∈ V (G) and all

the edges adjacent to u. It follows by the Courant–Weyl inequalities [4, Theorem 2.1]

that:

Lemma 2.3. [7] The Laplacian eigenvalues of G and G′ = G + e interlace, that

is, λ1(G
′) ≥ λ1(G) ≥ λ2(G

′) ≥ λ2(G) ≥ · · · ≥ λn(G′) = λn(G) = 0.

Lemma 2.4. [17, 19] If G is a graph with n vertices and at least one edge, then

µ1(G) ≥ λ1(G) ≥ d1(G) + 1. If G is connected, the first equality holds if and only if

G is bipartite, the second equality holds if and only if d1(G) = n − 1.

As usual, Ks,t denotes the complete bipartite graph with s vertices in one part

and t in the other. Specially, K1,n−1 denotes the star of order n. By Lemmas 2.1–2.2,

it is not difficult to prove that:
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Lemma 2.5. [15, 21] K1,n−1 is determined by its Laplacian spectrum.

Theorem 2.6. If c ≥ 0, then S(n, c) is determined by its Laplacian spectrum.

Proof. If c = 0, then S(n, c) ∼= K1,n−1. By Lemma 2.5, the result follows. In the

following, assume that c ≥ 1. Since n ≥ 2c + 1 ≥ c + 2, n = c + 2 if and only if n = 3

and c = 1. Thus, n = c + 2 implies that S(n, c) ∼= C3, it can be readily checked that

C3 is determined by its Laplacian spectrum [6]. So, we may assume that c ≥ 1 and

n > c + 2 in the sequel.

By Lemma 2.1 and SL(K2) = (2, 0), we have

SL(S(n, c)) = (n, 3, . . . , 3, 1, . . . , 1, 0),

where the multiplicity of 3 is c, and the multiplicity of 1 is n − c − 2. Now suppose

there exists some graph G, such that SL(G) = SL(S(n, c)), then λ1(G) = n. By

Lemma 2.2, it follows that G = G1 ∨ G2, where G1 and G2 are two disjoint graphs

with |V (G1)| ≥ |V (G2)|. Since n > c + 2, we have λn−1(G) = λn−1(S(n, c)) = 1.

Next we shall prove that |V (G2)| = 1. Otherwise, if |V (G2)| ≥ 2, by Lemmas 2.1

and 2.3, we can conclude that λn−1(G) ≥ λn−1(K|V (G1)|,|V (G2)|) = |V (G2)| ≥ 2, a

contradiction. Thus, |V (G2)| = 1 follows. Now suppose V (G2) = {v0}, then G1 = G−
v0. By Lemma 2.1 and SL(G) = SL(S(n, c)), then SL(G1) = (2, 2, . . . , 2, 0, 0, . . . , 0),

where the multiplicity of 2 is c, and the multiplicity of 0 is n− c− 1. By Lemma 2.4,

we can conclude that d1(G1) = 1, and hence G1 = cK2 ∪ (n − 2c − 1)K1. Therefore,

G ∼= S(n, c).

Let GC be the complement graph of G. In particular, SC(n, c) denotes the com-

plement graph of S(n, c). For the relation between SL(G) and SL(GC), it has been

shown that:

Lemma 2.7. [17] Let G be a graph with n vertices. If λi(G), i = 1, 2, . . . , n are the

eigenvalues of L(G), then the eigenvalues of L(GC) are n− λi(G), i = 1, 2, . . . , n− 1

and 0.

By Lemma 2.7 and Theorem 2.6, we have:

Corollary 2.8. If c ≥ 0, then SC(n, c) is determined by its Laplacian spec-

trum.

3. S(n, c) is determined by its signless Laplacian spectrum. In this sec-

tion, we shall show that S(n, c) is determined by its signless Laplacian spectrum.

First we need some lemmas.

Suppose M and N are real symmetric matrices of order n and m with eigenvalues

ρ1(M) ≥ · · · ≥ ρm(M) and ρ1(N) ≥ · · · ≥ ρn(N), respectively. It is well-known that:
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Lemma 3.1. [11] If M is a principal submatrix of N , then the eigenvalues of M

interlace those of N , i.e., ρi(N) ≥ ρi(M) ≥ ρn−m+i(N) for i = 1, 2, . . . ,m.

Lemma 3.2. [8] If G is a graph on n vertices with vertex degrees d1 ≥ d2 ≥
· · · ≥ dn and signless Laplacian eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn, then µ2 ≥ d2 − 1.

Moreover, if µ2 = d2 − 1, then d1 = d2, and the maximum and the second maximum

degree vertices are adjacent.

By Lemmas 2.4 and 3.2, it follows that µ1 ≥ d1 + 1 and µ2 ≥ d2 − 1. For the

general case, we have:

Theorem 3.3. If G is a finite simple graph on n vertices with vertex degrees

d1 ≥ d2 ≥ · · · ≥ dn and signless Laplacian eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn, then

µm ≥ dm − m + 1, where m = 1, 2, . . . , n.

To prove Theorem 3.3, we need the next lemma.

Lemma 3.4. [4] (Weyl) Suppose An and Bn are two real symmetric matrices of

order n, then ρn(A)+ρn(B) ≤ ρn(A+B), where ρn(A), ρn(B) and ρn(A+B) denote

the smallest eigenvalues of A, B and A + B, respectively.

Proof of Theorem 3.3. Since Q(G) is positive semidefinite, µm ≥ 0. If dm−m+1 ≤
0, the result already holds. So, we assume that dm > m − 1 in the following.

Let T = {v1, v2, . . . , vm}. Consider the principal submatrix QT of Q(G) with

rows and columns indexed by T . Let Q(T ) be the signless Laplacian matrix of the

subgraph induced by T . Then, QT = Q(T ) + D′(T ), where D′(T ) is the diagonal

matrix and the (i, i)-entry of D′(T ) is the number of neighbors of vi outside T . Since

Q(T ) is positive semidefine, and D′(T ) ≥ (dm − m + 1)Im, by Lemma 3.4 we have

ρm(QT ) ≥ ρm(Q(T )) + ρm(D′(T )) ≥ ρm(D′(T )) ≥ dm − m + 1. Recall that QT

is the principal submatrix of Q(G), thus Lemma 3.1 implies that µm ≥ ρm(QT ) ≥
dm − m + 1. We get the required inequality.

Remark 3.5. The main idea of the proof in Theorem 3.3 comes from Lemma 2

of [2]. In [2], it has been shown that “Let G be a finite simple graph on n vertices

with vertex degree d1 ≥ d2 ≥ · · · ≥ dn and Laplacian eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

If G 6∼= Km ∪ (n − m)K1, then λm ≥ dm − m + 2, where m = 1, 2, . . . , n.” Though

µ1 ≥ λ1 ≥ d1 + 1 by Lemma 2.4, µm ≥ dm − m + 2 does not hold for all connected

graphs. For example, µ2(Kn − e) = n− 2 < n− 1 = d2(Kn − e), where Kn − e is the

graph obtained from Kn by deleting one edge and n ≥ 4.

Let Φ(G, x) = det(xI−Q(G)) be the signless Laplacian characteristic polynomial

of G.

Lemma 3.6. If c ≥ 1, then µ1(S(n, c)) > n, µ2(S(n, c)) ≤ 3 and 0 < µn(S(n, c))
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≤ 1.

Proof. By a straightforward computation, we have

Φ(S(n, c), x) = (x − 1)n−c−2(x − 3)c−1ϕ1(x),(3.1)

where ϕ1(x) = x3 − (n + 3)x2 + 3nx − 4c.

We consider the next two cases.

Case 1. n ≥ 2c + 2.

Since ϕ1(0) = −4c < 0, ϕ1(1) = 2(n − 2c − 1) > 0, ϕ1(3) = −4c < 0, ϕ1(n) =

−4c < 0 and ϕ1(n+1) = n2 −n− 2− 4c ≥ n2 −n− 2− 2n+4 = n2 − 3n+2 > 0. By

Eq. (3.1), it follows that µ1(S(n, c)) > n, µ2(S(n, c)) ≤ 3 and 0 < µn(S(n, c)) < 1.

Case 2. n = 2c + 1.

If c = 1, then n = 3 and hence S(n, c) = C3, it is easily checked the result follows.

Thus, we may suppose that n ≥ 5, i.e., c ≥ 2 in the following. Then, Eq. (3.1) can

be rewritten as

Φ(S(n, c), x) = (x − 1)n−c−1(x − 3)c−1ϕ2(x),(3.2)

where ϕ2(x) = x2 − (n + 2)x + 4c.

Since ϕ2(1) = 2c − 2 > 0, ϕ2(2) = −2 < 0, ϕ2(n) = −2 < 0 and ϕ2(n + 1) =

2c − 2 > 0. By Eq. (3.2), it follows that µ1(S(n, c)) > n, µ2(S(n, c)) = 3 and

µn(S(n, c)) = 1.

By combining the above arguments, the result follows.

Lemma 3.7. [5] Let G = (V,E) be a graph on n vertices. Then, µ1(G) ≤
max{d(u) + d(v) : uv ∈ E}. For a connected graph G, equality holds if and only if G

is regular or semi-regular bipartite.

Lemma 3.8. For c ≥ 1, if SQ(G) = SQ(S(n, c)), then G is connected with

d2(G) ≤ 4. Moreover, d2(G) = 4 implies that d1(G) = d2(G).

Proof. Since SQ(G) = SQ(S(n, c)), by Lemma 3.6 it follows that µ1(G) =

µ1(S(n, c)) > n and µ2(G) = µ2(S(n, c)) ≤ 3. By Lemma 3.2, we can conclude that

d2(G) ≤ 4, and d2(G) = 4 implies that d1(G) = d2(G).

Suppose to the contrary that G is disconnected. Let G1 be the greatest connected

component, i.e., the connected component with largest number of vertices, of G. Since

d2(G) ≤ 4 and µ1(G) > n, we have n−3 ≤ d1(G) ≤ n−2 by Lemma 3.7. We consider

the next two cases.

Case 1. d1(G) = n − 3.
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Then, |V (G1)| ≥ n− 2. If |V (G1)| = n− 1, then G = G1 ∪K1. This implies that

µn(G) = 0, a contradiction to µn(G) = µn(S(n, c)) > 0. If |V (G1)| = n − 2, then

G = G1 ∪ K2 or G = G1 ∪ 2K1. This also implies that µn(G) = 0, a contradiction.

Case 2. d1(G) = n − 2.

Then, |V (G1)| = n−1, and hence G = G1∪K1. This also implies that µn(G) = 0,

a contradiction to µn(G) = µn(S(n, c)) > 0.

Thus, G is connected.

Let m(v) denote the average of the degree of the vertices adjacent to v, i.e.,

m(v) =
∑

u∈N(v) d(u)/d(v).

Lemma 3.9. [7] Let G be a connected graph. Then µ1(G) ≤ max{d(v) + m(v) :

v ∈ V }, and equality holds if and only if G is a regular graph or a semi-regular

bipartite graph.

Lemma 3.10. Let G = (V,E) be a connected graph on n ≥ 2c + 3 vertices with

n + c − 1 edges. If c ≥ 1 and d1(G) ≤ n − 2, then µ1(G) ≤ n.

Proof. By Lemma 3.9, we only need to prove that max{d(v)+m(v) : v ∈ V } ≤ n.

Suppose max{d(v) + m(v) : v ∈ V } occurs at the vertex u0. Three cases arise:

d(u0) = 1, d(u0) = 2, or 3 ≤ d(u0) ≤ n − 2.

Case 1. d(u0) = 1.

Suppose v ∈ N(u0). Since d(v) ≤ d1(G) ≤ n− 2, d(u0)+m(u0) = d(u0)+ d(v) ≤
n − 1 < n.

Case 2. d(u0) = 2.

Suppose that v,w ∈ N(u0).

If vw ∈ E, since G is a connected graph with n + c − 1 edges, it follows that

|N(v)∩N(w)| ≤ c and |N(v)∪N(w)| ≤ n. Therefore, d(u0)+m(u0) = 2+ d(v)+d(w)
2 ≤

2 + n+c
2 ≤ n by n ≥ 2c + 3.

If vw 6∈ E, since G is a connected graph with n + c − 1 edges, it follows that

|N(v) ∩ N(w)| ≤ c + 1 and |N(v) ∪ N(w)| ≤ n − 2. Therefore, d(u0) + m(u0) =

2 + d(v)+d(w)
2 ≤ 2 + n+c−1

2 < n by n ≥ 2c + 3.

Case 3. 3 ≤ d(u0) ≤ n − 2.

Note that 3 ≤ d(u0) ≤ n − 2 and the number of edges of G is n + c − 1, then

d(u0)+m(u0) ≤ d(u0)+ 2(n+c−1)−d(u0)−1
d(u0)

= d(u0)−1+ 2n+2c−3
d(u0)

. Next we shall prove

that d(u0) − 1 + 2n+2c−3
d(u0)

≤ n, equivalently, d(u0)(n + 1 − d(u0)) ≥ 2n + 2c − 3. Let
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f(x) = (n + 1 − x)x.

When 3 ≤ x ≤ n+1
2 , since f ′(x) = n + 1 − 2x ≥ 0, we have f(x) ≥ f(3) =

3(n − 2) ≥ 2n + 2c − 3 by n ≥ 2c + 3.

When n+1
2 ≤ x ≤ n− 2, since f ′(x) = n + 1− 2x ≤ 0, we have f(x) ≥ f(n− 2) =

3(n − 2) ≥ 2n + 2c − 3 by n ≥ 2c + 3.

By combining the above arguments, the conclusion follows.

Lemma 3.11. [5] Let G be a graph with n vertices, m edges. We have
∑n

i=1 µi =
∑n

i=1 di = 2m, and
∑n

i=1 µ2
i = 2m +

∑n

i=1 d2
i .

Lemma 3.12. For c ≥ 1, if n = 2c + 2 or n = 2c + 1, then there does not exist

any connected graph G on n vertices with n+ c−1 edges and d1(G) ≤ n−2 such that

SQ(G) = SQ(S(n, c)).

Proof. Here we only prove the case of n = 2c + 2, because the proof of n = 2c + 1

is analogous. When 3 ≤ n ≤ 7, it is easily checked the result follows by the aid of

computer. Thus, we may assume that n ≥ 8 in the following. Suppose to the contrary,

there exists some connected graph G on n = 2c + 2 vertices with n + c− 1 edges and

d1(G) ≤ n−2 such that SQ(G) = SQ(S(n, c)). By Lemmas 3.6–3.8, we can conclude

that d2(G) ≤ 4 and n − 3 ≤ d1(G) ≤ n − 2 because µ1(G) = µ1(S(n, c)) > n. We

divide the proof into the next two cases.

Case 1. d1(G) = n − 3.

If d2(G) ≤ 3, then Lemma 3.7 implies that µ1(G) ≤ n < µ1(S(n, c)), a contradic-

tion. Thus, d2(G) = 4. So Lemma 3.8 implies that d1(G) = d2(G), and hence n = 7,

a contradiction to the fact that n ≥ 8.

Case 2. d1(G) = n − 2.

If d2(G) ≤ 2, then Lemma 3.7 implies that µ1(G) ≤ n < µ1(S(n, c)), a contra-

diction. If d2(G) = 4, Lemma 3.8 implies that d1(G) = d2(G), and hence n = 6, a

contradiction. Thus, d2(G) = 3. Suppose G has x vertices of degree 3, y vertices of

degree 2. Then, G has n−x−y−1 pendant vertices. By Lemma 3.11, it follows that

{
n − 2 + 3x + 2y + n − x − y − 1 = 2n + 2c − 2

(n − 2)2 + 9x + 4y + n − x − y − 1 = (n − 1)2 + 8c + n − 2c − 1.
(3.3)

By Eqs. (3.3) and n = 2c + 2, we have x = n− 3 and y = 5− n < 0, a contradiction.

By combining the above arguments, this completes the proof of this result.

Lemma 3.13. [5] In any graph, the multiplicity of the eigenvalue 0 of the signless

Laplacian is equal to the number of bipartite components. Moreover, the least eigen-
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value of the signless Laplacian of a connected graph is equal to 0 if and only if the

graph is bipartite. In this case, 0 is a simple eigenvalue.

Lemma 3.14. If n 6= 4, then K1,n−1 is determined by its signless Laplacian

spectrum.

Proof. Suppose there exists some graph G such that SQ(G) = SQ(K1,n−1). It

is well-known that if G is bipartite graph, then SQ(G) = SL(G) (see [5]). Thus,

SQ(K1,n−1) = SL(K1,n−1) = (n, 1, 1, . . . , 1, 0), where the multiplicity of 1 is n − 2.

By Lemma 3.2, we have d2(G) − 1 ≤ µ2(G) = µ2(K1,n−1) = 1. So, d2(G) ≤ 2.

If G is connected, since µn(G) = µn(K1,n−1) = 0, by Lemma 3.13, G is connected

bipartite, and hence SL(G) = SQ(G) = SL(K1,n−1). By Lemma 2.5, it follows that

G ∼= K1,n−1.

If G is disconnected, by Lemma 3.7, we have d1(G) = n − 2 and d2(G) = 2 by

µ1(G) = n. Moreover, Lemma 3.2 implies that n−2 = d1(G) = d2(G) = 2, and hence

n = 4, a contradiction.

Remark 3.15. It is easily checked that SQ(K1,3) = SQ(K3∪K1). Thus, S(n, c)

is not determined by its signless Laplacian spectrum when c = 0 and n = 4.

Theorem 3.16. Suppose c ≥ 0, then S(n, c) is determined by its signless Lapla-

cian spectrum except for the case of c = 0 and n = 4.

Proof. If c = 0, then S(n, c) ∼= K1,n−1. By Lemma 3.14 and Remark 3.15, the

result follows. Next we assume that c ≥ 1. Now suppose there exists some graph G

such that SQ(G) = SQ(S(n, c)). Lemmas 3.8 and 3.11 imply that G is connected and
∑n

i=1 di(G) = 2(n + c − 1). Thus, G has n + c − 1 edges. By Lemmas 3.8, 3.10 and

3.12, we can conclude that G is a connected graph with d1(G) = n− 1 and d2(G) ≤ 4

because µ1(G) = µ1(S(n, c)) > n. Suppose G has x vertices of degree 4, y vertices of

degree 3, z vertices of degree 2. Then, G has n − x − y − z − 1 pendant vertices. By

Lemma 3.11, it follows that
{

n − 1 + 4x + 3y + 2z + n − x − y − z − 1 = 2n + 2c − 2

(n − 1)2 + 16x + 9y + 4z + n − x − y − z − 1 = (n − 1)2 + 8c + n − 2c − 1.
(3.4)

By Eqs. (3.4), we have 6x + 2y = 0. Thus, x = y = 0 and z = 2c. Note that

d1(G) = n − 1. Then, G ∼= S(n, c) follows.

4. SC(n, c) is determined by its signless Laplacian spectrum. In this sec-

tion, we shall show that SC(n, c) is determined by its signless Laplacian spectrum.

We list more lemmas as follows.

Lemma 4.1. [3] The signless Laplacian eigenvalues of G and G′ = G+e interlace,

that is, µ1(G
′) ≥ µ1(G) ≥ µ2(G

′) ≥ µ2(G) ≥ · · · ≥ µn(G′) ≥ µn(G) ≥ 0.
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Lemma 4.2. [16] Suppose G has n vertices and dn is the minimum degree of

vertices of G, then µn ≤ dn.

Lemma 4.3. If c ≥ 1 and n ≥ 7, then µn(SC(n, c) ) = 0, µn−1(S
C(n, c) ) ≥ n−5,

µ2(S
C(n, c) ) = n − 3 and µ1(S

C(n, c) ) ≥ 2(n − 3).

Proof. By a straightforward computation, we have

Φ(SC(n, c), x) = x(x − n + 5)c−1(x − n + 3)n−c−2ϕ3(x),(4.1)

where ϕ3(x) = x2 − 3(n − 3)x + 2(n2 − 7n + 10 + 2c).

It is easy to see that the roots of ϕ3(x) = 0 are

3(n − 3) ±
√

(n + 1)2 − 16c

2
.

Note that n ≥ 2c + 1. Then,

µ1 =
3(n − 3) +

√

(n + 1)2 − 16c

2
≥ 2(n − 3),

and n − 5 <
3(n − 3) −

√

(n + 1)2 − 16c

2
≤ n − 3.

We divide the proof into the next two cases.

Case 1. c = 1.

By Eq. (4.1), it is easy to see that µn(SC(n, c) ) = 0, µn−1(S
C(n, c) ) > n − 5

and µ2(S
C(n, c) ) = n − 3.

Case 2. c ≥ 2.

Since n − c − 2 > 0, by Eq. (4.1) we can conclude that µn(SC(n, c) ) = 0,

µn−1(S
C(n, c) ) = n − 5 and µ2(S

C(n, c) ) = n − 3.

Lemma 4.4. For c ≥ 1 and n ≥ 8, if there exists some graph G = G∗ ∪ K1 such

that G∗ is connected and SQ(G) = SQ(SC(n, c) ), then dn−1(G
∗) = n − 3.

Proof. By Lemmas 4.2 and 4.3, we can conclude that n − 5 ≤ µn−1(G
∗) ≤

dn−1(G
∗) ≤ n − 2. If dn−1(G

∗) = n − 2, then G∗ ∼= Kn−1, and hence SQ(G∗) =

(2n − 4, n − 3, . . . , n − 3) 6= SQ(SC(n, c) ), a contradiction. We divide the proof into

the next two cases.

Case 1. dn−1(G
∗) = n − 5.

Let H1 be the graph obtained from Kn−1 by deleting three edges, which are

adjacent to the same vertex, from Kn−1. Clearly, dn−1(H1) = n − 5 and G∗ is a
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subgraph of H1. By a straightforward computation, we have

Φ(H1, x) = (x − n + 4)2(x − n + 3)n−5ϕ4(x),

where ϕ4(x) = x2 − (3n − 11)x + 2(n − 4)(n − 5).

It is easy to see that the roots of ϕ4(x) = 0 are

3n − 11 ±
√

n2 + 6n − 39

2
.

By Lemma 4.1, it follows that

µn−1(G
∗) ≤ µn−1(H1) =

3n − 11 −
√

n2 + 6n − 39

2
< n − 5.

On the other hand, µn−1(G
∗) = µn−1(G) = µn−1(S

C(n, c) ≥ n − 5, a contradiction.

Case 2. dn−1(G
∗) = n − 4.

Let H2 be the graph obtained from Kn−1 by deleting two edges, which are adja-

cent to the same vertex, from Kn−1. Clearly, dn−1(H2) = n−4 and G∗ is a subgraph

of H2. By a straightforward computation, we have

Φ(H2, x) = (x − n + 4)(x − n + 3)n−4ϕ5(x),

where ϕ5(x) = x2 − (3n − 10)x + 2(n − 4)2.

It is easy to see that the roots of ϕ5(x) = 0 are

3n − 10 ±
√

n2 + 4n − 28

2
.

By Lemma 4.1, it follows that

µn−1(G
∗) ≤ µn−1(H2) =

3n − 10 −
√

n2 + 4n − 28

2
< n − 5.

On the other hand, µn−1(G
∗) = µn−1(G) = µn−1(S

C(n, c) ≥ n − 5, a contradiction.

By combining the above arguments, we can conclude that dn−1(G
∗) = n − 3.

Lemma 4.5. If c = 0 and n 6= 4, then SC(n, c) is determined by its signless

Laplacian spectrum

Proof. If 1 ≤ n ≤ 3, it is easily checked the result follows. Thus, we may

assume that n ≥ 5 in the following. Suppose that there exists some graph G such

that SQ(G) = SQ(SC(n, c) ). Note that SC(n, c) = Kn−1 ∪ K1. Then, µn(G) =

µn(Kn−1 ∪ K1) = 0 and µ1(G) = µ1(Kn−1 ∪ K1) = 2(n − 2).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 112-124, February 2011

http://math.technion.ac.il/iic/ela



ELA

Graphs Determined by Their (Signless) Laplacian Spectra 123

If G is connected, since µn(G) = 0, by Lemma 3.13 it follows that G is bipartite.

Lemma 2.2 implies that µ1(G) = λ1(G) ≤ n < 2(n − 2), a contradiction. Thus, G is

disconnected and hence d1(G) ≤ n − 2. Since µ1(G) = 2(n − 2), by Lemma 3.7 we

can conclude that G ∼= Kn−1 ∪ K1 = SC(n, c).

Remark 4.6. It is easily checked that SQ(K3∪K1) = SQ(K1,3). Thus, SC(n, c)

is not determined by its signless Laplacian spectrum when c = 0 and n = 4.

Theorem 4.7. If c ≥ 0, then SC(n, c) is determined by its signless Laplacian

spectrum except for the case of c = 0 and n = 4.

Proof. If c = 0, by Lemma 4.5 and Remark 4.6, the result follows. If c ≥ 1 and

3 ≤ n ≤ 7, it is easily checked the result follows by the aid of computer. Thus, we

may assume that n ≥ 8 and c ≥ 1 in the sequel. Now suppose there exists some graph

G such that SQ(G) = SQ(SC(n, c) ). We only need to prove the following facts:

Fact 1. G = G∗ ∪ K1, where G∗ is connected.

Proof of Fact 1. We first claim that G is disconnected. Suppose to the contrary,

G is connected. By Lemma 4.3, we have µn(G) = µn(SC(n, c) ) = 0. Thus, G is

bipartite by Lemma 3.13. So, µ1(G) ≤ n follows from Lemma 2.2. But µ1(G) =

µ1(S
C(n, c) ≥ 2(n− 3) > n by Lemma 4.3, a contradiction. Thus, G is disconnected.

Let G1 be the greatest connected component, i.e., the connected component with

largest number of vertices, of G. Since µn(G) = 0 and µn−1(G) = µn−1(S
C(n, c) ) ≥

n − 5 > 0, by Lemmas 3.13 and 4.2 we can conclude that G has exactly one bipar-

tite component and |V (G1)| ≥ n − 4. Moreover, Lemma 4.3 implies that µ1(G) =

µ1(S
C(n, c) ≥ 2(n − 3), thus |V (G1)| ≥ n − 2 by Lemma 3.7.

If |V (G1)| = n − 2, since G has exactly one bipartite component, we can deduce

that G = G1 ∪ K2. Then G has 2 as its signless Laplacian eigenvalue. On the other

hand, Lemma 4.3 implies that µn−1(G) = µn−1(S
C(n, c) ≥ n−5 > 2, a contradiction.

Thus, |V (G1)| = n − 1 and hence Fact 1 follows.

Fact 2. G ∼= SC(n, c).

Proof of Fact 2. By Fact 1 and Lemma 4.4, it follows that G = G∗ ∪ K1, where

G∗ is connected with dn−1(G
∗) = n − 3. By Lemma 3.11, it follows that G∗ has

n− 2c− 1 vertices of degree n− 2 and 2c vertices of degree n− 3, then G ∼= SC(n, c)

follows.

This completes the proof of this result.

Acknowledgment. The authors are very grateful to the anonymous referee for

his valuable comments and suggestions, which led to an improvement of the original

manuscript.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 112-124, February 2011

http://math.technion.ac.il/iic/ela



ELA

124 M.H. Liu, B.L. Liu, and F.Y. Wei

REFERENCES
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[20] Z. Radosavljević and M. Ras̆ajski. A class of reflexive cactuses with four cycles. Univ. Beograd.

Publ. Elektrotehn. Fak., Ser. Mat., 14:64–85, 2003.

[21] X.L. Shen and Y.P. Zhang. The star and all starlike trees with largest degree 3 are determined

by their spectra. J. Nat. Sci. Hunan Norm. Univ., 28:17–20, 2005.

[22] B.S. Tam, Y.Z. Fan, and J. Zhou. Unoriented Laplacian maximizing graphs are degree maximal.

Linear Algebra Appl., 429:735–758, 2008.

[23] X.L. Zhang and H.P. Zhang. Some graphs determined by their spectra. Linear Algebra Appl.,

431:1443–1454, 2009.

[24] Y.P. Zhang, X.G. Liu, B.Y. Zhang, and X.R. Yong. The lollipop graph is determined by its

Q-spectrum. Discrete Math., 309:3364–3369, 2009.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 112-124, February 2011

http://math.technion.ac.il/iic/ela


