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THE SOLVABILITY CONDITIONS OF MATRIX EQUATIONS

WITH K-INVOLUTION∗
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Abstract. Let m × m complex matrix P and n × n complex matrix Q be k-involutions, i.e.,

P k−1 = P−1, Qk−1 = Q−1 for some integer k ≥ 2. An m × n complex matrix A is (P, Q, β)-

symmetric if PAQ−1 = λβA, or (P, Q, α, β)-symmetric if PAQ−α = λβA, where λ = e2πi/k

and α, β ∈ {1, 2, . . . , k}. In this paper, for given matrices X, Y, E, F with appropriate sizes, the

solvability of matrix equations AX = E and Y ∗A = F under (P, Q, β)- and (P, Q, α, β)-constraints,

respectively, are investigated. Meanwhile, the associated optimal approximation problem is also

considered when the above P and Q are unitary.

Key words. k-Involution, (P, Q, β)-Symmetric matrices, (P, Q, α, β)-Symmetric matrices,

Matrix equations, Optimal approximation.
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1. Introduction. The matrix inverse problem, which arises in the design of

Hopfield neural networks [16, 17], has important applications in vibration theory

[3], control theory [7], civil engineering and aviation [10]. The constrained matrix

equation(s) problem, as the natural extension of the matrix inverse problem, plays an

important role in matrix theory, and has been widely studied [5, 6, 11, 13, 20, 21, 27].

In this paper, we will discuss the solvability conditions of matrix equations

AX = E, Y ∗A = F(1.1)

with (P,Q, β)- and (P,Q, α, β)-constraints, respectively.

For convenience, we first introduce some notations: Cm×n denotes the set of all

m × n complex matrices, UCm×m is the set of all m × m orthogonal matrices. In

represents identity matrix with order n. AT , A∗, A+ and ‖A‖ stand for the transpose,

conjugate transpose, Moore-Penrose generalized inverse and Frobenius norm of matrix

A, respectively.

A complex matrix R ∈ Cm×m is called k-involutory if its minimal polynomial
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is xk − 1 for some integer k ≥ 2. It is easy to know that k-involutory R satisfies

Rk−1 = R−1, and its k eigenvalues are λ, λ2, . . . , λk, where λ = e2πi/k.

Definition 1.1. Let P ∈ Cm×m and Q ∈ Cn×n be k-involutory matrices, we say

that A ∈ Cm×n is (P, Q, β)-symmetric if PAQ−1 = λβA, or (P, Q, α, β)-symmetric

if PAQ−α = λβA, where α, β ∈ Zk = {1, 2, . . . , k}.

The (P, Q, β)-symmetric matrices and (P, Q, α, β)-symmetric matrices were put

forward by William F. Trench in [23] and [24], respectively. Obviously, the centro-

symmetric matrices [1] and generalized reflexive matrices [13, 18, 27] are the extensions

of the (P, Q, β)- and (P, Q, α, β)-symmetric matrices.

In [23] and [24], the author investigates the structural properties, the expres-

sions of generalized inverse, singular value decompositions of the (P, Q, β)- and

(P, Q, α, β)-symmetric matrices, respectively. The Procrustes problem for (P, Q, β)-

symmetric matrices has been considered by Jia in [9]. Moreover, the least squares

problem of matrix equation AX = B with (P, Q, β)- and (P, Q, α, β)-constraints

have been discussed by Li [15]. However, to our knowledge, the constrained matrix

equations problem (1.1) has not been investigated yet.

Denote by S the set of (P, Q, β)-symmetric matrices or (P, Q, α, β)-symmetric

matrices. The first problem to be solved in the present paper can be expressed

concretely as follows:

Problem 1.2. For given X ∈ Cn×p, Y ∈ Cm×q, E ∈ Cm×p, F ∈ Cq×n

and k-involutory matrices P ∈ Cm×m, Q ∈ Cn×n, find A ∈ S which satisfies the

simultaneous equations (1.1).

Actually, if m = n and let E = XΛ, F = µY ∗, where Λ and µ are all diagonal

matrices with appropriate sizes, then the above constrained matrix equations problem

becomes the corresponding left and right inverse eigenvalue problem [12, 14, 18] which

mainly arises in perturbation analysis of matrix eigenvalue [25] and recursive matters

[2].

The second problem to be considered here is the so-called optimal approximation

problem.

Problem 1.3. Suppose that Problem 1.2 is consistent, i.e., the solution set SE

of which is nonempty. For given A ∈ Cm×n, find Â ∈ SE such that

‖Â − A‖ = min
A∈SE

‖A − A‖.

This kind of problems plays an important role in practice, and has been discussed

far and wide (see, e.g., [4, 8, 9, 12, 13, 14, 15, 18, 19, 20, 21, 26, 27] and therein).
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The remainder of this paper is outlined as follows. In Section 2, we will intro-

duce some preliminary knowledge about the k-involutory matrices, the (P, Q, β)-

and (P, Q, α, β)-symmetric matrices. Furthermore, the necessary and sufficient con-

ditions for the consistency of (1.1) will be investigated, and the general solution will

be represented in Section 3. The optimal approximation Problem 1.3 will be solved

in Section 4.

2. Preliminaries. For k-involutory matrices P and Q as in Definition 1.1, let

pt = dim ΦP (λt), qt = dim ΦQ(λt) (t = 1, 2, . . . , k) be the dimensions of eigenspaces

to λt with respect to P and Q, respectively, which reveal that m =
∑k

t=1 pt, n =∑k
t=1 qt. Hence, we know that there exist Pt ∈ Cm×pt and Qt ∈ Cn×qt such that

PPt = λtPt, QQt = λtQt with P ∗
t Pt = Ipt

, Q∗
t Qt = Iqt

.

Moreover, there exist matrices P̂t ∈ Cpt×m, Q̂t ∈ Cqt×n (see [23]) such that

P = U diag(λIp1
, λ2Ip2

, . . . , λkIpk
) Û , Q = V diag(λIq1

, λ2Iq2
, . . . , λkIqk

) V̂ ,(2.1)

where U = (P1 P2 · · · Pk), Û = (P̂T
1 P̂T

2 · · · P̂T
k )T with ÛU = Im, and V =

(Q1 Q2 · · · Qk), V̂ = (Q̂T
1 Q̂T

2 · · · Q̂T
k )T with V̂ V = In.

In particular, if P and Q are unitary, then Û = U∗ ∈ UCm×m, V̂ = V ∗ ∈UCn×n, so are Uβ , Uβ,α, here

Uβ = (P1+β P2+β · · · Pk+β), Ûβ = (PT
1+β PT

2+β · · · PT
k+β)T ,

and

Uβ,α = (Pα+β P2α+β · · · Pαk+β).

In this case,

P = U diag(λIp1
, λ2Ip2

, . . . , λkIpk
)U∗, Q = V diag(λIq1

, λ2Iq2
, . . . , λkIqk

)V ∗.(2.2)

Remark 2.1. All arithmetic operations in subscripts are modulo k, i.e., Pkα+β =

Ps predicates that s ≡ kα + β (modk).

Lemma 2.2. ([23]) Let P and Q be k-involutions as in (2.1). Then A ∈ Cm×n

is (P, Q, β)-symmetric if and only if

A =

k∑

t=1

Pt+βGtQ̂t,(2.3)

where Gt = P ∗
t+βAQt ∈ Cpt+β×qt .

For (P, Q, α, β)-symmetric matrices, we have similar conclusion.
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Lemma 2.3. ([24]) If P and Q are k-involutions as in (2.1), then A ∈ Cm×n is

(P, Q, α, β)-symmetric if and only if A =
∑k

t=1 Ptα+βGtQ̂t with Gt = P ∗
tα+βAQt ∈Cptα+β×qt .

In Lemma 2.3, the substitution t → tα + β(modk) is a permutation of Zk if

gcd(α, k) = 1, but Uβ,α is not invertible if gcd(α, k) > 1. In fact, when gcd(α, k) =

a > 1, the first b = k/a columns of Uβ,α are repeated a times as brought forth

in Example 1 of [15]. Furthermore, this lemma can be reformed in the following

convenient form.

Lemma 2.4. ([24]) Suppose that gcd(α, k) = a and b = k/a. For 1 ≤ l ≤ b,

denoteVl,α = (Ql+b Ql+2b · · · Ql+ab), V̂l,α = (Q̂T
l+b Q̂T

l+2b · · · Q̂T
l+ab)

T ,

Uβ,α = (Pα+β P2α+β · · · Pbα+β), Ûβ,α = (P̂T
α+β P̂T

2α+β · · · P̂T
bα+β)T ,

andGl,α = (Gl+b Gl+2b · · · Gl+ab), Vα = (V1,α V2,α · · · Vb,α).

Then the columns of invertible matrix Vα are a rearrangement of Qt (t ∈ Zk), and

Ûβ,αUβ,α = Ipβ+α+p2α+β+···+pbα+β
. Then, the (P, Q, α, β)-symmetric matrix A can

be represented as

A =

b∑

l=1

Plα+βGl,αV̂l,α.(2.4)

3. The solvability conditions and general solution for Problem 1.2. In

this section, we will obtain the solvability conditions for Problem 1.2 with (P, Q, β)-

and (P, Q, α, β)-constraints, and the general solution of which will be derived.

The next lemma quoted from [28] is essential for our main results.

Lemma 3.1. Given matrices M, N, C, D with appropriate orders, then matrix

equations MZ = N and ZC = D are consistent, if and only if

MD = NC, MM+N = N, DC+C = D.

Moreover, the expression of its general solution is

X = M+N + (I − M+M)DC+ + (I − M+M)H(I − CC+)

with arbitrary matrix H.

Denote Xt = Q̂tX, Et+β = P̂t+βE, Yt+β = Y ∗Pt+β , Ft = FQt. Then the

solvability condition of matrix equation (1.1) in (P, Q, β)-symmetric matrices set is

obtained by the following theorem.
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Theorem 3.2. Given matrices X ∈ Cn×p, Y ∈ Cm×q, E ∈ Cm×p, F ∈ Cq×n.

Then matrix equations (1.1) with (P, Q, β)-symmetric matrix A are consistent if and

only if

Yt+βEt+β = FtXt, Yt+βY +
t+βFt = Ft and Et+βX+

t Xt = Et+β(3.1)

hold for t ∈ Zk at the same time. And the general solution can be expressed as

A =

k∑

t=1

Pt+βGtQ̂t,(3.2)

where Gt = G̃t + (Ipt+β
− Y +

t+βYt+β)Zt(Iqt
− XtX

+
t ),

G̃t = Y +
t+βFt + (Ipt+β

− Y +
t+βYt+β)Et+βX+

t , Zt ∈ Cpt+β×qt .

Proof. From Lemma 2.2, any m×n (P, Q, β)-symmetric matrix A can be written

as in (2.3). Substituting it into (1.1), yields





∑k
t=1 Pt+βGtQ̂tX = E,

Y ∗
∑k

t=1 Pt+βGtQ̂t = F.
(3.3)

Noting that the previous notations and pre-multiplying the both side of (3.3) from

the left by Ûβ on the first equation, and right by V on the second one, then





GtXt = Et+β ,

Yt+βGt = Ft,
t = 1, 2, . . . , k,(3.4)

which imply that the solvability of matrix equations (3.3) is in accord with (3.4).

While the matrix equations (3.4) are consistent for Gt, from Lemma 3.1, if and only

if (3.1) holds, and the general expression of the solution is

Gt = Y +
t+βFt +(Ipt+β

−Y +
t+βYt+β)Et+βX+

t +(Ipt+β
−Y +

t+βYt+β)Zt(Iqt
−XtX

+
t ).

Connecting with (2.3), we get (3.2).

Remark 3.3.

• If P and Q are unitary matrices, then Q̂t and P̂t+β in Theorem 3.2 become

Q∗
t , and P ∗

t+β .

• Let E = XΛ and F = µY ∗ in Theorem 3.2. Then we can obtain the solvabil-

ity conditions and the general soluiton of the left and right inverse eigenvalue

problem for (P, Q, β)-symmetric matrices.

Analogously, we can establish the consistent criterions of matrix equations (1.1)

with (P, Q, α, β)-constraint.
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Theorem 3.4. Given matrices X, Y , E, F as in Theorem 3.2. Let Elα+β =

P̂lα+βE, Xl,α = V̂l,αX, Ylα+β = Y ∗Plα+β, Fl,α = FVl,α. Then matrix equations

(1.1) are solvable with (P, Q, α, β)-symmetric A if and only if

Ylα+βElα+β = Fl,αXl,α, Ylα+βY
+
lα+βFl,α = Fl,α and Elα+βX+

t Xl,α = Elα+β(3.5)

hold for t ∈ Zk, and the general solution is

A =
b∑

l=1

Plα+βGl,αV̂l,α,(3.6)

where Gl,α = Gl,α + (Iplα+β
− Y

+
lα+βYlα+β)Zl,α(I∑

a
r=1

ql+rb
− Xl,αX

+
l,α),Gl,α = Ylα+βFl,α + (Iplα+β

− Y
+
lα+βYlα+β)Elα+βX

+
l,α, Zl,α ∈ Cplα+β×

∑ a
r=1

ql+rb .

Proof. Similarly to the proof of Theorem 3.2, substituting (2.4) into (1.1), we

obtain





∑b
l=1 Plα+βGl,αV̂l,αX = E,

Y ∗
∑b

l=1 Plα+βGl,αV̂l,α = F.
(3.7)

Pre-multiplying both sides of (3.7) from the left by Ûβ,α on the first equation, and

right by Vα on the second one, imply that (3.7) can be transformed equivalently as





Gl,αXl,α = Elα+β ,

Ylα+βGl,α = Fl,α,
l = 1, 2, . . . , b.(3.8)

Applying Lemma 3.1 to (3.8) reveals that (3.5) and (3.6) hold.

Remark 3.5.

• If P and Q are unitary matrices in Theorem 3.4, we need only write V̂l,α asV∗
l,α, and P̂tα+β as P ∗

tα+β in (3.6).

• Let E = XΛ and F = µY ∗ in Theorem 3.4. Then the left and right in-

verse eigenvalue problem for the (P, Q, α, β)-symmetric matrices will also

be solved.

4. The solution to the optimal approximation problem. In this section,

let the k-involutory matrices P and Q be unitary, that is, they possess the forms as

in (2.2), and U, V, Ûβ = U ∗
β , Ûβ,α = U ∗

β,α are also unitary.

The following lemma derived from [22] is necessary for solving the approximation

Problem 1.3.
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Lemma 4.1. Let L ∈ Cq×m, ∆ ∈ Cq×q, Γ ∈ Cm×m and ∆2 = ∆ = ∆∗,

Γ2 = Γ = Γ∗. Then

‖ L − ∆LΓ ‖= min
G∈Cq×m

‖ L − ∆GΓ ‖

if and only if ∆(L − G)Γ = 0.

Theorem 4.2. Suppose that (3.1) holds in Theorem 3.2, i.e., the solution set

SE1
of matrix equations (1.1) is nonempty. Then for given A ∈ Cm×n, there exists

uniquely Â1 ∈ SE1
such that

‖Â1 − A‖ = min
A∈SE1

‖A − A‖

and

Â1 =
k∑

t=1

Pt+βĜtQ
∗
t ,(4.1)

where Ĝt = G̃t + (Ipt+β
− Y +

t+βYt+β)(G̃t − P ∗
t+βAQt)(Iqt

− XtX
+
t ), G̃t as in (3.2).

Proof. The uniqueness of the solution dues to the closed and convex set SE1

when it is nonempty. Hence, it is enough to prove (4.1). In fact,

U ∗
β (A − A)V =




G1 − P ∗
1+βAQ1 · · · −P ∗

1+βAQk

...
. . .

...

−P ∗
k+βAQ1 · · · Gk − P ∗

k+βAQk




,

it follows from the unitary invariance of Frobenius norm that

‖(A − A)‖2 =
∑k

t=1 ‖Gt − P ∗
t+βAQt‖

2 +
∑k

s,t=1,s 6=t ‖P
∗
t+βAQs‖

2,

which shows that the approximation Problem 1.3 can be changed equivalently into

the following least residual problem

min
Gt∈Cpt+β×qt

‖Gt − P ∗
t+βAQt‖, t = 1, 2, . . . , k.

That is,

min
Zt∈Cpt+β×qt

‖G̃t − P ∗
t+βAQt + (Ipt+β

− Y +
t+βYt+β)Zt(Iqt

− XtX
+
t )‖.

We can verify that Ipt+β
− Y +

t+βYt+β and Iqt
−XtX

+
t satisfy the requirements in

Lemma 4.1, which implies that

(It+β − Y +
t+βYt+β)(G̃t − P ∗

t+βAQt − Zt)(Iqt
− XtX

+
t ) = 0.
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Combining it with (3.2), we know that (4.1) holds.

For the approximation problem of (P, Q, α, β)-symmetric matrices, we have the

following conclusion.

Theorem 4.3. Suppose that (3.5) holds in Theorem 3.4, i.e., the solution set

SE2
of (1.1) is nonempty. Then, for given matrix A ∈ Cm×n, the unique solution

Â2 ∈ SE2
to Problem 1.2 is

Â2 =

b∑

l=1

Plα+βĜl,αV̂l,α,(4.2)Ĝl,α = Gl,α + (Iplα+β
− Y

+
lα+βYlα+β)(Gl,α − Plα+βAVl,α)(I∑

a
r=1

(ql+rb)) − Xl,αX
+
l,α),Gl,α as in (3.6).

Proof. We only prove (4.2). Since

U ∗
β,α(A − A)Vα =




G1,α − P ∗
α+βAV1,α · · · −P ∗

α+βAVb,α

...
. . .

...

−P ∗
bα+βAV1,α · · · Gb,α − P ∗

bα+βAVb,α




,

then we have

‖(A − A)‖2 =
∑b

l=1 ‖Gl,α − P ∗
lα+βAVl,α‖

2 +
∑k

s,l=1,s 6=l ‖P
∗
lα+βAVs,α‖

2.

Hence Problem 1.3 is equivalent to the least residual problem

minGl,α∈Cplα+β×
∑a

r=1
ql+rb

‖Gl,α − P ∗
lα+βAVl,α‖, t = 1, 2, . . . , k.

That is,

minZl,α∈Cplα+β×
∑a

r=1
ql+rb

‖Gl,α − P ∗
tα+βAQt + (Iplα+β

− Y
+
lα+βYlα+β)Zl,α(I∑

a
r=1

ql+rb
− Xl,αX

+
l,α)‖.

By Lemma 4.1, we know that (4.2) holds.

Remark 4.4.

• If P and Q are unitary, E and F are as in Remark 3.5, we can also obtain

the optimal approximation problem of the left and right inverse eigenvalue

problem for the (P, Q, β)-symmetric matrices and (P, Q, α, β)-symmetric

matrices from Theorem 4.2 and Theorem 4.3, respectively.
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5. Conclusion. In this paper, we have obtained the solvability conditions of

matrix equations (1.1) over two kinds of generalized symmetric matrices sets, that

is, (P, Q, β)- and (P, Q, α, β)-symmetric matrices sets, and the general solutions of

which have been represented when the solvability conditions were satisfied. Particu-

larly, the left and right inverse eigenvalue problems for the (P, Q, β)-symmetric ma-

trices and (P, Q, α, β)-symmetric matrices were solved as special cases. Furthermore,

when the k-involutory matrices P and Q were unitary, the approximation problem

for some given matrix was also considered.
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