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INERTIALLY ARBITRARY TREE SIGN PATTERNS OF ORDER 4∗

YUBIN GAO† AND YANLING SHAO†

Abstract. An n × n sign pattern matrix A is an inertially arbitrary pattern if for every non-

negative triple (n1, n2, n3) with n1 + n2 + n3 = n, there is a real matrix in the sign pattern class

of A having inertia (n1, n2, n3). An n× n sign pattern matrix A is a spectrally arbitrary pattern if

for any given real monic polynomial r(x) of degree n, there is a real matrix in the sign pattern class

of A with characteristic polynomial r(x). In this paper, all 4× 4 tree sign pattern matrices that are

inertially arbitrary are characterized. As a result, in this paper, it is shown that a 4 × 4 tree sign

pattern matrix is inertially arbitrary if and only if it is spectrally arbitrary.

Key words. Sign pattern matrix, Inertially arbitrary pattern, Spectrally arbitrary pattern,

Tree sign pattern.
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1. Introduction. A sign pattern matrix (or a sign pattern, or a pattern) A is a

matrix whose entries are in the set {+,−, 0}. Denote the set of all n×n sign patterns

by Qn. Associated with each A = (aij) ∈ Qn is a class of real matrices, called the

sign pattern class of A, defined by

Q(A) = {B = (bij) | B is an n × n real matrix, and sign bij = aij for all i and j}.

For two sign patterns A = (aij) and S = (sij) in Qn, if aij = sij whenever sij 6= 0,

then A is a superpattern of S, and S is a subpattern of A. Note that each sign pattern

is a superpattern and a subpattern of itself.

A sign pattern A ∈ Qn is said to be sign nonsingular (or sign singular) if every

matrix B ∈ Q(A) is nonsingular (or singular).

A sign pattern matrix P ∈ Qn is called a permutation pattern if exactly one entry

in each row and column is equal to +, and all other entries are 0. Two sign pattern

matrices A1, A2 ∈ Qn are said to be permutationally similar if there is a permutation

pattern P such that A2 = PT A1P .

A signature pattern is a diagonal sign pattern all of whose diagonal entries are
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nonzero. Two sign pattern matrices A1, A2 ∈ Qn are said to be signature similar if

there is a signature pattern S such that A2 = SA1S.

A combinatorially symmetric sign pattern matrix is a square sign pattern A =

(aij) where aij 6= 0 if and only if aji 6= 0. The graph G(A) of a combinatorially sym-

metric n×n sign pattern matrix A = (aij) is the graph with vertex set {1, 2, 3, . . . , n}

where (i, j) is an edge if and only if aij 6= 0. A tree sign pattern (tsp) is a combina-

torially symmetric sign pattern matrix whose graph is a tree (possibly with loops).

The inertia of a square real matrix B is the ordered triple

i(B) = (i+(B), i−(B), i0(B)),

in which i+(B), i−(B) and i0(B) are the numbers of eigenvalues (counting multiplic-

ities) of B with positive, negative and zero real parts, respectively. The inertia set

of a square sign pattern A is the set of ordered triples i(A) = {i(B) | B ∈ Q(A)}.

A sign pattern matrix A ∈ Qn is said to be an inertially arbitrary pattern (IAP) if

for every nonnegative triple (n1, n2, n3) with n1 + n2 + n3 = n, there is a real matrix

B ∈ Q(A) such that i(B) = (n1, n2, n3).

An n × n matrix B is stable if i(B) = (0, n, 0). An n × n sign pattern matrix

A is potentially stable if (0, n, 0) ∈ i(A). If there is a real matrix B ∈ Q(A) having

characteristic polynomial f(x) = xn, then A is potentially nilpotent.

An n × n sign pattern matrix A is a spectrally arbitrary pattern (SAP) if, for

any given real monic polynomial r(x) of degree n, there is a matrix B ∈ Q(A) with

characteristic polynomial r(x). That is, A is a SAP if for any possible spectrum

of a real matrix (namely, any set of n complex numbers with nonreals occuring as

conjugate pairs), there exists B ∈ Q(A) with that spectrum.

It is easily seen that the class of n × n IAPs (SAPs) is closed under negation,

transposition, permutation similarity, and signature similarity. We say that two sign

patterns are equivalent if one can be obtained from the other by using a sequence of

such operations.

The question of the existence of an inertially arbitrary sign pattern arose in [6].

The first inertially arbitrary sign pattern of order n for each n ≥ 2 was provided in

[7]. SAPs and IAPs are studied to some extent ([1]-[7], [9], [11]). In [1], all 4× 4 tree

sign patterns that are SAPs are characterized.

Clearly, if A is a SAP, then A is an IAP. In general the converse does not hold,

as illustrated by an example with n = 4 in [3] (where the sign pattern is not a tsp).

Question 1.1. Does there exist a tsp that is IAP but not SAP?

It was stated in reference [11] that the answer to this question is unknown in
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general. For star sign pattern, it was known that a star sign pattern is IAP if and

only if it is also SAP ([11]).

In this paper, all 4× 4 tree sign pattern matrices that are inertially arbitrary are

characterized. By the result in this paper, for orders 2 ≤ n ≤ 4, every tsp that is IAP

is also SAP.

2. Preliminaries.

Lemma 2.1. [6] Up to equivalence, the sign pattern

T2 =

[
− +

− +

]

is the only 2 × 2 pattern that is a SAP (IAP).

Lemma 2.2. [1] Up to equivalence,

T3 =




− + 0

− 0 +

0 − +


 , U =




− + 0

− + +

0 + −


 , T̃3 =




− + 0

− + +

0 − +


 .

are the only 3 × 3 tree sign patterns which are SAPs.

Lemma 2.3. [3] For a sign pattern A of order 3, A is inertially arbitrary if and

only if A is spectrally arbitrary.

Up to equivalence, a 4×4 tsp A is a star sign pattern or a tridiagonal sign pattern.

For n × n star sign patterns A, from [11], we know that A is a SAP if and only if A

is an IAP. Now we consider 4 × 4 tridiagonal tree sign patterns.

Both the set of IAPs and the set of SAPs are subsets of the set of potentially

stable sign patterns, and for tree sign patterns of order 4, the set of all potentially

stable sign patterns is known (from [8] and [10] for paths and from [11] for stars). In

[1], the authors precisely characterized all 4 × 4 tree sign patterns that are SAPs by

determining which of these potentially stable sign patterns are SAPs.

Note that if A is a SAP, then A is an IAP; if A is sign nonsingular, then A is not

an IAP; if A does not have a positive diagonal entry, then A is not an IAP. In order

to determine which of these potentially stable sign patterns are IAPs, we only need

to determine which of these sign patterns that are not potentially nilpotent are IAPs.

From [1], the sign patterns which are not potentially nilpotent are the following
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28 sign patterns:

A1 =




0 + 0 0

− 0 + 0

0 − + +

0 0 − −


 , A2 =




0 + 0 0

− 0 + 0

0 − − +

0 0 − +


 , A3 =




0 + 0 0

− 0 + 0

0 + − +

0 0 − +


 ,

where patterns A1 −A3 appeared in the Proposition 3.1(d) of [1];

A4 =




− + 0 0

− + + 0

0 − − +

0 0 + 0


 , A5 =




− + 0 0

− + + 0

0 + − +

0 0 − 0


 , A6 =




− + 0 0

+ + + 0

0 − − +

0 0 + 0


 ,

A7 =




0 + 0 0

− − + 0

0 − − +

0 0 − +


 , A8 =




+ + 0 0

− + + 0

0 − − +

0 0 − 0


 , A9 =




0 + 0 0

− + + 0

0 + − +

0 0 − +


 ,

A10 =




0 + 0 0

− + + 0

0 − − +

0 0 + −


 , A11 =




+ + 0 0

− − + 0

0 + 0 +

0 0 + −


 , A12 =




− + 0 0

+ 0 + 0

0 − + +

0 0 − −


 ,

A13 =




+ + 0 0

− 0 + 0

0 − − +

0 0 + −


 , A14 =




− + 0 0

− 0 + 0

0 − + +

0 0 + −


 ,

where patterns A4 −A14 appeared in the Theorem 3.6 of [1];

A15 =




+ + 0 0

− − + 0

0 + − +

0 0 + −


 , A16 =




+ + 0 0

− − + 0

0 + + +

0 0 + −


 , A17 =




+ + 0 0

− + + 0

0 − − +

0 0 + −


 ,

A18 =




− + 0 0

− − + 0

0 − + +

0 0 + −


 , A19 =




− + 0 0

+ − + 0

0 − + +

0 0 − −


 , A20 =




+ + 0 0

− − + 0

0 − − +

0 0 + −


 ,
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A21 =




− + 0 0

+ + + 0

0 − + +

0 0 − −


 , A22 =




+ + 0 0

+ − + 0

0 − + +

0 0 − −


 , A23 =




− + 0 0

+ − + 0

0 + + +

0 0 − −


 ,

where patterns A15 −A23 appeared in the Theorem 3.7 of [1];

A24 =




0 + 0 0

+ − + 0

0 − + +

0 0 + −


 ,

where pattern A24 appeared in Page 193 of [1], and it is a superpattern of A4,8

(described in [10]);

A25 =




+ − 0 0

+ − + 0

0 + − +

0 0 + 0


 , A26 =




+ − 0 0

+ − + 0

0 + − +

0 0 + +


 ,

where patterns A25 −A26 appeared in Page 194 of [1], A25 is A4,9 (described in [10]),

and A26 is a superpattern of A4,9; and

A27 =




− + 0 0

− + + 0

0 + 0 +

0 0 − 0


 , A28 =




− + 0 0

− + + 0

0 + − +

0 0 − 0


 ,

where patterns A27 − A28 appeared in Page 194 of [1], A27 is A4,10, and A28 is a

superpattern of A4,10.

3. Main results. In this section, we will prove that each of A1 − A28 in the

above section is not an IAP.

Lemma 3.1. Each of the sign patterns A1 −A28 is not an IAP.

Proof. First, we note that the following facts.

(1) Sign patterns A1 and A2, A3 and A27, A5 and A9, A6 and A24 are equivalent,

respectively, and A5 and A28 are the same.

(2) Sign patterns A6, A8 and A24 are sign nonsingular, and so they are not IAPs.

(3) Using a computer check, we verified that none of the patterns −A4,−A10,

−A11, . . . ,−A23,−A25,−A26 are superpatterns of a combination of permutations and

signature similarities of the tsp’s listed in [8, Fig. 3 and Fig. 4] and [10, Section 5.2]
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that are potentially stable. Therefore, each of A4,A10,A11, . . . ,A23,A25,A26 does

not allow the inertia (4, 0, 0), and hence, is not an IAP.

Then we now only need to prove that each of the sign patterns A1, A3, A5 and

A7 is not an IAP.

For A1 =




0 + 0 0

− 0 + 0

0 − + +

0 0 − −


 and any B1 ∈ Q(A1). By positive diagonal sim-

ilarity, we may assume B1 =




0 1 0 0

−a 0 1 0

0 −b c 1

0 0 −d −e


, where a, b, c, d, e > 0. Then

pB1
(x) = det(xI4−B1) = x4+(e−c)x3+(a+b+d−ce)x2+(ae+be−ac)x+ad−ace. Now

suppose i(B1) = (0, 0, 4). Then pB1
(x) may be written as pB1

(x) = (x2 +p)(x2 +q) =

x4 + (p + q)x2 + pq, where p ≥ 0 and q ≥ 0. Thus, the coefficients of x3 and x are 0,

that is, e − c = 0 and ae + be − ac = 0. So e = c and be = 0. It is a contradiction.

Then (0, 0, 4) 6∈ i(A1), and A1 is not an IAP.

For A3 =




0 + 0 0

− 0 + 0

0 + − +

0 0 − +


 and any B3 ∈ Q(A3). By positive diagonal similar-

ity, we may assume B3 =




0 1 0 0

−a 0 1 0

0 b −c 1

0 0 −d e


, where a, b, c, d, e > 0. Then pB3

(x) =

x4+(c−e)x3+(a+d−b−ce)x2+(ac+be−ae)x+ad−ace. Now suppose i(B3) = (0, 0, 4).

Thus, the coefficients of x3 and x are 0, that is, c − e = 0, ac + be − ae = 0. So e = c

and be = 0, a contradiction. Then (0, 0, 4) 6∈ i(A3), and A3 is not an IAP.

For A5 =




− + 0 0

− + + 0

0 + − +

0 0 − 0


 and any B5 ∈ Q(A5). By positive diagonal sim-

ilarity, we may assume B5 =




−a 1 0 0

−b c 1 0

0 d −e 1

0 0 −f 0


, where a, b, c, d, e, f > 0. Then

pB5
(x) = x4 + (a + e − c)x3 + (b + f − d + ae − ac − ce)x2 + (be + af − ad − cf −

ace)x + bf − acf . Now suppose i(B5) = (1, 0, 3). Then pB5
(x) may be written as
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pB5
(x) = x(x − p)(x2 + q) = x4 − px3 + qx2 − pqx, where p > 0 and q ≥ 0. Thus,





a + e − c < 0,

b + f − d + ae − ac − ce ≥ 0,

be + af − ad − cf − ace ≤ 0,

bf − acf = 0,

be + af − ad − cf − ace = (a + e − c)(b + f − d + ae − ac − ce).

(3.1)

By the fourth equation in (3.1), we have b = ac. By the last equation in (3.1), we

have

e(b + f − d + ae − ac − ce)

= be + af − ad − cf − ace − (a − c)(b + f − d + ae − ac − ce)

= −cd − e(a − c)2 < 0.

This contradicts the second equation in (3.1). Thus, (1, 0, 3) 6∈ i(A5), and A5 is not

an IAP.

For A7 =




0 + 0 0

− − + 0

0 − − +

0 0 − +


 and any B7 ∈ Q(A7). By positive diagonal sim-

ilarity, we may assume B7 =




0 1 0 0

−a −b 1 0

0 −c −d 1

0 0 −e f


, where a, b, c, d, e, f > 0. Then

pB7
(x) = x4 + (b + d − f)x3 + (a + c + e + bd − bf − df)x2 + (ad + be − af − cf −

bdf)x + ae − adf . Now suppose i(B7) = (1, 0, 3). Then pB7
(x) may be written as

pB7
(x) = x(x − p)(x2 + q) = x4 − px3 + qx2 − pqx, where p > 0 and q ≥ 0. Thus,





b + d − f < 0,

a + c + e + bd − bf − df ≥ 0,

ad + be − af − cf − bdf ≤ 0,

ae − adf = 0,

ad + be − af − cf − bdf = (b + d − f)(a + c + e + bd − bf − df).

(3.2)

By the fourth equation in (3.2), we have e = df . By the last equation in (3.2), we

have

b(a + c + e + bd − bf − df)

= ad + be − af − cf − bdf − (d − f)(a + c + e + bd − bf − df)

= −cd − b(d − f)2 < 0.

This contradicts the second equation in (3.2). Thus, (1, 0, 3) 6∈ i(A7), and A7 is not

an IAP.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1148-1155, November 2011

http://math.technion.ac.il/iic/ela



ELA

Inertially Arbitrary Tree Sign Patterns of Order 4 1155

Combining above discussions and Theorem 3.10 in [1], the following theorem is

clear.

Theorem 3.2. If A is a tree sign pattern of order 4, then the following statements

are equivalent:

(1) A is inertially arbitrary.

(2) A is spectrally arbitrary.

(3) A is potentially stable and potentially nilpotent.
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referee for the valuable suggestions which greatly improved the exposition of the

paper. In particular, it was proposed to simply show that none of −A15, . . . ,−A23

are potentially stable, hence, none of A15, . . . ,A23 are IAP. Using this method, the

proof of Lemma 3.1 has been improved greatly.
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