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Abstract. In this paper, we extend the concept of pseudomonotonicity from R
n to the setting of

Euclidean Jordan algebras. We study interconnections between pseudomonotonicity, monotonicity,

and the Z-property.
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1. Introduction. Given a convex set K in Rn, a map f : K → Rn is said to be

pseudomonotone on K if

x, y ∈ K, 〈f(x), y − x〉 ≥ 0 ⇒ 〈f(y), y − x〉 ≥ 0.

This concept is a generalization of monotonicity defined by 〈f(x)−f(y), x−y〉 ≥ 0 for

any x, y ∈ Rn. There is an extensive literature associated with this property covering

theory and applications, see e.g., [11], [13], [14].

Gowda (see [4], [5], [6]), Crouzeix et al. (see [1]), and Hassouni et al. (see [12])

studied pseudomonotone matrices on Rn
+ and investigated some properties of the

linear complementarity under the condition of pseudomonotonicity.

Motivated by their results, in this paper, we extend the concept of pseudomono-

tonicity from Rn to the setting of Euclidean Jordan algebras. Specifically, we give

a characterization of pseudomonotonicity for a linear transformation and a matrix-

induced transformation defined on a Euclidean Jordan algebra. We show that pseu-

domonotonicity and monotonicity coincide under the condition of the Z-property.

Moreover, we present the invariance of pseudomonotonicity under the algebra and

cone automorphisms and describe interconnections between pseudomonotonicity of a

linear transformation and its principal subtransformations. We note that symmetric

cones (see Section 2 for definition) are, in general, nonpolyhedral. Therefore, these

generalizations presented in this paper are not routine generalizations.
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Here is an outline of the paper. In Section 2, we cover the basic material dealing

with Euclidean Jordan algebras and pseudomonotonicity. In Section 3, we present

some general results for pseudomonotone transformations. In Section 4, we investi-

gate the relation between pseudomonotonicity of a linear transformation and its prin-

cipal subtransformations. In Section 5, we study pseudomonotonicity for some special

linear transformations. Specifically, we show that pseudomonotone linear transforma-

tions are invariant under the algebra and cone automorphisms, we specialize pseu-

domonotonicity of a linear transformation with having the Z-property, and we give a

characterization of pseudomonotonicity for a matrix-induced transformation.

2. Preliminaries.

2.1. Euclidean Jordan algebras. In this subsection, we briefly recall some

concepts, properties, and results from Euclidean Jordan algebras. Most of these can

be found in [3], [9].

Let V be a Euclidean Jordan algebra and K be a symmetric cone in V . A Jordan

product is denoted by x◦y for any two elements x and y in V . In addition, an element

e ∈ V is called the unit element if x ◦ e = x for all x ∈ V . We define

z+ := ΠK(z) and z− := z+ − z,

where ΠK(z) denotes the (orthogonal) projection of z onto K.

For an element z ∈ V , we write

z ≥ 0 (z > 0) if and only if z ∈ K (z ∈ K◦(= interior(K))),

and z ≤ 0 (z < 0) when −z ≥ 0 (−z > 0).

An element c ∈ V such that c2 = c is called an idempotent in V ; it is a primitive

idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents.

We say that a finite set {e1, e2, . . . , er} of primitive idempotents in V is a Jordan frame

if ei ◦ ej = 0 if i 6= j and
∑r

1 ei = e.

Given x ∈ V , there exists a Jordan frame {e1, . . . , er} and real numbers λ1, . . . , λr

such that

x = λ1e1 + · · · + λrer.(2.1)

The numbers λi are called the eigenvalues of x, and the representation (2.1) is called

the spectral decomposition (or the spectral expansion) of x.

Given (2.1), we have

x =

r∑

1

λi
+ei −

r∑

1

λi
−ei and 〈

r∑

1

λi
+ei,

r∑

1

λi
−ei〉 = 0,
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where for a real number α, α+ := max{0, α} and α− := (α)+ − α.

From this we easily verify that x+ =
∑r

1 λi
+ei and x− =

∑r
1 λi

−ei, and so

x = x+ − x− with 〈x+, x−〉 = 0.

For an x ∈ V , a linear transformation Lx : V → V is defined by Lx(z) = x ◦ z,

for all z ∈ V . We say that two elements x and y operator commute if LxLy = LyLx.

It is known that x and y operator commute if and only if x and y have their spec-

tral decompositions with respect to a common Jordan frame (Lemma X.2.2, Faraut

and Korányi [3]).

Here are some standard examples.

Example 2.1. Rn is a Euclidean Jordan algebra with inner product and Jordan

product defined respectively by 〈x, y〉 =
∑n

i=1 xiyi and x ◦ y = x ∗ y. Here Rn
+ is the

corresponding symmetric cone.

Example 2.2. Sn, the set of all n × n real symmetric matrices, is a Euclidean

Jordan algebra with the inner and Jordan product given by 〈X,Y 〉 := trace(XY )

and X ◦ Y := 1
2 (XY + Y X). In this setting, the symmetric cone Sn

+ is the set of all

positive semidefinite matrices in Sn. Also, X and Y operator commute if and only if

XY = Y X.

Example 2.3. Consider Rn (n > 1) where any element x is written as

x =

[
x0

x

]

with x0 ∈ R and x ∈ Rn−1. The inner product in Rn is the usual inner product. The

Jordan product x ◦ y in Rn is defined by

x ◦ y =

[
x0

x

]
◦

[
y0

y

]
:=

[ 〈x, y〉
x0y + y0x

]
.

We shall denote this Euclidean Jordan algebra (Rn, ◦, 〈·, ·〉) by Ln. In this algebra,

the cone of squares, denoted by Ln
+, is called the Lorentz cone (or the second-order

cone). It is given by Ln
+ = {x : ||x|| ≤ x0}.

The unit element in Ln is e =

[
1

0

]
. We note the spectral decomposition of any

x with x 6= 0: x = λ1e1 + λ2e2, where λ1 := x0 + ||x||, λ2 := x0 − ||x||, and

e1 :=
1

2

[
1
x

||x||

]
, and e2 :=

1

2

[
1

− x
||x||

]
.

In this setting, x and y operator commute if and only if either y is a multiple of

x or x is a multiple of y.
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Peirce decomposition. Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean Jordan

algebra V . For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = R ei (where R is the set of all real numbers)

and when i 6= j, Vij := {x ∈ V : x ◦ ei = 1
2x = x ◦ ej}. Then, we have the following

theorem.

Theorem 2.4. (Theorem IV.2.1, [3]) The space V is the orthogonal direct sum

of the spaces Vij (i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj

Vij ◦ Vjk ⊂ Vik if i 6= k

Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =
∑r

i=1 xiei +
∑

i<j xij where xi ∈ R and xij ∈ Vij .

A Euclidean Jordan algebra is said to be simple if it is not the direct sum of

two Euclidean Jordan algebras. It is well known that any Euclidean Jordan algebra

is product of simple Euclidean Jordan algebras and every simple Euclidean Jordan

algebra is isomorphic to the Jordan spin algebra Ln or to the algebra of all n × n

real symmetric matrices Sn or to n × n complex Hermitian matrices Hn or to n × n

quaternion Hermitian matrices Qn or to the algebra of all 3 × 3 octonion Hermitian

matrices O3.

2.2. Pseudomonotone and positive subdefiniteness concepts. Through-

out this paper, we assume that V is a Euclidean Jordan algebra with the corresponding

symmetric cone K and L : V → V is a linear transformation.

We say that L is:

(a) copositive on K if 〈L(x), x〉 ≥ 0 for all x ∈ K;

(b) copositive star on K if L is copositive on K, and

[x ≥ 0, L(x) ≥ 0, and 〈L(x), x〉 = 0] ⇒ LT (x) ≤ 0.

Definition 2.5. Let S be a set in V . L is said to be pseudomonotone on S if

x ∈ S, y ∈ S, 〈L(x), y − x〉 ≥ 0 ⇒ 〈L(y), y − x〉 ≥ 0.

Definition 2.6. Let S be a set in V . L is said to be positive subdefinite (PSBD)

on S if

x ∈ V, 〈L(x), x〉 < 0 ⇒ − LT (x) ∈ S or LT (x) ∈ S.
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We note that every monotone linear transformation is vacuously PSBD.

Definition 2.7. L is said to be merely positive subdefinite (MPSBD) if L is

PSBD but not monotone.

The following definition is a generalization of (Moore-Penrose) pseudo-inverse of

a square matrix.

Definition 2.8. The pseudo-inverse of L is the uniquely defined linear transfor-

mation L† which satisfies the following conditions:

LL†L = L, L†LL† = L†, (LL†)T = LL†, and (L†L)T = L†L.

We define Ls = LT (L + LT )†L. We note that Ls is always self-adjoint.

Given a self-adjoint linear transformation B on V , its inertia is defined by

In(B) := (π(B), ν(B), δ(B)),

where π(B), ν(B), and δ(B) are, respectively, the number of eigenvalues of B with

positive, negative, and zero real parts, counting multiplicities. Note that

π(B) + ν(B) + δ(B) = dim(V ).

3. General results for pseudomonotone transformations. In this section,

we present some general results for pseudomonotone transformations on V .

Specializing Gowda’s result (Proposition 1, [4]) to symmetric cone, we have

Lemma 3.1.

Lemma 3.1. If L is pseudomonotone on K, then L is copositive star on K.

The following lemma is a modification of Theorem 5.2 in [15]. We omit its proof.

Lemma 3.2. L is pseudomonotone on K◦ if and only if

x ∈ K◦, v ∈ V, 〈v, L(x)〉 = 0 ⇒ 〈v, L(v)〉 ≥ 0.

Throughout the paper, pseudomonotone, PSBD, copositive, and copositive star con-

cepts are defined relative/on K, in which case, we drop a phrase on K.

Lemma 3.3. If L is pseudomonotone, then L is PSBD.

Proof. Suppose that L is pseudomonotone but not PSBD. Then there exists x0,

such that 〈L(x0), x0〉 < 0, LT (x0) 6≥ 0, and LT (x0) 6≤ 0. Thus, in view of the spectral

decomposition of LT (x0), there exists w > 0 such that 〈L(w), x0〉 = 〈LT (x0), w〉 = 0.

Hence 〈L(x0), x0〉 ≥ 0 by Lemma 3.2. This is a contradiction. Therefore, L is PSBD.
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The following is analogous to Proposition 3.1 in [1].

Theorem 3.4. L is pseudomonotone if and only if L is PSBD and

〈L(z), z〉 < 0, LT (z) ≤ 0 ⇒ 〈z, L(z−)〉 < 0.(3.1)

Proof. “Only if” part. Suppose that L is pseudomonotone. Then L is PSBD

by Lemma 3.3. Now, suppose that 〈L(z), z〉 < 0 and LT (z) ≤ 0. Since 〈z, L(z−)〉 =

〈LT (z), z−〉 ≤ 0, we claim that 〈z, L(z−)〉 6= 0. Suppose not, so that

〈z, L(z−)〉 = 0.(3.2)

Then 〈z+ − z−, L(z−)〉 = 0 ⇒ 〈z+ − z−, L(z+)〉 ≥ 0 by pseudomonotonicity of L.

Hence,

〈z, L(z+)〉 ≥ 0.(3.3)

Now, from (3.2) and (3.3), we have 〈z, L(z+ − z−)〉 ≥ 0, i.e., 〈L(z), z〉 ≥ 0, this

contradicts 〈L(z), z〉 < 0. Thus, the claim is true. Therefore, (3.1) holds.

“If” part. Suppose that L is PSBD and (3.1) holds. The condition

x, y ≥ 0, 〈L(x), y − x〉 ≥ 0 ⇒ 〈L(y), y − x〉 ≥ 0

is equivalent to

u ≥ 0, z ∈ V, 〈L(z− + u), z〉 ≥ 0 ⇒ 〈L(z+ + u), z〉 ≥ 0,

which is the same as

u ≥ 0, z ∈ V, 〈u,LT (z)〉 ≥ −〈L(z−), z〉 ⇒ 〈u,LT (z)〉 ≥ −〈L(z+), z〉.(3.4)

Now, let u ≥ 0 with 〈u,LT (z)〉 ≥ −〈L(z−), z〉. We verify the rightmost inequality in

(3.4). Without loss of generality, let LT (z) 6= 0.

Case 1: LT (z) ≤ 0. Then, 0 ≥ 〈u,LT (z)〉 ≥ −〈L(z−), z〉 = −〈z−, LT (z)〉 ≥ 0 shows

that 〈L(z−), z〉 = 0. By (3.1), 〈L(z), z〉 ≥ 0. Now, 〈L(z), z〉 ≥ 0 ⇒ −〈L(z−), z〉 ≥
−〈L(z+), z〉, thus, 〈u,LT (z)〉 ≥ −〈L(z+), z〉.

Case 2: LT (z) ≥ 0. Then, 〈u,LT (z)〉 ≥ 0 ≥ −〈z+, LT (z)〉 = −〈L(z+), z〉.

Case 3: LT (z) 6≥ 0 and LT (z) 6≤ 0. Then 〈L(z), z〉 ≥ 0 (otherwise, if 〈L(z), z〉 < 0,

then either LT (z) ≤ 0 or LT (z) ≥ 0, because L is PSBD). Again, 〈L(z), z〉 ≥ 0 ⇒
−〈L(z−), z〉 ≥ −〈L(z+), z〉, thus, 〈u,LT (z)〉 ≥ −〈L(z+), z〉 by (3.4).

Therefore, L is pseudomonotone.
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The following Lemma is similar to Lemma 3.1 in [1]; we give a proof for com-

pleteness.

Lemma 3.5. L is pseudomonotone if and only if L is PSBD and

〈L(z), z〉 < 0, LT (z) ≤ 0 ⇒ L(z−) 6= 0.(3.5)

Proof. “Only if” part follows from Lemma 3.3 and Theorem 3.4.

“If” part. Assume that (3.5) holds, L is PSBD and not pseudomonotone. Then,

by Theorem 3.4, there exists z such that

〈L(z), z〉 < 0, LT (z) ≤ 0 and 〈z, L(z−)〉 ≥ 0.

From LT (z) ≤ 0, it follows that 〈z, L(z−)〉 = 〈LT (z), z−〉 ≤ 0. Hence, for such a z,

〈z, L(z−)〉 = 0. Now, for a v ∈ V , there exists δ > 0 such that 〈L(z + tv), z + tv〉 < 0,

∀t ∈ [−δ, δ]. Since L is PSBD, we have either LT (z + tz) ≥ 0 or LT (z + tz) ≤ 0.

If LT (z + tz) ≥ 0, then 0 ≤ 〈LT (z + tv), z−〉 = t〈L(z−), v〉, ∀t ∈ [−δ, δ]. Hence

〈L(z−), v〉 = 0 for all v ∈ V and therefore L(z−) = 0, which is a contradiction.

Similarly, we can reach a contradiction if LT (z + tz) ≤ 0. Therefore, (3.5) holds.

Lemma 3.6. Let L be copositive star. Then

〈L(z), z〉 < 0, LT (z) ≤ 0 ⇒ L(z−) 6= 0.(3.6)

Proof. Suppose that 〈L(z), z〉 < 0, LT (z) ≤ 0 and L(z−) = 0. Then 〈L(z−), z−〉 =

0. Since L is copositive star, we have that LT (z−) ≤ 0. Then

0 > 〈L(z), z〉 = 〈z+ − z−, L(z+)〉 = 〈z+, L(z+)〉 − 〈LT (z−), z+〉 ≥ 0.

This is a contradiction. Therefore, (3.6) holds.

Theorem 3.4, Lemmas 3.1, 3.5, and 3.6 result in the following theorem.

Theorem 3.7. L is pseudomonotone if and only if L is PSBD and copositive

star.

The following theorem is a characterization of MPSBD.

Theorem 3.8. Suppose that Rank(L) ≥ 2. Then L is MPSBD if and only if

δ(L + LT ) = 1, L(V ) = LT (V ) = (L + LT )(V ), and −Ls is copositive.

The proof of the above result is based on several lemmas.

Lemma 3.9. Assume that C is a closed convex cone and C ∩ (−C) = {0}. If

a ∈ C, b ∈ −C, and ta+(1−t)b ∈ C∪−C for all t ∈ [0, 1], then there exists t0 ∈ (0, 1)

such that t0a + (1 − t0)b = 0.
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Proof. Suppose that this is not true. Then the set {ta+(1−t)b : t ∈ [0, 1]} ⊆ A∪B,

where A := C\{0} and B := −C\{0}. Since A∩B = ∅ = A∩B, we have a separation

of the connected set {ta + (1 − t)b : t ∈ [0, 1]}, we reach a contradiction. Hence the

conclusion.

Corollary 3.10. Assume that C is a closed convex cone and C ∩ (−C) = {0}.
If a + t1b ∈ C, a + t2b ∈ −C for some t1, t2 ∈ R, and a + tb ∈ C ∪−C for all t ∈ R,

then there exists t0 ∈ R such that a + t0b = 0.

The following lemma and its proof are similar to Proposition 2.2 and its proof in

[1]; we give a proof for completeness.

Lemma 3.11. Suppose that L is MPSBD. Then

(i) ν(L + LT ) = 1;

(ii) (L + LT )z = 0 ⇒ L(z) = LT (z) = 0.

Proof. Let B := L + LT .

(i) B has at least one negative eigenvalue since L is not monotone. Assume, for

contradiction, that there exist λ1 ≤ λ2 < 0, z1, and z2 such that

B(z1) = λ1z1, B(z2) = λ2z2, ||z1||2 = ||z2||2 = 1, and 〈z1, z2〉 = 0.(3.7)

Then 〈B(z1), z1〉 < 0 and 〈B(z2), z2〉 < 0, and hence 〈L(z1), z1〉 < 0 and 〈L(z2), z2〉 <

0. Since L is MPSBD, without loss of generality, we assume that LT (z1) ≤ 0 and

LT (z2) ≥ 0. Now, we define z(t) = tz1 +(1− t)z2 for t ∈ [0, 1]. Then 〈B(z(t)), z(t)〉 =

t2λ1+(1−t)2λ2 < 0. Hence 〈L(z(t)), z(t)〉 < 0 for all t ∈ [0, 1]. This implies that either

LT (z(t)) ≤ 0 or LT (z(t)) ≥ 0, therefore, LT (z(t)) = tLT (z1)+(1−t)LT (z2) ∈ K∪−K.

Since LT (z(0)) = LT (z1) ≤ 0 and LT (z(1)) = LT (z2) ≥ 0, there exists t0 ∈ (0, 1)

such that LT (z(t0)) = 0 by the above lemma; this is a contradiction. Thus, (i) holds.

(ii) Let z1, λ1 be defined as in (3.7); let z be such that B(z) = 0. Then we

have 〈L(z1), z1〉 = 1
2 〈B(z1), z1〉 < 0, and hence LT (z1) 6= 0. Now, for t ∈ R, we define

w(t) = z1+tz. Then we have 〈B(w(t)), w(t)〉 = λ1 < 0. Hence 〈L(w(t)), w(t)〉 < 0 for

all t ∈ R. This implies that either LT (w(t)) 6= 0 and LT (w(t)) ≤ 0 or LT (w(t)) 6= 0

and LT (w(t)) ≥ 0. Therefore, for all t ∈ R, 0 6= LT (w(t)) = LT (z1) + tLT (z) ∈
K ∪ −K. We claim that LT (z) = 0. First, we show that either LT (w(t)) ∈ K for all

t ∈ R or LT (w(t)) ∈ −K for all t ∈ R. Suppose not. Then there exist t1, t2 ∈ R such

that LT (z1) + t1L
T (z) ∈ K and LT (z1) + t2L

T (z) ∈ −K. Thus, there exists t0 ∈ R

such that LT (z1) + t0L
T (z) = 0 by Corollary 3.10. This is a contradiction. Now, we

consider the following two cases:

Case 1: LT (z1) + tLT (z) ∈ K for all t ∈ R. Then 1
t
LT (z1) + LT (z) = 1

t
(LT (z1) +

tLT (z)) ∈ K for a large t > 0. This implies that LT (z) ∈ K as t → ∞ since K
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is closed. Similarly, 1
t
LT (z1) + LT (z) ∈ −K for a large −t > 0. This implies that

LT (z) ∈ −K as t → ∞ since K is closed. Thus, LT (z) = 0.

Case 2: LT (z1) + tLT (z) ∈ −K for all t ∈ R. The proof is similar to Case 1.

Therefore, the claim holds. Hence L(z) = 0 from B(z) = 0.

Remark 3.12. Suppose M is an n×n matrix. Then the following are equivalent

(see [1]):

(i) (M + MT )z = 0 ⇒ Mz = MT z = 0;

(ii) M(Rn) ⊆ (M + MT )(Rn).

Now, given L : V → V linear transformation, by identifying V with some Rk and L

with a matrix, we get the following equivalent statements:

(i) (L + LT )(z) = 0 ⇒ L(z) = LT (z) = 0;

(ii) L(V ) ⊆ (L + LT )(V ).

Using the same argument as in the above remark, Lemma 2 in [2] and Proposition

2.3 in [1] reduce to the following two lemmas.

Lemma 3.13. Suppose that L(V ) ⊆ (L + LT )(V ). Then

π(Ls) = π(L + LT ) + δ(L + LT ) − k,

ν(Ls) = ν(L + LT ) + δ(L + LT ) − k,

δ(Ls) = 2k − δ(L + LT ),

where k is the dimension of the kernel of L.

Lemma 3.14. Suppose that B is self-adjoint linear transformation defined on V

and ν(B) = 1. Then there exists a closed convex cone T such that

T ∪ −T = {z : 〈B(z), z〉 ≤ 0} and int(T ) ∪ −int(T ) = {z : 〈B(z), z〉 < 0}.

Furthermore,

T△ ∩ −T△ = {0} and T△ ∪ −T△ = {y : 〈B†(y), y〉 ≤ 0} ∩ B(V ).

Where T△ is the polar cone of T defined by T△ = {x⋆ : 〈x⋆, x〉 ≤ 0 ∀x ∈ T}.

The following lemma gives a characterization of MPSBD in terms of such a closed

convex cone as in the above lemma.

Lemma 3.15. Given L on V . The following are equivalent:

(i) L is MPSBD.

(ii) There exists a closed convex cone T defined in the above lemma such that

either T ⊆ {z : LT (z) ≤ 0} or −T ⊆ {z : LT (z) ≤ 0}.
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(iii) For T in (ii), either L(K) ⊆ T△ or L(K) ⊆ −T△.

Proof. Let B = L + LT .

(ii)⇒ (i): Suppose (ii) holds and let 〈L(x), x〉 < 0. Then 〈B(x), x〉 < 0, and hence

x ∈ int(T )∪−int(T ) by the above lemma. Thus, either x ∈ int(T ) ⊆ {z : LT (z) ≤ 0}
or x ∈ −int(T ) ⊆ {z : LT (z) ≤ 0}. Therefore, LT (x) ≤ 0 or LT (x) ≥ 0. Hence L is

MPSBD.

(i)⇒ (ii): Suppose (i) holds. Then ν(B) = 1 by Lemma 3.11. Hence there

exists a closed convex cone T defined in the above lemma. It is enough to show that

int(T ) ⊆ {z : LT (z) ≤ 0} or int(T ) ⊆ {z : LT (z) ≥ 0}. Suppose not. Then there

exist u, v in int(T ) such that LT (u) 6≤ 0 and LT (v) 6≥ 0. We note that u 6= v since L

is MPSBD. Again, since L is MPSBD, we have LT (u) ≥ 0 and LT (v) ≤ 0. Now, we

define w(t) = tu + (1− t)v for t ∈ [0, 1]. Then w(t) ∈ int(T ) since u, v in int(T ), and

LT (w(t)) = tLT (u) + (1− t)LT (v). Hence 〈B(w(t)), w(t)〉 < 0 ⇒ 〈L(w(t)), w(t)〉 < 0.

The last inequality implies that LT (w(t)) ≤ 0 or LT (w(t)) ≥ 0 since L is MPSBD.

Thus, LT (w(t)) ∈ K∪−K. Also, LT (w(0)) = LT (v) ≤ 0 and LT (w(1)) = LT (u) ≥ 0.

Therefore, there exists t0 ∈ (0, 1) such that LT (w(t0)) = 0 by Lemma 3.9. This is a

contradiction.

(ii)⇒ (iii): For any y ∈ L(K), there exists x ∈ K such that y = L(x). Now, we

claim that either y ∈ T△ or y ∈ −T△.

Case 1: z ∈ T . Then we have LT (z) ≤ 0. Thus, 〈z, y〉 = 〈z, L(x)〉 = 〈LT (z), x〉 ≤ 0.

Hence y ∈ T△.

Case 2: z ∈ −T , Then we have LT (z) ≤ 0. Thus, 〈z, y〉 = 〈z, L(x)〉 = 〈LT (z), x〉 ≤ 0.

Hence y ∈ −T△.

Therefore, the claim holds.

(iii)⇒ (ii): Suppose L(K) ⊆ T△. Then L(x) ∈ T△ for all x ∈ K. Hence, for any

z ∈ T , we have 0 ≥ 〈z, L(x)〉 = 〈LT (z), x〉. This is implies that LT (z) ≤ 0. Therefore,

T ⊆ {z : LT (z) ≤ 0}. Similarly, if L(K) ⊆ −T△, then −T ⊆ {z : LT (z) ≤ 0}.

Proof of Theorem 3.8. Suppose that L is MPSBD. Then ν(L + LT ) = 1 by

Lemma 3.11, and hence there exists a closed convex cone T that satisfies the conditions

in Lemma 3.14. Also, L(K) ⊆ T△ or L(K) ⊆ −T△ by Lemma 3.15. Without

loss of generality, we assume that L(K) ⊆ T△. Then for any x ≥ 0, 〈Ls(x), x〉 =

〈LT (L + LT )†L(x), x〉 = 〈(L + LT )†L(x), L(x)〉 ≤ 0. Therefore, −Ls is copositive.

From Lemma 3.11 and Remark 3.12, we have L(V ) ⊆ (L+LT )(V ). Thus, Rank(L)≤
Rank(L + LT ). Since Ls = LT (L + LT )†L, we have Rank(Ls)≤ Rank(L). Hence

Rank(Ls)≤ Rank(L)≤ Rank(L + LT ). Since Rank(Ls)= π(Ls) + ν(Ls) = π(L +

LT ) + 1 + 2δ(L + LT ) − 2k, (the last equality is from Lemma 3.13), and Rank(Ls)≤
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Rank(L + LT ), we have π(L + LT ) + 1 + 2δ(L + LT )− 2k ≤ π(L + LT ) + ν(L + LT ).

This implies that k ≥ δ(L + LT ). Since 0 ≤ ν(Ls) = ν(L + LT ) + δ(L + LT )− k (see

Lemma 3.13), we have k ≤ 1 + δ(L + LT ). Since k is an integer, we have that either

k = δ(L + LT ) or k = 1 + δ(L + LT ).

Case 1: Suppose k = 1+δ(L+LT ). Then ν(L+LT ) = 1 implies that ν(Ls) = 0 (see

Lemma 3.13) and so Ls is monotone. Since −Ls is copositive, we have 〈Ls(x), x〉 = 0,

for all x ∈ K. We claim that Ls = 0. Take any y ∈ V , y = y+ − y−, since

y+, y− ∈ K, we have y+ + y− ∈ K. Thus, 〈Ls(y+ + y−), y+ + y−〉 = 0, which

implies that 〈Ls(y+), y−〉 = 0. Now, it is easy to verify that 〈Ls(y), y〉 = 〈Ls(y+ −
y−), y+ − y−〉 = 0. Thus, Ls(y) = 0 for all y ∈ V . Hence Ls = 0. Therefore,

dim(V ) = δ(Ls) = 2k−δ(L+LT ) = 2k−(k−1) = k+1. Since dim(V ) = Rank(L)+k,

we have Rank(L)= 1. This is a contradiction.

Case 2: Suppose k = δ(L + LT ). Then from Lemma 3.13, δ(Ls) = δ(L + LT ),

ν(Ls) = ν(L + LT ), and π(Ls) = π(L + LT ), i.e., L + LT and Ls have the same

inertia. Therefore, Rank(L + LT )= Rank(Ls).

Subcase 2.1: Suppose L+LT is invertible. Then (L+LT )(V ) = V . Since Rank(L+

LT )= Rank(Ls), we have that Ls is invertible. Since Ls = LT (L + LT )†L, we have

that L and LT are invertible. Thus L(V ) = V and LT (V ) = V . Therefore, L(V ) =

LT (V ) = (L + LT )(V ).

Subcase 2.2: Suppose L+LT is not invertible. Since L(V ) ⊆ (L+LT )(V ), we have

Rank(L)≤ Rank(L+LT ). Since Rank(L+LT )= Rank(Ls)≤ Rank(L)≤ Rank(L+LT ),

we have Rank(L + LT )= Rank(L). Again, since L(V ) ⊆ (L + LT )(V ), we have

L(V ) = (L + LT )(V ). By symmetry, we have LT (V ) = (L + LT )(V ). This completes

the “Only if” part of Theorem 3.3.

Conversely, suppose that ν(L+LT ) = 1, L(V ) = LT (V ) = (L+LT )(V ), and −Ls

is copositive. Then there exists a closed convex cone T that satisfies the conditions

in Lemma 3.14. We claim that

L(K) ⊆ T△ ∪ −T△ = {y : 〈(L + LT )†(y), y〉 ≤ 0} ∩ (L + LT )(V ).

Now, for any y ∈ L(K), there exists x ∈ K such that y = L(x).

Then y = L(x) ∈ L(V ) = (L + LT )(V ). Hence

〈(L + LT )†(y), y〉 = 〈(L + LT )†L(x), L(x)〉 = 〈LT (L + LT )†L(x), x〉 = 〈Ls(x), x〉 ≤ 0.

Thus, y ∈ T△ ∪ −T△, and hence L(K) ⊆ T△ ∪ −T△. Therefore, the claim holds.

Now, it is enough to show that the condition

L(K) ⊆ T△ ∪ −T△(3.8)
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is equivalent to the condition (iii) in Lemma 3.15. Suppose that the condition (iii)

holds. Then it is obvious that the condition (3.8) holds. Conversely, Suppose that

the condition (3.8) holds, but the condition (iii) does not hold.

Then L(K) \ {0} ⊆ T△ \ {0} ∪−T△ \ {0}. It is clear that T△ \ {0} ∪−T△ \ {0}
is a separation of the set L(K) \ {0}. Now, we show that L(K) \ {0} is connected set.

We note that L(K) is a convex cone, and dimL(K) = dimL(K − K) = dimL(V ) =

Rank(L) ≥ 2. We consider the following cases:

Case 1: Suppose that 0 is on the boundary of L(K). Then L(K) \ {0} is connected

set.

Case 2: Suppose that 0 is in the relative interior of L(K). Then L(K) is a subspace.

Hence L(K) \ {0} is (path) connected because of Rank(L(K)) ≥ 2.

This is a contradiction. Thus, the condition (iii) holds, and hence L is MPSBD

by Lemma 3.15. �

Theorem 3.8 immediately yields the following.

Lemma 3.16. Suppose that Rank(L) ≥ 2. Then L is MPSBD if and only if LT

is MPSBD.

When Rank(L) = 1, the above lemma is not true, as the following example shows.

Example 3.17. Let

L =




1 0 0

2 0 0

0 0 0



 : L3 → L3.

Then it is easy to verify that L is MPSBD but LT is not.

Theorem 3.18. Suppose that L is pseudomonotone with Rank(L) ≥ 2. Then

LT is pseudomonotone.

Proof. Assume without loss of generality that L is not monotone. Hence, by

Theorem 3.7, L is PSBD and copositive. Thus, LT is copositive and by the above

lemma, LT is PSBD. Now, suppose that there exists x such that 〈LT (x), x〉 < 0,

L(x) ≤ 0, and LT (x−) = 0. Since L is PSBD, by Theorem 3.8, L(V ) = LT (V ), and

hence Ker(L)=Ker(LT ). Thus, L(x−) = 0 and

0 > 〈LT (x), x〉 = 〈L(x), x〉 = 〈L(x+ − x−), x+ − x−〉
= 〈L(x+), x+ − x−〉
= 〈L(x+), x+〉 − 〈x+, LT (x−)〉
= 〈L(x+), x+〉 ≥ 0.
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The last inequality comes from copositivity of L. This is a contradiction. Using

Lemma 3.5 shows that LT is pseudomonotone.

When Rank(L)=1, the above theorem is not true, as the following example shows.

Example 3.19. Let

L =

[
0 0

1 1

]
: R2 → R2.

Then it is easy to verify that L is pseudomonotone, but LT is not.

In the matrix case, Gowda ([6]) conjectured that pseudomonotonicity of L implies

pseudomonotonicity of LT when L is normal (LLT = LT L). In what follows, we give

a positive answer in the setting of Euclidean Jordan algebras.

First, we prove the following lemma.

Lemma 3.20. Suppose L is pseudomonotone defined by L(x) = 〈a, x〉b with

0 6= a ≥ 0 and 0 6= b ∈ V . Then 〈a, x〉〈b, x〉 ≥ 0 for all x ≥ 0 implies b ≥ 0.

Proof. Since L(x) = 〈a, x〉b, we have LT (x) = 〈b, x〉a. Since L is pseudomonotone,

L is PSBD and copositive star by Theorem 3.7. Since 〈a, x〉 ≥ 0 for all x ≥ 0, we

consider the following cases:

Case 1: If 〈a, x〉 > 0 for all x ≥ 0, then 〈a, x〉〈b, x〉 ≥ 0 for all x ≥ 0 implies 〈b, x〉 ≥ 0

for all x ≥ 0. Hence, b ≥ 0.

Case 2: If 〈a, x0〉 = 0 for some x0 ≥ 0, then L(x0) = 0. By copositive star property

of L, LT (x0) ≤ 0, so 〈b, x0〉a ≤ 0. If 〈b, x0〉 < 0, there exist a u > 0 and ǫ > 0, such

that 〈b, x0 + ǫu〉 < 0. Since x0 + ǫu ≥ 0, we have 〈a, x0 + ǫu〉〈b, x0 + ǫu〉 ≥ 0. Since

〈a, x0 + ǫu〉 = ǫ〈a, u〉 > 0, we have 〈a, x0 + ǫu〉〈b, x0 + ǫu〉 < 0. This is a contradiction.

Thus, 〈b, x0〉 = 0.

Now, combining cases 1 and 2, we get that 〈a, x〉〈b, x〉 ≥ 0 for all x ≥ 0, which implies

〈b, x〉 ≥ 0. Hence, b ≥ 0.

Remark 3.21. If 0 6= a ≤ 0 in the above lemma, then replacing a by −a and

repeating the argument in the proof, we have b ≤ 0.

Theorem 3.22. If L is a normal and pseudomonotone, then LT is pseudomono-

tone.

Proof. When Rank(L)=2, the implication follows from Theorem 3.18.

When Rank(L)=0, it is obvious. We will show that it is true for Rank(L)=1

case. Since Rank(L)=1, there exist nonzero a, b ∈ V , such that L(x) = 〈a, x〉b. Then

we have LT (x) = 〈b, x〉a. Since L is pseudomonotone, L is PSBD and copositive

star by Theorem 3.7. First, we show that LT is PSBD. Suppose that 〈LT (x), x〉 =
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〈a, x〉〈b, x〉 < 0, which implies 〈L(x), x〉 < 0. Then we have that either LT (x) =

〈b, x〉a ≥ 0 or LT (x) = 〈b, x〉a ≤ 0 by PSBD of L. Since 〈b, x〉 6= 0, we have

that either a ≥ 0 or a ≤ 0. Since L is copositive, we have 〈a, y〉〈b, y〉 ≥ 0 for

all y ≥ 0, which implies that either a ≥ 0 and b ≥ 0 or a ≤ 0 and b ≤ 0 by

the above lemma and remark. This implies that either L(x) ≥ 0 or L(x) ≤ 0.

Therefore, LT is PSBD. Now, suppose that 〈LT (x), x〉 < 0, L(x) ≤ 0 and LT (x−) = 0.

Then 〈L(x−), L(x−)〉 = 〈x−, LT L(x−)〉 = 〈x−, LLT (x−)〉 = 0, which implies that

L(x−) = 0. Then, as in the proof of Theorem 3.18,

0 > 〈LT (x), x〉 = 〈L(x), x〉 = 〈L(x+ − x−), x+ − x−〉
= 〈L(x+), x+ − x−〉
= 〈L(x+), x+〉 − 〈x+, LT (x−)〉
= 〈L(x+), x+〉 ≥ 0.

The last inequality comes from copositivity of L. This is a contradiction. By Lemma

3.5, LT is pseudomonotone.

In the examples below, we describe matrices on L3 of rank 1, 2, and 3 that are

pseudomonotone, but not monotone. The proofs are given in Appendix.

Example 3.23. Let

L =




a 0 0

b 0 0

c 0 0



 : L3 → L3

be such that a ≥
√

b2 + c2. Then L is pseudomonotone.

Remark 3.24. By putting a = b = 1 and c = 0, we get that

L =




1 0 0

1 0 0

0 0 0



 : L3 → L3

is pseudomonotone, but not monotone.

Example 3.25. Let

L =




1 c 0

b 0 0

0 0 0



 : L3 → L3

be such that

(a) 0 ≤ b + c ≤ 1,

(b) c > 0,
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(c) b < 0.

Then L is pseudomonotone.

Remark 3.26. By putting b = − 1
4 and c = 1

2 , we get that

L =




1 1

2 0

− 1
4 0 0

0 0 0



 : L3 → L3

is pseudomonotone, but not monotone.

Example 3.27. Let

L =




1 c 0

b 0 0

0 0 ǫ



 : L3 → L3

be such that

(a) 0 < b + c < 1,

(b) 0 < c <
√

2,

(c) b < 0,

(d) 0 < ǫ ≤ 1,

(e) (3b + c)2 − 4b2(2 − c2) < 0.

Then L is pseudomonotone.

Remark 3.28. By putting b = − 1
4 , c = 1

2 and ǫ = 1, we get that

L =




1 1

2 0

− 1
4 0 0

0 0 1



 : L3 → L3

is pseudomonotone, but not monotone.

Theorem 3.29. Suppose that L is self-adjoint and copositive. Then L is PSBD

if and only if L is monotone.

Proof. As the “If” part is obvious, we prove the “Only if” part. Since L is self-

adjoint, every eigenvalue of L is real. Assume there exists an eigenvalue λ < 0, and

nonzero x ∈ V such that L(x) = λx. Then we have 〈L(x), x〉 = 〈λx, x〉 = λ||x||2 < 0;

it follows that LT (x) = L(x) = λx ≥ 0 or LT (x) = L(x) = λx ≤ 0 since L is

PSBD. If L(x) = λx ≤ 0, then x ≥ 0, because λ < 0. Thus, 〈L(x), x〉 ≥ 0, because

L is copositive. This is a contradiction. If L(x) = λx ≥ 0, then x ≤ 0, because

λ < 0. Thus, 〈L(x), x〉 = 〈L(−x),−x〉 ≥ 0, because L is copositive. Again, this is a

contradiction. Therefore, each eigenvalue of L is nonnegative. Hence, L is monotone.
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Corollary 3.30. Suppose that L is self-adjoint. Then L is pseudomonotone if

and only if L is monotone.

4. Pseudomonotonicity and principal subtransformations. In the matrix

case, Mohan, Neogy and Das (see [16]) showed that if L is PSBD, then its principal

subtransformations are also PSBD. In this section, we study the relation between

pseudomonotonicity of L and its principal subtransformations.

First, we recall the notion of “principal subtransformations” of a given linear

transformation on V .

Given a Jordan frame {e1, . . . , er} in a Euclidean Jordan algebra V , we define

V (l) := V (e1 + e2 + · · · + el, 1) := {x ∈ V : x ◦ (e1 + e2 + · · · + el) = x}
for 1 ≤ l ≤ r. Corresponding to V (l), we consider the orthogonal projection P (l) :

V 7→ V (l). For a given linear transformation L : V 7→ V , the transformation P (l) ◦L :

V (l) 7→ V (l) is, by definition, a principal subtransformation of L corresponding to

{e1, . . . , el}, and is denoted by L{e1,...,el} (the symbol “◦” means here the composition

rather than Jordan multiplication).

We note that for a given Jordan frame {e1, . . . , er}, we can permute the objects

and select the first l objects (for any 1 ≤ l ≤ r). Thus, there are 2r − 1 principal

subtransformations corresponding to a Jordan frame. Of course, by taking other

Jordan frames, we generate other principal subtransformations.

Proposition 4.1. Fix a Jordan frame {e1, . . . , er}. Suppose that L is PSBD.

Then P (l) ◦ L is PSBD for any l, 1 ≤ l ≤ r.

Proof. Let L̂ = P (l) ◦ L : V (l) → V (l). Then for x ∈ V (l), 0 > 〈x, L̂(x)〉 =

〈x, P (l) ◦ L(x)〉 = 〈x,L(x)〉, hence, LT (x) ≤ 0 or LT (x) ≥ 0, because L is PSBD.

Suppose LT (x) ≤ 0. Then for any u ≥ 0 in V (l), 〈u, L̂T (x)〉 = 〈L̂(u), x〉 = 〈P (l) ◦
L(u), x〉 = 〈L(u), P (l)(x)〉 = 〈L(u), x〉 = 〈u,LT (x)〉 ≤ 0. Hence, L̂T (x) ≤ 0 in V (l).

Similarly, we show that L̂T (x) ≥ 0 in V (l) when LT (x) ≥ 0. Therefore, P (l) ◦ L is

PSBD for any l, 1 ≤ l ≤ r.

Lemma 4.2. Fix a Jordan frame {e1, . . . , er}. If L is copositive on V , then

P (l) ◦ L is copositive on V (l) for any l, 1 ≤ l ≤ r.

Proof. Suppose x ≥ 0 in V (l). Then 〈x, P (l) ◦ L(x)〉 = 〈P (l)(x), L(x)〉 =

〈x,L(x)〉 ≥ 0.

Theorem 4.3. Fix a Jordan frame {e1, . . . , er}. If L is pseudomonotone and

Rank(P (l)◦L) ≥ 2 for 1 < l ≤ r, then P (l)◦L is pseudomonotone for any l, 1 < l ≤ r.

Proof. Assume without loss of generality that L is not monotone. To use Lemma
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3.5, suppose that L is pseudomonotone. Then L is PSBD and copositive star by

Theorem 3.7. Hence P (l)◦L is PSBD for 1 ≤ l ≤ r by Proposition 4.1 and copositive by

the above lemma. Suppose there exists l0 (1 < l0 ≤ r) such that L̂0 := P (l0) ◦L is not

pseudomonotone. Then there exists x ∈ V (l0) such that 〈x, L̂0(x)〉 < 0, L̂T
0 (x) ≤ 0 and

L̂0(x
−) = 0. Since L̂0 is PSBD and Rank(L̂0) ≥ 2, we have L̂0(V

(l0)) = L̂T
0 (V (l0)) by

Theorem 3.8; thus Ker(L̂0)=Ker(L̂T
0 ). Hence L̂T

0 (x−) = 0. Repeating the argument

given in the proof of Theorem 3.18 and 3.22, we come to a contradiction, so L̂0(x
−) 6=

0. Thus, P (l) ◦ L is pseudomonotone for any l, 1 < l ≤ r.

5. Pseudomonotonicity of some specialized transformations.

5.1. Quadratic representations. We now characterize the pseudomonotonic-

ity for quadratic representations.

Given any element a in V , the quadratic representation of a is defined by

Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

Recall Pa(K) ⊆ K, so Pa is copositive.

Theorem 5.1. For a ∈ V , the following are equivalent:

(a) Pa is monotone on V .

(b) Pa is pseudomonotone.

If, in addition, V is simple, then the above conditions are further equivalent

to

(c) ±a ∈ K.

Proof. Since Pa is self-adjoint and copositive, we only need to show (a) is equiv-

alent to (c), when V is simple. For a given a ∈ V , there exits a Jordan frame

{e1, e2, . . . , er} such that

a = a1e1 + a2e2 + · · · + arer.

For any x ∈ V , we have the Peirce decomposition of x with respect to this Jordan

frame

x =

r∑

i=1

xiei +
∑

i<j

xij

(with xi ∈ R and xij ∈ Vij). It can be easily verified that

Pa(x) =

r∑

i=1

ai
2xiei +

∑

i<j

aiajxij .
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When V is simple, Vij is nonzero for each i ≤ j (see Corollary IV.2.4 in [3]), so we

have

0 ≤ 〈x, Pa(x)〉 =
r∑

i=1

ai
2xi

2||ei||2 +
∑

i<j

aiaj ||xij ||2 (∀x ∈ V )

⇔ aiaj ≥ 0 (i ≤ j)

⇔ ai ≥ 0 or ai ≤ 0,∀i.

Hence, when V is simple, Pa is monotone on V if and only if ±a ∈ K.

Remark 5.2. When V = Sn, for a real n×n matrix A, the two sided multiplica-

tive transformation is defined by

MA(X) := AXAT .

Clearly, MA is copositive. If we specialize Pa on Sn, then PA(X) = AXA for A ∈ Sn.

Thus for MA, the following are equivalent when A is a real symmetric square matrix.

(a) A is either positive semidefinite or negative semidefinite.

(b) MA is monotone.

(c) MA is pseudomonotone.

When A is any nonsingular matrix, we claim that MA is PSBD if and only if MA

is monotone. We only need to show that MA is monotone if MA is PSBD. Suppose

there exists X ∈ Sn, such that 〈X,MA(X)〉 < 0. Then MA
T (X) = MAT (X) � 0

or MAT (X) � 0. Let 0 � Y := MAT (X) = AT XA. Then X = (A−1)T Y A−1 �
0. As MA is copositive, this contradicts 〈X,MA(X)〉 < 0. Similarly, we can get

the contradiction when Y � 0. Since monotonicity implies pseudomonotonicity and

pseudomonotonicity implies PSBD, we have MA is pseudomonotone if and only if MA

is monotone when A is any nonsingular matrix. This need not be true when A is a

singular matrix, as the following example shows.

Example 5.3. Let

A =

[
0 0

1 1

]
.

Then, it is easy to verify that MA is PSBD, but not monotone.

5.2. Automorphisms. In [16], Mohan, Neogy and Das showed that PSBD ma-

trices are invariant under principal rearrangement. In this section, we show that

PSBD property is invariant for cone invariant transformations and pseudomonotonic-

ity is invariant under algebra and cone automorphisms.

A linear transformation Λ : V → V is said to be an algebra automorphism if Λ is

invertible and Λ(x ◦ y) = Λ(x) ◦ Λ(y) for all x, y ∈ V . The set of all automorphisms

of V is denoted by Aut(V ).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 225-251, March 2011

http://math.technion.ac.il/iic/ela



ELA

Pseudomonotonicity and Related Properties in Euclidean Jordan Algebras 243

A linear transformation Γ : V → V is said to be a cone automorphism if Γ(K) =

K. Because K◦ 6= ∅, such a transformation is necessarily invertible. We denote the

set of all automorphisms of K by Aut(K). It is immediate that Aut(V ) ⊆ Aut(K).

We use Π(K) to denote the set of all linear transformations on V that leave K

invariant, i.e., L(K) ⊆ K for any L ∈ Π(K).

We note that Aut(V ) ⊆ Aut(K) ⊆ Π(K).

To illustrate these concepts, we recall the following examples from [9].

Example 5.4. Consider V = Rn. In this case, the permutation matrices are the

automorphisms of Rn and any automorphism of Rn
+ is a product of a positive definite

diagonal matrix and a permutation matrix.

Example 5.5. (see [9]) Consider V = Sn. In this case, for any Γ ∈ Aut(Sn
+),

there exists an invertible matrix Q ∈ Rn×n such that Γ(Z) = QZQT , ∀Z ∈ Sn.

In particular, for Λ ∈Aut(Sn), there exists a real orthogonal matrix U such that

Λ(Z) = UZUT , ∀Z ∈ Sn.

Example 5.6. (see [9]) Consider V = Ln. In this case, an n × n matrix

A ∈Aut(Ln
+) if and only if there exists a µ > 0 such that AT JnA = µJn, where

Jn = diag(1,−1, . . . ,−1). In particular, for A ∈Aut(Ln), A =

[
1 0

0 D

]
, where

D : Rn−1 → Rn−1 is an orthogonal matrix.

Theorem 5.7. If L is PSBD, then PLPT is PSBD for all P ∈ Π(K).

Proof. Suppose 〈x, PLPT (x)〉 < 0. Then we have 〈PT (x), LPT (x)〉 < 0. Let

y = PT (x). Then 〈y, L(y)〉 < 0, which implies either LT (y) ≥ 0 or LT (y) ≤ 0,

because L is PSBD. Since P ∈ Π(K), we have either PLT (y) ≥ 0 or PLT (y) ≤ 0, i.e.,

PLT PT (x) ≥ 0 or PLT PT (x) ≤ 0. Hence, PLPT is PSBD.

Recall the following proposition from [8].

Proposition 5.8. (Proposition 4.1, [8]) Let Γ ∈Aut(K). Then Γ−1 and ΓT ∈
Aut(K).

Theorem 5.9. Let Γ ∈ Aut(K). Then L is pseudomonotone if and only if ΓLΓT

is pseudomonotone.

Proof. To use Theorem 3.7, first, we show that L is PSBD if and only if ΓLΓT

is PSBD. Suppose that L is PSBD. The implication of that ΓLΓT is PSBD follows

from Theorem 5.7 because Γ ∈ Aut(K) ⊆ Π(K). The converse follows from the fact

that Γ−1, ΓT ∈ Aut(K) ⊆ Π(K). Now, we prove that L is copositive star if and only

if ΓLΓT is copositive star. Suppose that L is copositive star, x ≥ 0, ΓLΓT (x) ≥ 0,
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and 〈x,ΓLΓT (x)〉 = 0. Then, we have ΓT (x) ≥ 0, because ΓT ∈ Aut(K) ⊆ Π(K);

LΓT (x) ≥ 0, because Γ−1 ∈ Aut(K) ⊆ Π(K) and 〈ΓT (x), LΓT (x)〉 = 0. Since L

is copositive star, we have LT ΓT (x) ≤ 0, so ΓLT ΓT (x) ≤ 0. Therefore, ΓLΓT is

copositive star. Again, the converse follows from the fact that Γ−1, ΓT ∈ Aut(K) ⊆
Π(K).

We note that the above theorem holds if Γ is replaced by Λ because Aut(V ) ⊆
Aut(K).

5.3. Z transformations. We say that L has the Z-property on V if

x, y ∈ K, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0.

Recently, Gowda and Tao (see [10]) introduced and studied the properties of such

transformations.

Theorem 5.10. Suppose that L has the Z and copositive properties. Then L is

monotone.

Proof. Assume that L has the Z and copositive properties. Then LT has the

Z and copositive properties. So A := L + LT has the Z and copositive properties.

Let λ be the minimum eigenvalue of A. Then a corresponding eigenvector u is in K

(see Theorem 6, [17]). It follows that 0 ≤ 〈A(u), u〉 = λ||u||2, so λ ≥ 0. Thus A is

monotone. Hence L is monotone.

This theorem and Lemma 3.1 immediately yield the following result.

Corollary 5.11. Suppose that L has the Z-property and L is pseudomonotone.

Then L is monotone.

Example 5.12. When V = Sn, for a real n × n matrix A, the Lyapunov trans-

formation is defined by

LA(X) := AX + XAT .

Then LA has the Z-property (see [10]). It is easy to verify that 〈LA(c), c〉 ≥ 0 for

all primitive idempotents c in Sn
+ if and only if A is positive semidefinite. Since

〈LA(c), c〉 ≥ 0 for all primitive idempotents c in Sn
+ if and only if LA is monotone (see

the proof of Theorem 7.1 in [7]), we have that LA is pseudomonotone if and only if

A is positive semidefinite by the above theorem.

5.4. Relaxation transformations. In this section, we apply the ideas of the

previous sections to study the transformation RA : V → V that arises from a matrix

A ∈ Rr×r.
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Suppose we are given a Jordan frame {e1, . . . , er} in V and A ∈ Rr×r. We define

RA : V → V as follows. For any x ∈ V , we write the Peirce decomposition

x =

r∑

1

xiei +
∑

i<j

xij .

Then

RA(x) :=

r∑

1

yiei +
∑

i<j

xij ,

where

[y1 . . . yr]
T = A

(
[x1 . . . xr]

T
)
.

Our objective in this section is to study some interconnections between the prop-

erties of A and the properties of RA. Such a study has found to be quite interesting

and useful in the context of matrix based linear transformations on V = Sn and

V = Ln. In particular, it will provide examples to study complementarity problems

on V (see [18]). In what follows, we will study the relationship between a matrix A

and a transformation RA, when RA is pseudomonotone.

Through this discussion, we denote D := diag(||e1||2, . . . , ||er||2).

Theorem 5.13. A is pseudomonotone on Rr
+ if and only if RD−1A+I − I ′ is

pseudomonotone on K, where I is an identity matrix on Rr, and I ′ : V → V is an

identity transformation on V .

Proof. “Only if” part. Let B := D−1A+I. Then A = D(B−I). For all x, y ≥ 0,

let

x =
r∑

1

xiei +
∑

i<j

xij and y =
r∑

1

yiei +
∑

i<j

yij .

Then xi ≥ 0 and yi ≥ 0 for all i = 1, . . . , r and

RB(x) :=

r∑

1

x̄iei +
∑

i<j

xij ,

where

[x̄1 . . . x̄r]
T = B

(
[x1 . . . xr]

T
)
.

Then we have

〈RB(x), y − x〉 =

r∑

1

x̄i(yi − xi)||ei||2 +
∑

i<j

〈xij , yij − xij〉.
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We note that

〈x, y − x〉 =
r∑

1

xi(yi − xi)||ei||2 +
∑

i<j

〈xij , yij − xij〉.

We define x̂ := [x1 . . . xr]
T and ŷ := [y1 . . . yr]

T . Then we have

〈(RB − I ′)(x), y − x〉 =
r∑

1

(x̄i − xi)(yi − xi)||ei||2

= 〈(B − I)x̂,D(ŷ − x̂)〉
= 〈D(B − I)x̂, (ŷ − x̂)〉
= 〈Ax̂, ŷ − x̂〉.

Similarly, 〈(RB − I ′)(y), y − x〉 = 〈Aŷ, ŷ − x̂〉. Assume that 〈(RB − I ′)(x), y − x〉 ≥ 0,

which means 〈Ax̂, ŷ−x̂〉 ≥ 0. Since A is pseudomonotone, we have 〈Aŷ, ŷ−x̂〉 ≥ 0, and

hence 〈(RB−I ′)(y), y−x〉 ≥ 0. Therefore, RB−I ′ = RD−1A+I−I ′ is pseudomonotone

on K.

“If” part. Let x̂ = [x1 . . . xr]
T and ŷ = [y1 . . . yr]

T with xi ≥ 0 and yi ≥ 0 for all

1 ≤ i ≤ r. Suppose 〈Ax̂, ŷ− x̂〉 ≥ 0. Then we define x =
∑r

1 xiei and y =
∑r

1 yiei. So

x, y ≥ 0. Then that A is pseudomonotone follows from the proof of “Only if” part.

Theorem 5.14. If RA is pseudomonotone on K, then DA is pseudomonotone

on Rr
+.

Proof. Let x = [x1 . . . xr]
T and y = [y1 . . . yr]

T with xi ≥ 0 and yi ≥ 0 for all

1 ≤ i ≤ r. Suppose 〈(DA)x, y − x〉 ≥ 0. Define x̄ =
∑r

i=1 xiei and ȳ =
∑r

i=1 yiei.

Thus, x̄ ≥ 0, ȳ ≥ 0, and

RA(x̄) :=

r∑

1

ziei,

where

[z1 . . . zr]
T = A

(
[x1 . . . xr]

T
)
.

Therefore,

〈RA(x̄), ȳ − x̄〉 =

r∑

1

zi(yi − xi)||ei||2 = 〈Ax,D(y − x)〉 = 〈(DA)x, y − x〉 ≥ 0.

Since RA is pseudomonotone, we have 〈RA(ȳ), ȳ − x̄〉 ≥ 0. Since 〈RA(ȳ), ȳ − x̄)〉 =

〈(DA)y, y − x〉, we have 〈(DA)y, y − x〉 ≥ 0. Hence, DA is pseudomonotone.
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The following example shows that the converse of the above theorem may not be

true.

Example 5.15. Consider RA : L3 → L3, where A =

[
0 0

1 1

]
.

Fix a Jordan frame {e1, e2}, where e1 = 1
2 [1 1 0]T and e2 = 1

2 [1 − 1 0]T . Then we

have ||e1||2 = ||e2||2 = 1
2 and D = 1

2I.

It is easy to verify that DA is pseudomonotone. Now, take x = e1+2e2+[0 0 −1]T

and y = 12e1 + e2 + [0 0 − 3]T . It is easy to verify that x, y ≥ 0. Then RA(x) =

3e2 +[0 0 − 1]T , RA(y) = 13e2 +[0 0 − 3]T and y−x = 11e1 − e2 +[0 0 − 2]T . By

simple calculation, we have 〈RA(x), y − x〉 = 1
2 > 0 and 〈RA(y), y − x〉 = − 1

2 < 0.

6. Concluding remarks. In this paper, we have extended the concept of pseu-

domonotonicity from Rn to the setting of Euclidean Jordan algebras. Some intercon-

nections between pseudomonotonicity, monotonicity, and the Z-property were stud-

ied. In particular, we have given a characterization of pseudomonotonicity for a linear

transformation and a matrix-induced transformation defined on a Euclidean Jordan

algebra. We have shown that pseudomonotonicity and monotonicity coincide un-

der the condition of the Z-property. In addition, we have proved the invariance of

pseudomonotonicity under the algebra and cone automorphisms and described inter-

connections between pseudomonotonicity of a linear transformation and its principal

subtransformations.

7. Appendix. In this section, we use Theorem 3.7 to prove claims made in

Examples 3.23, 3.25, and 3.27 from Section 3.

Example 7.1. Let

L =




a 0 0

b 0 0

c 0 0



 : L3 → L3

be such that a ≥
√

b2 + c2. Then L is pseudomonotone.

Proof. First, we show that L is PSBD. Let x = [x0 x1 x2]
T . Then, from

〈L(x), x〉 < 0, we have x0(ax0 + bx1 + cx2) < 0. Thus, we have either x0 > 0

and ax0 + bx1 + cx2 < 0 or x0 < 0 and ax0 + bx1 + cx2 > 0. Hence, we have either

LT (x) = (ax0 + bx1 + cx2)e > 0 or LT (x) < 0. Therefore, L is PSBD. Next, we need

to show that L is copositive star. For x ≥ 0, we have that x0 ≥
√

x1
2 + x2

2. Using

the condition of a ≥
√

b2 + c2, we have

ax0 ≥
√

x1
2 + x2

2
√

b2 + c2

=
√

b2x1
2 + c2x2

2 + c2x1
2 + b2x2

2
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≥
√

b2x1
2 + c2x2

2 + 2bcx1x2

=
√

(bx1 + cx2)2 = |bx1 + cx2|
⇒ ax0 + bx1 + cx2 ≥ 0.

Since 〈L(x), x〉 = x0(ax0 + bx1 + cx2), we have 〈L(x), x〉 ≥ 0 for x ≥ 0. Thus, L is

copositive. It can be easily verify that

[x ≥ 0, L(x) ≥ 0, 〈L(x), x〉 = 0] ⇒ LT (x) = 0.

This shows that L is copositive star. Therefore, by Theorem 3.7, L is pseudomo-

notone.

Example 7.2. Let

L =




1 c 0

b 0 0

0 0 0



 : L3 → L3

be such that

(a) 0 ≤ b + c ≤ 1,

(b) c > 0,

(c) b < 0.

Then L is pseudomonotone.

Proof. Without loss of generality, we assume that b+c > 0. Let x = [x0 x1 x2]
T .

Then

〈L(x), x〉 = x0[x0 + (b + c)x1],

L(x) = [x0 + cx1 bx0 0]T ,

and LT (x) = [x0 + bx1 cx0 0]T .

First, we show that L is PSBD. Suppose that 〈L(x), x〉 < 0. Then either x0 > 0 and

x0 + (b + c)x1 < 0 or x0 < 0 and x0 + (b + c)x1 > 0.

Case 1: x0 > 0 and x0 + (b + c)x1 < 0. Then x0 + (b + c)x1 < 0 ⇒ x1 < − x0

b + c
< 0

by the item (a). Thus, x0 + bx1 > 0 by the item (c). Since x1 < − x0

b + c
, we have

x0 + bx1 > x0 − bx0

b + c
=

cx0

b + c
≥ cx0 > 0 by the item (b). Therefore, LT (x) > 0.

Hence, L is PSBD.

Case 2: x0 < 0 and x0 + (b + c)x1 > 0. Then x0 + (b + c)x1 > 0 ⇒ x1 > − x0

b + c
> 0

by the item (a). Thus, x0 +bx1 < 0 by the item (c). Now, −(x0 +bx1) = −x0−bx1 >

−x0 +
bx0

b + c
= − cx0

b + c
≥ −cx0 > 0. Therefore, LT (x) < 0. Hence, L is PSBD.
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Now, we need to show that L is copositive star. For x ≥ 0, we have

x0 ≥
√

x1
2 + x2

2 ≥
√

x1
2 = |x1| ≥ (b + c)|x1| ⇒ x0 + (b + c)x1 ≥ 0.

Thus, 〈L(x), x〉 ≥ 0, which implies that L is copositive. Now, suppose that x ≥ 0,

L(x) ≥ 0, and 〈L(x), x〉 = x0[x0 + (b + c)x1] = 0. Then we have that either x0 = 0 or

x0 + (b + c)x1 = 0. If x0 = 0, then x = 0, and hence LT (x) = 0. If x0 + (b + c)x1 = 0

and x0 > 0, then x1 = − x0

b + c
. Thus, x0 + cx1 =

bx0

b + c
< 0, which contradicts

L(x) ≥ 0. This shows that L is copositive star. Therefore, L is pseudomonotone by

Theorem 3.7.

Example 7.3. Let

L =




1 c 0

b 0 0

0 0 ǫ



 : L3 → L3

be such that

(a) 0 < b + c < 1,

(b) 0 < c <
√

2,

(c) b < 0,

(d) 0 < ǫ ≤ 1,

(e) (3b + c)2 − 4b2(2 − c2) < 0.

Then L is pseudomonotone.

Proof. Let x = [x0 x1 x2]
T . Then we have 〈L(x), x〉 = x0[x0 + (b + c)x1] + ǫx2

2,

L(x) = [x0 + cx1 bx0 ǫx2]
T and LT (x) = [x0 + bx1 cx0 ǫx2]

T .

First, we show that L is PSBD. Suppose that 〈L(x), x〉 < 0. Then x0[x0+(b+c)x1] <

−ǫx2
2 ≤ 0. This implies that either x0 > 0 and x0 + (b + c)x1 < 0, or x0 < 0 and

x0 + (b + c)x1 > 0.

Case 1: x0 > 0 and x0 + (b + c)x1 < 0. Then we have that x0 + bx1 > 0 by the

proof in the previous example. Since ǫ2x2
2 ≤ ǫx2

2 < −x0[x0 + (b + c)x1], we have

ǫ2x2
2+c2x0

2 < −x0[x0+(b+c)x1]+c2x0
2. We show that −x0[x0+(b+c)x1]+c2x0

2 ≤
(x0 + bx1)

2. Now,

−x0[x0 + (b + c)x1] + c2x0
2 ≤ (x0 + bx1)

2 ⇔ (2 − c2)x0
2 + (3b + c)x0x1 + b2x1

2 ≥ 0.

The last inequality holds because of the items (b) and (e). Therefore, ǫ2x2
2 +c2x0

2 ≤
(x0 + bx1)

2. Thus, LT (x) > 0, and hence L is PSBD.

Case 2: x0 < 0 and x0 +(b+ c)x1 > 0. Then we have that x0 + bx1 < 0 by the proof

in the previous example. From Case 1, we know that ǫ2x2
2 + c2x0

2 ≤ [−(x0 + bx1)]
2.

Therefore, LT (x) < 0. Hence, L is PSBD.
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Now, we show that L is copositive star. We know that x0+(b+c)x1 ≥ 0 for x ≥ 0

by the proof in the previous example. Thus, 〈L(x), x〉 ≥ 0, which implies that L is

copositive. It is easy to verify that [x ≥ 0, L(x) ≥ 0, 〈L(x), x〉 = 0] ⇒ LT (x) = 0 by

the proof in the previous example. This shows that L is copositive star. Therefore,

by Theorem 3.7, L is pseudomonotone.

Acknowledgment. I am grateful to Professor M.S. Gowda for helpful sugges-

tions.
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