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THE P -LAPLACIAN SPECTRAL RADIUS OF WEIGHTED TREES

WITH A DEGREE SEQUENCE AND A WEIGHT SET∗
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Abstract. In this paper, some properties of the discrete p-Laplacian spectral radius of weighted

trees have been investigated. These results are used to characterize all extremal weighted trees with

the largest p-Laplacian spectral radius among all weighted trees with a given degree sequence and a

positive weight set. Moreover, a majorization theorem with two tree degree sequences is presented.
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1. Introduction. In the last decade, the p-Laplacian, which is a natural non-

linear generalization of the standard Laplacian, plays an increasing role in geometry

and partial differential equations. Recently, the discrete p-Laplacian, which is the

analogue of the p-Laplacian on Riemannian manifolds, has been investigated by many

researchers. For example, Amghibech in [1] presented several sharp upper bounds

for the largest p-Laplacian eigenvalues of graphs. Takeuchi in [7] investigated the

spectrum of the p-Laplacian and p-harmonic morphism of graphs. Luo et al. in [6]

used the eigenvalues and eigenvectors of the p-Laplacian to obtain a natural global

embedding for multi-class clustering problems in machine learning and data mining

areas. Based on the increasing interest in both theory and application, the spectrum

of the discrete p-Laplacian should be further investigated. The main purpose of this

paper is to investigate some properties of the spectral radius and eigenvectors of the

p-Laplacian of weighted trees.

In this paper, we only consider simple weighted graphs with a positive weight

set. Let G = (V (G), E(G),W (G)) be a weighted graph with vertex set V (G) =

{v0, v1, . . . , vn−1}, edge set E(G) and weight set W (G) = {wk > 0, k = 1, 2, . . . ,

|E(G)|}. Let wG(uv) denote the weight of an edge uv. If uv /∈ E(G), define wG(uv) =

0. Then uv ∈ E(G) if and only if wG(uv) > 0. The weight of a vertex u, denoted by
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wG(u), is the sum of weights of all edges incident to u in G.

Let p > 1. Then the discrete p-Laplacian △p(G) of a function f on V (G) is given

by

△p(G)f(u) =
∑

v,uv∈E(G)

(f(u) − f(v))[p−1]wG(uv),

where x[q] = sign(x)|x|q. When p = 2, △2(G) is the well-known (combinatorial) graph

Laplacian (see [4]), i.e., ∆2(G) = L(G) = D(G)−A(G), where A(G) = (wG(vivj))n×n

denotes the weighted adjacency matrix of G and D(G) = diag(wG(v0), wG(v1), . . . ,

wG(vn−1)) denotes the weighted diagonal matrix of G (see [8]).

A real number λ is called an eigenvalue of △p(G) if there exists a function f 6= 0

on V (G) such that for u ∈ V (G),

∆p(G)f(u) = λf(u)[p−1].

The function f is called the eigenfunction corresponding to λ. The largest eigenvalue

of ∆p(G), denoted by λp(G), is called the p-Laplacian spectral radius. Let d(v) de-

note the degree of a vertex v, i.e., the number of edges incident to v. A nonincreasing

sequence of nonnegative integers π = (d0, d1, · · · , dn−1) is called graphic degree se-

quence if there exists a simple connected graph having π as its vertex degree sequence.

Zhang [9] in 2008 determined all extremal trees with the largest spectral radius of the

Laplacian matrix among all trees with a given degree sequence. Further, Bıyıkoğlu,

Hellmuth, and Leydold [2] in 2009 characterized all extremal trees with the largest

p-Laplacian spectral radius among all trees with a given degree sequence. Let Tπ,W be

the set of trees with a given graphic degree sequence π and a positive weight set W .

Recently, Tan [8] determined the extremal trees with the largest spectral radius of the

weight Laplacian matrix in Tπ,W . Moreover, the adjacency, Laplacian and signless

Laplacian eigenvalues of graphs with a given degree sequence have been studied (for

example, see [3] and [10]). Motivated by the above results, we investigate the largest

p-Laplacian spectral radius of trees in Tπ,W . The main result of this paper can be

stated as follows:

Theorem 1.1. For a given degree sequence π of some tree and a positive weight

set W , T ∗
π,W (see in Section 3) is the unique tree with the largest p-Laplacian spectral

radius in Tπ,W , which is independent of p.

The rest of this paper is organized as follows. In Section 2, some notations and

results are presented. In Section 3, we give a proof of Theorem 1.1 and a majorization

theorem for two tree degree sequences.

2. Preliminaries. The following are several propositions and lemmas about the

Rayleigh quotient and eigenvalues of the p-Laplacian for weighted graphs. The proofs
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are similar to unweighted graphs (see [2]). So we only present the result and omit the

proofs.

Let f be a function on V (G) and

Rp
G(f) =

∑

uv∈E(G)

| f(u) − f(v) |p wG(uv)

‖ f ‖p
p

,

where ‖f‖p = p

√
∑

v

| f(v) |p. The following Proposition 2.1 generalizes the well-known

Rayleigh-Ritz theorem.

Proposition 2.1. ([6])

λp(G) = max
||f ||p=1

Rp
G(f) = max

||f ||p=1

∑

uv∈E(G)

| f(u) − f(v) |p wG(uv).

Moreover, if Rp
G(f) = λp(G), then f is an eigenfunction corresponding to the p-

Laplacian spectral radius λp(G).

Define the signless p-Laplacian Qp(G) of a function f on V (G) by

Qp(G)f(u) =
∑

v,uv∈E(G)

(f(u) + f(v))[p−1]wG(uv)

and its Rayleigh quotient by

Λp
G(f) =

∑

uv∈E(G)

| f(u) + f(v) |p wG(uv)

|| f ||pp
.

A real number µ is called an eigenvalue of Qp(G) if there exists a function f 6= 0 on

V (G) such that for u ∈ V (G),

Qp(G)f(u) = µf(u)[p−1].

The largest eigenvalue of Qp(G), denoted by µp(G), is called the signless p-Laplacian

spectral radius. Then we have the following.

Proposition 2.2. ([2])

µp(G) = max
||f ||p=1

Λp
G(f) = max

||f ||p=1

∑

uv∈E(G)

| f(u) + f(v) |p wG(uv).

Moreover, if Λp
G(f) = µp(G), then f is an eigenfunction corresponding to µp(G).

Corollary 2.3. Let G be a connected weighted graph. Then the signless p-

Laplacian spectral radius µp(G) of Qp(G) is positive. Moreover, if f is an eigenfunc-

tion of µp(G), then either f(v) > 0 for all v ∈ V (G) or f(v) < 0 for all v ∈ V (G).
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Let f be an eigenfunction of µp(G). We call f a Perron vector of G if f(v) > 0

for all v ∈ V (G).

Lemma 2.4. Let G = (V1, V2, E,W ) be a bipartite weighted graph with bipartition

V1 and V2. Then λp(G) = µp(G).

Clearly, trees are bipartite graphs. So, Lemma 2.4 also holds for trees.

3. Main result. Let G − uv denote the graph obtained from G by deleting an

edge uv and G + uv denote the graph obtained from G by adding an edge uv. The

following lemmas will be used in the proof of the main result, Theorem 1.1.

Lemma 3.1. Let T ∈ Tπ,W with u, v ∈ V (T ) and f be a Perron vector of T .

Assume uui ∈ E(T ) and vui /∈ E(T ) such that ui is not in the path from u to v for

i = 1, 2, . . . , k. Let T ′ = T −
k
⋃

i=1

uui +
k
⋃

i=1

vui, wT ′(vui) = wT (uui) for i = 1, 2, . . . ,

k, and wT ′(e) = wT (e) for e ∈ E(T ) \ {uu1, uu2, . . . , uuk}. In other words, T ′ is the

weighted tree obtained from T by deleting the edges uu1, . . . , uuk and adding the edges

vu1, . . . , vuk with their weights wT (uu1), . . . , wT (uuk), respectively. If f(u) ≤ f(v),

then µp(T ) < µp(T
′).

Proof. Without loss of generality, assume ‖ f ‖p= 1. Then

µp(T
′) − µp(T ) ≥ Λp

T ′(f) − Λp
T (f)

=

k
∑

i=1

[(f(v) + f(ui))
p − (f(u) + f(ui))

p]wT (uui)

≥ 0.

If µp(T
′) = µp(T ), then f must be an eigenfunction of µp(T

′). Clearly, by computing

the values of the function f on V (T ) and V (T ′) at the vertex u, we have

Qp(T )f(u) =
∑

x,xu∈E(T )

(f(x) + f(u))[p−1]wT (ux)

=
∑

x,xu∈E(T ′)

(f(x) + f(u))[p−1]wT (ux) +

k
∑

i=1

(f(u) + f(ui))
[p−1]wT (uui)

and

Qp(T
′)f(u) =

∑

x,xu∈E(T ′)

(f(x) + f(u))[p−1]wT (ux).

Moreover, Qp(T )f(u) = µp(T )f(u)[p−1] = µp(T
′)f(u)[p−1] = Qp(T

′)f(u). Hence
k
∑

i=1

(f(u) + f(ui))
[p−1]wT (uui) = 0, which implies f(u) + f(ui) = 0 for i = 1, 2, . . . , k.

This is impossible. So the assertion holds.
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From Lemma 3.1 we can easily get the following corollary.

Corollary 3.2. Let T be a weighted tree with the largest p-Laplacian spectral

radius in Tπ,W and u, v ∈ V (T ). Suppose that f is a Perron vector of T . Then we

have the following:

(1) if f(u) ≤ f(v), then d(u) ≤ d(v);

(2) if f(u) = f(v), then d(u) = d(v).

Lemma 3.3. ([2]) Let 0 ≤ ε ≤ δ ≤ z and p > 1. Then (z + ǫ)p + (z − ǫ)p ≤

(z + δ)p + (z − δ)p. Equality holds if and only if ǫ = δ.

Lemma 3.4. Let T ∈ Tπ,W and uv, xy ∈ E(T ) such that v and y are not in the

path from u to x. Let f be a Perron vector of T and T ′ = T −uv−xy +uy + xv with

wT ′(uy) = max{wT (uv), wT (xy)}, wT ′(xv) = min{wT (uv), wT (xy)}, and wT ′(e) =

wT (e) for e ∈ E(T ) \ {uv, xy}. If f(u) ≥ f(x) and f(y) ≥ f(v), then T ′ ∈ Tπ,W and

µp(T ) ≤ µp(T
′). Moreover, µp(T ) < µp(T

′) if one of the two inequalities is strict.

Proof. Without loss of generality, assume ‖ f ‖p= 1.

Claim : (f(u) + f(y))p + (f(x) + f(v))p ≥ (f(u) + f(v))p + (f(x) + f(y))p.

Assume f(u)+f(y) = z+δ, f(x)+f(v) = z−δ, max{f(u)+f(v), f(x)+f(y)} =

z + ǫ, min{f(u) + f(v), f(x) + f(y)} = z − ǫ. Without loss of generality, assume

f(u) + f(v) ≥ f(x) + f(y). Then δ − ǫ = f(y)− f(v) ≥ 0. By Lemma 3.3, the Claim

holds. Without loss of generality, assume wT (uv) ≥ wT (xy). Then, by the Claim and

wT ′(uy) = wT (uv) and wT ′(xv) = wT (xy), we have

µp(T
′) − µp(T ) ≥ Λp

T ′(f) − Λp
T (f)

= (f(u) + f(y))pwT ′(uy) + (f(x) + f(v))pwT ′(xv)

−(f(u) + f(v))pwT (uv) − (f(x) + f(y))pwT (xy)

= [(f(u) + f(y))p − (f(u) + f(v))p]wT (uv)

+[(f(x) + f(v))p − (f(x) + f(y))p]wT (xy)

≥ [(f(u) + f(y))p + (f(x) + f(v))p − (f(u) + f(v))p

−(f(x) + f(y))p]wT (uv)

≥ 0.

If µp(T
′) = µp(T ), then ǫ = δ by Lemma 3.3, and f must be an eigenfunction of
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µp(T
′). So f(y) = f(v). Moreover, since wT ′(uy) = wT (uv) ≥ wT (xy) and

Qp(T )f(y) =
∑

z,zy∈E(T )\{xy}

(f(z) + f(y))[p−1]wT (zy) + (f(x) + f(y))[p−1]wT (xy)

= µp(T )f(y)[p−1] = µp(T
′)f(y)[p−1] = Qp(T

′)f(y)

=
∑

z,zy∈E(T )\{xy}

(f(z) + f(y))[p−1]wT (zy) + (f(u) + f(y))[p−1]wT ′(uy),

we have f(x) ≥ f(u). Hence f(x) = f(u), and the assertion holds.

Lemma 3.5. Let T ∈ Tπ,W with uv, xy ∈ E(T ) and f be a Perron vector of T . If

f(u) + f(v) ≥ f(x) + f(y) and wT (uv) < wT (xy), then there exists a tree T ′ ∈ Tπ,W

such that µp(T
′) > µp(T ).

Proof. Without loss of generality, assume ‖ f ‖p= 1. Let T ′ be the tree obtained

from T with vertex set V (T ), edge set E(T ), wT ′(uv) = wT (xy), wT ′(xy) = wT (uv)

and wT ′(e) = wT (e) for e ∈ E(T ) \ {uv, xy}. Then we have

µp(T
′) − µp(T ) ≥ Λp

T ′(f) − Λp
T (f)

= [(f(u) + f(v))p − (f(x) + f(y))p](wT (xy) − wT (uv))

≥ 0.

If µp(T
′) = µp(T ), then f must be an eigenfunction of µp(T

′). Without loss of

generality, assume u 6= x and u 6= y. Since

Qp(T
′)f(u) =

∑

ut∈E(T )\{uv}

(f(u) + f(t))[p−1]wT (ut) + (f(u) + f(v))[p−1]wT (xy)

= Qp(T )f(u)

=
∑

ut∈E(T )\{uv}

(f(u) + f(t))[p−1]wT (ut) + (f(u) + f(v))[p−1]wT (uv),

we have wT (uv) = wT (xy), which is a contradiction. So µp(T
′) > µp(T ).

Let v0 be the root of a tree T and h(vi) be the distance between vi and v0.

Definition 3.6. Let T = (V (T ), E(T ),W (T )) be a weighted tree with a positive

weight set W (T ) and root v0. Then a well-ordering ≺ of the vertices is called a

weighted breadth-first-search ordering (WBFS-ordering for short) if the following holds

for all vertices u, v, x, y ∈ V (T ):

(1) v ≺ u implies h(v) ≤ h(u);

(2) v ≺ u implies d(v) ≥ d(u);
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(3) Let uv, uy ∈ E(T ) with h(v) = h(y) = h(u) + 1. If v ≺ y, then wT (uv) ≥

wT (uy);

(4) Let uv, xy ∈ E(T ) with h(u) = h(v) − 1 and h(x) = h(y) − 1. If u ≺ x, then

v ≺ y and wT (uv) ≥ wT (xy).

A weighted tree is called a WBFS-tree if its vertices have a WBFS-ordering. For

a given degree sequence and a positive weight set, it is easy to see that the WBFS-tree

is uniquely determined up to isomorphism by Definition 3.6 (for example, see [9]).

Let π = (d0, d1, . . . , dn−1) be a degree sequence of tree such that d0 ≥ d1 ≥

· · · ≥ dn−1 and W = {w1, w2, . . . , wn−1} be a positive weight set with w1 ≥ w2 ≥

· · · ≥ wn−1 > 0. We now construct a weighted tree T ∗
π,W with the degree se-

quence π and the positive weight set W as follows. Select a vertex v0,1 as the

root and begin with v0,1 of the zero-th layer. Let s1 = d0 and select s1 ver-

tices v1,1, v1,2, . . . , v1,s1
of the first layer such that they are adjacent to v0,1 and

wT∗

π,W
(v0,1v1,k) = wk for k = 1, 2, . . . , s1. Assume that all vertices of the t-st

layer have been constructed and are denoted by vt,1, vt,2, . . . , vt,st
. We construct

all the vertices of the (t + 1)-st layer by the induction hypothesis. Let st+1 =

ds1+···+st−1+1 + · · ·+ds1+···+st
− st and select st+1 vertices vt+1,1, vt+1,2, . . . , vt+1,st+1

of the(t + 1)-st layer such that vt,1 is adjacent to vt+1,1, . . . , vt+1,ds1+···+st−1+1−1, . . . ,

vt,st
is adjacent to vt+1,st+1−ds1+···+st

+2, . . . , vt+1,st+1
and if there exists vt,l with

vt,lvt+1,i ∈ E(T ∗
π,W ),

wT∗

π,W
(vt,lvt+1,i) = wd0+d1+···+ds1+s2+···+st−1

−(s1+s2+···+st−1)+i

for 1 ≤ i ≤ st+1. In this way, we obtain only one tree T ∗
π,W with the degree sequence

π and the positive weight set W (see Fig. 3.1 for an example). In the following we

are ready to present a proof of Theorem 1.1.
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v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7

v3,1 v3,2 v3,3

w1 w2 w3 w4

w5 w6 w7 w8 w9 w10 w11

w12 w13 w14

Fig. 3.1. T ∗
π,W

with π = (4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1) and W = {w1, . . . , w14}.

Proof of Theorem 1.1. Let T be a weighted tree with the largest p-Laplacian spec-
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tral radius in Tπ,W , where π = (d0, d1, . . . , dn−1) with d0 ≥ d1 ≥ · · · ≥ dn−1. Let f be

a Perron vector of T . Without loss of generality, assume V (T ) = {v0, v1, . . . , vn−1}

such that f(vi) ≥ f(vj) for i < j. By Corollary 3.2 we have d(v0) ≥ d(v1) ≥ · · · ≥

d(vn−1). So d(v0) = d0. Let v0 be the root of T . Suppose max
v∈V (T )

h(v) = h(T ). Let

Vi = {v ∈ V (T )|h(v) = i} and | Vi |= si for i = 0, 1, . . . , h(T ). In the following we

will relabel the vertices of T .

Let V0 = {v0,1}, where v0,1 = v0. Obviously, s1 = d0. The vertices of V1 are

relabeled v1,1, v1,2, . . . , v1,s1
such that f(v1,1) ≥ f(v1,2) ≥ · · · ≥ f(v1,s1

). Assume

that the vertices of Vt have been already relabeled vt,1, vt,2, . . . , vt,st
. The vertices of

Vt+1 can be relabeled vt+1,1, vt+1,2, . . . , vt+1,st+1
such that they satisfy the following

conditions: If vt,kvt+1,i, vt,kvt+1,j ∈ E(T ) and i < j, then f(vt+1,i) ≥ f(vt+1,j); if

vt,kvt+1,i, vt,lvt+1,j ∈ E(T ) and k < l, then i < j. In this way we can obtain a well

ordering ≺ of vertices of T as follows:

vi,j ≺ vk,l, if i < k or i = k and j < l.

Clearly, f(v1,1) ≥· · · ≥ f(v1,s1
), and f(vt+1,i)≥f(vt+1,j) when i < j and vt+1,i, vt+1,j

have the same neighbor.

In the following we will prove that T is isomorphic to T ∗
π,W by proving that the

ordering ≺ is a WBFS-ordering.

Claim: f(vh,1) ≥ f(vh,2) ≥ · · · ≥ f(vh,sh
) ≥ f(vh+1,1) for 0 ≤ h ≤ h(T ).

We will prove that the Claim holds by induction on h. Obviously, the Claim

holds for h = 0. Assume that the Claim holds for h = r − 1. We now prove that

the assertion holds for h = r. If there exist two vertices vr,i ≺ vr,j with f(vr,i) <

f(vr,j), then there exist two vertices vr−1,k, vr−1,l ∈ Vr−1 with k < l such that

vr−1,kvr,i, vr−1,lvr,j ∈ E(T ). By the induction hypothesis, f(vr−1,k) ≥ f(vr−1,l). Let

T1 = T − vr−1,kvr,i − vr−1,lvr,j + vr−1,kvr,j + vr−1,lvr,i

with

wT1
(vr−1,kvr,j) = max{wT (vr−1,kvr,i), wT (vr−1,lvr,j)},

wT1
(vr−1,lvr,i) = min{wT (vr−1,kvr,i), wT (vr−1,lvr,j)},

and wT1
(e) = wT (e) for e ∈ E(T ) \ {vr−1,kvr,i, vr−1,lvr,j}. Then T1 ∈ Tπ,W . By

Lemma 3.4, µp(T ) < µp(T1), which is a contradiction to our assumption that T has

the largest p-Laplacian spectral radius in Tπ,W . So f(vr,i) ≥ f(vr,j). Now assume

f(vr,sr
) < f(vr+1,1). Note that d(v0) ≥ 2. It is easy to see that vr,sr

vr−1,sr−1
,

vr,1vr+1,1 ∈ E(T ). By the induction hypothesis, f(vr−1,sr−1
) ≥ f(vr,1). Then, by
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similar proof, we can also get a new tree T2 such that T2 ∈ Tπ,W and µp(T2) > µp(T ),

which is also a contradiction. So the Claim holds.

By the Claim and Corollary 3.2, the condition (2) in Definition 3.6 holds.

Assume that uv, uy ∈ E(T ) with h(v) = h(y) = h(u) + 1. If v ≺ y, then f(v) ≥

f(y) and wT (uv) ≥ wT (uy) by Lemma 3.5. So the condition (3) in Definition 3.6

holds.

Let uv, xy ∈ E(T ) with u ≺ x, h(v) = h(u)+ 1 and h(y) = h(x)+ 1. Then v ≺ y.

By the Claim, f(u) ≥ f(x) and f(v) ≥ f(y), which implies f(u)+f(v) ≥ f(x)+f(y).

Further, by Lemma 3.5, we have wT (uv) ≥ wT (xy). Therefore, “ ≺ ” is a WBFS-

ordering, i.e., T is a WBFS-tree. So T ∗
π,W is the unique tree with the largest p-

Laplacian spectral radius in Tπ,W . Hence, the proof is completed.

Let π = (d0, d1, . . . , dn−1) and π′ = (d′0, d
′
1, . . . , d

′
n−1) be two nonincreasing posi-

tive sequences. If
t

∑

i=0

di ≤
t

∑

i=0

d′i for t = 0, 1, . . . , n − 2 and
n−1
∑

i=0

di =
n−1
∑

i=0

d′i, then π′ is

said to majorize π, and is denoted by π E π′.

Lemma 3.7. ([5]) Let π = (d0, d1, . . . , dn−1) and π′ = (d′0, d
′
1, . . . , d

′
n−1) be two

nonincreasing graphic degree sequences. If π E π′, then there exist graphic degree

sequences π1, π2, . . . , πk such that π E π1 E π2 E · · · E πk E π′, and only two

components of πi and πi+1 are different by 1.

Theorem 3.8. Let π and π′ be two degree sequences of trees. Let Tπ,W and

Tπ′,W denote the set of trees with the same weight set W and degree sequences π and

π′, respectively. If π E π′, then µp(T
∗
π,W ) ≤ µp(T

∗
π′,W ). The equality holds if and only

if π = π′.

Proof. By Lemma 3.7, without loss of generality, assume π = (d0, d1, . . . , dn−1)

and π′ = (d′0, d
′
1, . . . , d

′
n−1) such that di = d′i − 1, dj = d′j + 1 with 0 ≤ i < j ≤ n− 1,

and dk = d′k for k 6= i, j. Then T ∗
π,W has a WBFS-ordering ≺ consistent with its

Perron vector f such that f(u) ≥ f(v) implies u ≺ v by the proof of Theorem 1.1.

Let v0, v1, . . . , vn−1 ∈ V (T ∗
π,W ) with v0 ≺ v1 ≺ · · · ≺ vn−1. Then f(v0) ≥ f(v1) ≥

· · · ≥ f(vn−1) and d(vt) = dt for 0 ≤ t ≤ n − 1. Since dj = d′j + 1 ≥ 2, there

exists a vertex vs with s > j, vjvs ∈ E(T ∗
π,W ), vivs /∈ E(T ∗

π,W ) and vs is not in

the path from vi to vj . Let T1 = T ∗
π,W − vjvs + vivs with wT1

(vivs) = wT∗

π,W
(vjvs)

and wT1
(e) = wT∗

π,W
(e) for e ∈ E(T1) \ {vivs}. Then T1 ∈ Tπ′,W . Since i < j, we

have f(vi) ≥ f(vj). By Lemma 3.1, µp(T
∗
π,W ) < µp(T1) ≤ µp(T

∗
π′,W ). The proof is

completed.

Corollary 3.9. Let Tn,k be the set of trees of order n with k pendent vertices

and the same weight set W . Let π1 = {k, 2, . . . , 2, 1, . . . , 1}, where the number of 1 is
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k. Then T ∗
π1,W is the unique tree with the largest p-Laplacian spectral radius in Tn,k.

Proof. Let T ∈ Tn,k with degree sequence π = (d0, d1, . . . , dn−1). Obviously,

π E π1. By Theorem 3.8, the assertion holds.
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[2] T. Bıyıkoğlu, M. Hellmuth, and J. Leydold. Largest eigenvalues of the discrete p-Laplacian of

trees with degree sequence. Electronic Journal of Linear Algebra, 18:202–210, 2009.
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