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Abstract. It is shown that, under appropriate assumptions, the continuous algebraic Riccati

equation with Toeplitz matrices as coefficients has Toeplitz-like solutions. Both infinite and sequences

of finite Toeplitz matrices are considered, and also studied is the finite section method, which consists

in approximating infinite systems by large finite truncations. The results are proved by translating

the problem into C∗-algebraic language and by using theorems on the Riccati equation in general

C∗-algebras. The paper may serve as another illustration of the usefulness of C∗-algebra techniques

in matrix theory.
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1. Introduction. We consider the (continuous) algebraic Riccati equation in

the form

XDX −XA−A∗X − C = 0. (1.1)

Suppose the coefficients are infinite Toeplitz matrices generated by continuous func-

tions,

XT (d)X −XT (a) − T (a)X − T (c) = 0. (1.2)

Does equation (1.2) have a solution X which is Toeplitz-like, say X = T (ϕ) + K

with a continuous function ϕ and a compact operator K? A perhaps more important

situation is the one when the coefficients are n× n Toeplitz matrices,

XnTn(d)Xn −XnTn(a) − Tn(a)Xn − Tn(c) = 0. (1.3)

Does this equation possess a Toeplitz-like solution Xn? Defining Toeplitz-likeness for

an individual n× n matrix is a delicate matter, but the concept makes perfect sense

for the sequence {Xn}
∞
n=1. Namely, we say that {Xn}

∞
n=1 is a Toeplitz-like sequence

if there exist a continuous function ϕ, compact operators K and L, and a sequence
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of n× n matrices Un whose spectral norms ‖Un‖ go to zero such that

Xn = Tn(ϕ) + PnKPn +WnLWn + Un, (1.4)

where Pn is the projection onto the first n coordinates and Wn stands for Pn followed

by reversal of the coordinates. As the main mass of the matrix of a compact operator

is contained in its upper-left corner, the main mass of the n×n perturbation matrices

PnKPn +WnLWn in (1.4) is concentrated in the upper-left and lower-right corners.

Searching for Toeplitz-like solutions of equations (1.2) and (1.3) is a special case of

the problem of considering equation (1.1) in a C∗-algebra A. Thus, givenD,A,C ∈ A,

is there a solution X ∈ A? This general question has already been explored, and the

purpose of this paper is to show how these general C∗-algebraic results yield answers

in the case of Toeplitz coefficients in a very quick and elegant way.

The question whether (1.3) has Toeplitz-like solutions was studied in [17], and that

paper was in fact the motivation for the present paper. Paper [17] is based on a theo-

rem from [23], [24], which states that if A is an operator algebra and D,A,A∗, C ∈ A,

then, under certain assumptions, equation (1.1) has a solution in A. Accordingly,

a special operator algebra Tδ,̺,α of so-called almost Toeplitz matrices is constructed

in [17] and the theorem is then applied to A = Tδ,̺,α. However, it remains a critical

issue what exactly an operator algebra in this context is, and a counterexample to

the theorem of [23], [24] is given in [7]. Moreover, the algebra Tδ,̺,α is quite compli-

cated. In contrast to this, working with (1.4) as the definition of Toeplitz-likeness has

proven extremely useful since Silbermann’s paper [26]. In [2], it was observed (and

significantly exploited) that the set of all sequences {Xn}
∞
n=1 of the form (1.4) is a

C∗-algebra, and this favorable circumstance has been taken advantage of since then

in many instances; see, for example, [1], [3], [20]. In this light, the idea to invoke

results on the Riccati equation in C∗-algebras, which are the nicest operator algebras

at all, in order to treat equations (1.2) and (1.3) emerges very naturally.

We remark that the questions considered here are of even greater interest in the

case where the coefficients of the Riccati equation are block Toeplitz matrices, the

case of 2 × 2 blocks being the perhaps most important. Our results can be carried

over to this more general setting, although the hypotheses of the theorems are then

no longer as simple as, for example, (i) to (iii) of Theorem 3.2. However, we see the

main purpose of this paper in illustrating how C∗-algebra arguments can be used to

tackle certain questions for the Riccati equation, and as this intention could be fogged

by the technical details of the block case, we confine ourselves to the scalar case.

The paper is organized as follows. In Section 2, we cite two results on the Riccati

equation in general C∗-algebras. These results are then applied to C∗-algebras of

Toeplitz matrices in Sections 3 and 4. Theorems 3.2 and 4.2 as well as Corollary 4.3

are our main results. In Section 5, we give an alternative proof to a known result
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which relates the Riccati equation with large Toeplitz matrices to the Riccati equation

with Laurent matrices as coefficients. Finally, Section 6 is devoted to additional issues

concerning Riccati equations in C∗-algebras and W ∗-algebras.

2. The Riccati equation in C
∗-algebras. Let A be a unital C∗-algebra and

denote the unit by I. The reader is referred to [14] or [16] for an introduction to

C∗-algebras. We let σ(H) stand for the spectrum of H ∈ A. An element H ∈ A

is called Hermitian if H = H∗, it is said to be positive, H ≥ 0, if H = H∗ and

σ(H) ⊂ [0,∞), and it is referred to as a positive definite element, H > 0, if H = H∗

and σ(H) ⊂ (0,∞). We write G ≤ H or H ≥ G if G and H are Hermitian and H−G

is positive.

In the case where A = CN×N , the Riccati equation arises from optimal control

as follows; see, e.g., [18], [22]. Let A,B,C,R ∈ CN×N and suppose C ≥ 0 and R > 0.

The control u(t) of the system ẋ = Ax+Bu which minimizes the cost functional
∫ ∞

0

(x∗Cx+ u∗Ru) dt (2.1)

is given by u(t) = −R−1B∗X+x(t) where X+ is the maximal Hermitian solution of

the equation

XBR−1B∗X −XA−A∗X − C = 0. (2.2)

A Hermitian solution X+ of (2.2) is said to be maximal ifX+ ≥ X for every Hermitian

solution X of (2.2). Clearly, D := BR−1B∗ is positive. Notice also that the feedback

input u = −Fx + v transforms the system ẋ = Ax + Bu into the new system ẋ =

(A−BF )x+Bv.

Now let A be a general unital C∗-algebra, let D,A,C ∈ A, and suppose D ≥ 0,

C ≥ 0. The pair (A,D) is called stabilizable in A if there exists an F ∈ A such that

σ(A−DF ) is contained in the open left half-plane C−. Given a Hilbert space H, we

denote by B(H) the C∗-algebra of all bounded linear operators on H. It is well known

that every C∗-algebra A may be identified with a C∗-subalgebra of B(H) for some H.

Bunce [4] (see also [15, Corollary 3.3]) showed that if the pair (A,D) is stabilizable in

B(H), then it is automatically stabilizable in A. A solution X+ ∈ A of equation (1.1)

is called maximal in A if X+ is Hermitian and X+ ≥ X for every Hermitian solution

X ∈ A of (1.1). Dobovǐsek [15, pp. 74–75] observed that if X+ ∈ A is a maximal

solution in A, then in fact X+ ≥ X for every Hermitian solution X ∈ B(H). Thus,

stabilizability and maximality do not depend on the algebra A and we therefore omit

the “in A”. Curtain and Rodman [11] proved that if the pair (A,D) is stabilizable,

then equation (1.1) has a maximal solution X+ ∈ B(H) and this solution is positive.

The big problem is whether this solution X+ is in A or not. The following two

theorems provide us with partial answers.
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Theorem 2.1. (Bunce [4]) If D ≥ 0, C = I, and (A,D) is stabilizable, then

equation (1.1) has a maximal solution X+ ∈ A and this solution is positive.

Note that the restriction to C = I means that all state variables in (2.1) are

considered to have equal rights.

Theorem 2.2. (Dobovǐsek [15, Theorem 3.7]) If D ≥ 0, C ≥ 0, (A,D) is

stabilizable, and σ(A) does not intersect the imaginary axis, then equation (1.1) has

a maximal solution X+ ∈ A and this solution is positive.

In [4] and [15], it is shown that under the hypotheses of Theorems 2.1 or 2.2 the

spectrum of A−DX+ is a subset of C−, that is, X+ ∈ A stabilizes (A,D).1

3. Infinite Toeplitz matrices. Let T be the complex unit circle and let C(T)

be the C∗-algebra of all continuous complex-valued functions on T. We abbreviate

C(T) to C. Given f ∈ C with Fourier coefficients

fk :=
1

2π

∫ 2π

0

f(eix)e−ikx dx, k ∈ Z,

we consider the infinite Toeplitz matrix T (f) := (fj−k)∞j,k=1. The function f is called

the generating function or the symbol of T (f). It is well known that T (f) induces

a bounded linear operator on ℓ2 := ℓ2(N). Moreover, ‖T (f)‖ = ‖f‖∞, where ‖ · ‖∞
is the L∞ norm. A classical result by Gohberg says that the spectrum of T (f) is

the union of the range f(T) and the points in C \ f(T) whose winding number with

respect to f(T) is nonzero; see, e.g., [3, Theorem 1.17]. In particular, if f(T) ⊂ C−,

then T (f) is invertible.

We denote by T the smallest norm closed subalgebra of B := B(ℓ2) which contains

the set T (C) := {T (f) : f ∈ C}. The algebra T is a C∗-algebra and it turns out that

the set K := K(ℓ2) of all compact operators is a subset and thus a closed two-sided

ideal of T . Coburn [5], [6] showed that T /K is isometrically ∗-isomorphic to C, the

map f 7→ T (f) + K being an isometric ∗-isomorphism of C onto T /K. Thus, an

operator X belongs to T if and only if X = T (f) +K with f ∈ C and K ∈ K. This

decomposition is unique, that is, T (C) ∩ K = {0}.

Theorems 2.1 and 2.2 are applicable to A = T and show that, under their hy-

potheses, equation (1.1) with D,A,C ∈ T has a maximal solution X+ ∈ T . To be

more specific, we consider the equation

X
(
T (d) + T (b)T−1(r)T (b)

)
X −XT (a) − T (a)X − T (c) = 0. (3.1)

1I am grateful to one of the referees for pointing out that exponentially stabilizing solutions of

equation (1.1) are unique and so the maximal solutions in Theorems 2.1 and 2.2 are the unique

exponentially stabilizing ones.
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Note that the adjoint of T (f) is just T (f) where f(t) = f(t) and the bar on the

right stands for complex conjugation. We also write T−1(r) := [T (r)]−1. If b = 0,

then (3.1) becomes (1.2), while if d = 0, equation (3.1) takes the form

XT (b)T−1(r)T (b)X −XT (a) − T (a)X − T (c) = 0,

which is (2.2) in Toeplitz matrices. In what follows, if f ∈ C, then f > 0 means that

f is a positive definite element of C, that is, f is real-valued and f(t) > 0 for all t ∈ T.

Analogously, we write f ≥ 0 if f is real-valued and f(t) ≥ 0 for all t ∈ T.

Lemma 3.1. Let b, r ∈ C and suppose r > 0. Then

T (b)T−1(r)T (b) = T (|b|2r−1) + L

with some compact operator L ≥ 0.

Proof. Suppose first that r is smooth. Then r has a Wiener-Hopf factorization

r = r+r+ with a function r+ ∈ C such that r−1
+ ∈ C and all Fourier coefficients

with negative indices of r+ and r−1
+ vanish; see, e.g, [3, Theorem 1.14]. Standard

computations with Toeplitz matrices, [3, Section 1.5], give

T (b)T−1(r)T (b) = T (b)T (r−1
+ )T (r−1

+ )T (b) = T (br−1
+ )T (r−1

+ b)

= T (|b|2r−1) −H(g)H(g̃) =: T (|b|2r−1) + L,

where g := br−1
+ , f̃ is defined by f̃(t) := f(1/t) for t ∈ T, and H(f) is the Hankel

operator induced by the matrix (fj+k−1)
∞
j,k=1. Since H(g̃) is the adjoint operator of

H(g), the operator L is positive, and since g is continuous, the operator L is compact.

An arbitrary continuous function r > 0 may be approximated uniformly by

smooth functions rn > 0. Then T−1(rn) and T (|b|2r−1
n ) converge in the norm to

T−1(r) and T (|b|2r−1), respectively. Since T (b)T−1(rn)T (b) − T (|b|2r−1
n ) was shown

to be positive and compact, so also is T (b)T−1(r)T (b) − T (|b|2r−1).

We denote the real part of a function f and an operator H by Re f and ReH.

Theorem 3.2. Let a, b, c, d, r ∈ C with d ≥ 0, r > 0 and suppose one of the

following conditions is satisfied:

(i) d+ |b|2r−1 > 0 and c = 1;

(ii) d+ |b|2r−1 > 0, c ≥ 0, and Re a > 0;

(iii) c ≥ 0 and Re a < 0.

Then equation (3.1) has a maximal solution X+ ∈ T , this solution is positive, and

X+ = T (ϕ) + K where ϕ ∈ C, ϕ ≥ 0, and K = K∗ is compact. Furthermore, ϕ

satisfies the equation

(d+ |b|2r−1)ϕ2 − (a+ a)ϕ− c = 0. (3.2)
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Proof. First of all, C := T (c) ≥ 0 and D := T (d) + T (b)T−1(r)T (b) ≥ 0. Put

A := T (a). If (iii) holds, then ReA < 0 and hence (A,D) is trivially stabilizable. So

assume (i) or (ii) is in force. Then d+ |b|2r−1 > 0. From Lemma 3.1 we infer that if

γ ∈ (0,∞) is any constant, then

Re (A− γD) = T (Re a− γ(d+ |b|2r−1)) − γL,

and choosing γ large enough we can achieve that Re (A − γD) is negative definite

as the sum of a negative definite operator and a negative operator. Thus, (A,D) is

stabilizable. The spectrum of T (a) is in the left and right open half-planes if Re a < 0

and Re a > 0, respectively. Theorem 2.1 now yields a maximal and positive solution

X+ ∈ T under the hypothesis (i), while Theorem 2.2 does this if (ii) or (iii) is satisfied.

Writing X+ = T (ϕ) +K and taking into account that passage from T to T /K ∼= C

preserves positivity, we conclude that ϕ = ϕ ≥ 0 and hence K = K∗. Inserting

X+ = T (ϕ) + K in (3.1), and considering the resulting equation modulo compact

operators we get

T (ϕ)
(
T (d) + T (b)T−1(r)T (b)

)
T (ϕ) − T (ϕ)T (a) − T (a)T (ϕ) − T (c) ∈ K.

Taking into account that T−1(r) − T (r−1) is compact (Lemma 3.1 with b = 1) and

that T (f)T (g) − T (fg) is compact for arbitrary f, g ∈ C (Coburn), we obtain that

T ((d+ |b|2r−1)ϕ2 − (a+ a)ϕ− c) ∈ K.

Using that the only compact Toeplitz operator is the zero operator, we finally arrive

at (3.2).

4. Finite Toeplitz matrices. For f ∈ C, we denote by Tn(f) the n×n Toeplitz

matrix (fj−k)n
j,k=1. It is well known that if Re f < 0 or Re f > 0, then Tn(f) is

invertible for all n ≥ 1,

sup
n≥1

‖T−1
n (f)‖ <∞, (4.1)

and T−1
n (f)Pn → T−1(f) strongly as n→ ∞, where Pn is projection onto the first n

co-ordinates; see, e.g., [3, Proposition 2.17]. Here and throughout what follows, ‖ · ‖

is always the operator norm on ℓ2 (= spectral norm in the case of matrices).

Let B denote the set of all sequences F = {Fn}
∞
n=1 such that Fn ∈ Cn×n and

‖F‖ := sup
n≥1

‖Fn‖ <∞. (4.2)

We henceforth abbreviate {Fn}
∞
n=1 to {Fn}. With termwise operations, {Fn} +

{Gn} := {Fn + Gn}, α{Fn} := {αFn}, {Fn}{Gn} := {FnGn}, {Fn}
∗ := {F ∗

n},
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and with the norm (4.2), B is a C∗-algebra. We denote by B0 the elements {Fn} ∈ B

for which ‖Fn‖ → 0 as n → ∞. Clearly, B0 is a closed two-sided ideal of B. Let Pn

and Wn be the operators

Pn : ℓ2 → ℓ2, {x1, x2, . . .} 7→ {x1, . . . , xn, 0, 0, . . .},

Wn : ℓ2 → ℓ2, {x1, x2, . . .} 7→ {xn, . . . , x1, 0, 0, . . .}.

Note that Wn = W ∗
n → 0 weakly, so that WnKWn → 0 strongly whenever K is

compact. For H ∈ B(ℓ2), we think of PnHPn and WnHWn as n × n matrices. Let

S be the smallest closed subalgebra of B which contains the set {{Tn(f)} : f ∈ C}.

One can show that S is a C∗-algebra and that actually S coincides with the set of all

sequences {Fn} of the form

Fn = Tn(f) + PnKPn +WnLWn + Un (4.3)

with f ∈ C, K ∈ K, L ∈ K, {Un} ∈ B0; see [2] or [3, Proposition 2.33]. Moreover, the

set J of all sequences {Fn} of the form Fn = PnKPn + WnLWn + Un with K ∈ K,

L ∈ K, {Un} ∈ B0 (that is those of the form (4.3) with f = 0) is closed two-sided

ideal of S and the map f 7→ {Tn(f)}+J is an isometric ∗-isomorphism of C onto B/J.

Using Theorems 2.1 and 2.2 with A = S, we get results for the Riccati equa-

tion (1.1) with D = {Dn}, A = {An}, C = {Cn}, X = {Xn} is S. We illustrate

things for the equation

Xn

(
Tn(d) + Tn(b)T−1

n (r)Tn(b)
)
Xn −XnTn(a) − Tn(a)Xn − Tn(c) = 0. (4.4)

Lemma 4.1. If b, r ∈ C and r > 0, then

Tn(b)T−1
n (r)Tn(b) = Tn(|b|2r−1) + PnK

′Pn +WnL
′Wn + U ′

n

with compact operators K ′ ≥ 0 and L′ ≥ 0 and Hermitian matrices U ′
n such that

‖U ′
n‖ → 0 as n→ ∞.

Proof. By virtue of (4.1), {Tn(r)} is invertible in B and thus also in S. We

therefore have

Tn(b)T−1
n (r)Tn(b) = Tn(s) + PnK

′Pn +WnL
′Wn + U ′

n (4.5)

with s ∈ C, K ′ ∈ K, L′ ∈ K, {U ′
n} ∈ B0. Passing to the strong limit n → ∞ in (4.5)

we obtain T (b)T−1(r)T (b) = T (s)+K ′, and Lemma 3.1 now implies that s = |b|2r−1

and that K ′ is positive and compact. Multiplying (4.5) from the left and the right by

Wn, taking into account that WnTn(f)Wn = Tn(f̃), and then passing to the strong

limit n → ∞ we arrive at the equality T (̃b)T−1(r̃)T (̃b) = T (s̃) + L′. Lemma 3.1
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shows again that L′ is positive and compact. It is then immediate from (4.5) that the

matrices U ′
n are Hermitian.

Theorem 4.2. Let a, b, c, d, r ∈ C with d ≥ 0, r > 0 and let at least one of the

following conditions be satisfied:

(i) d+ |b|2r−1 > 0 and c = 1;

(ii) d+ |b|2r−1 > 0, c ≥ 0, and Re a > 0;

(iii) c ≥ 0 and Re a < 0.

Then there is an n0 such that for every n ≥ n0 equation (4.4) has a maximal solution

X+
n ∈ Cn×n. This solution is positive and there exist ϕ ∈ C, ϕ ≥ 0, K = K∗ ∈ K,

L = L∗ ∈ K, Un = U∗
n ∈ Cn×n, ‖Un‖ → 0 such that

X+
n = Tn(ϕ) + PnKPn +WnLWn + Un (4.6)

for n ≥ n0. Moreover, ϕ satisfies the equation

(d+ |b|2r−1)ϕ2 − (a+ a)ϕ− c = 0. (4.7)

Proof. Put D := {Tn(d) + Tn(b)T−1
n (r)Tn(b)}, A := {Tn(a)}, C := {Tn(c)}.

Obviously, D ≥ 0 and C ≥ 0. It is clear that ReA < 0 if (iii) holds. So consider the

cases (ii) and (iii), where d+ |b|2r−1 > 0. By Lemma 4.1,

Re (A− γD) = {Tn(Re a− γ(d+ |b|2r−1)) − γPnK
′Pn − γWnL

′Wn − γU ′
n}

for each constant γ ∈ (0,∞), and hence Re (A− γD) ≤ −2I − γ{U ′
n} for all n ≥ 1 if

γ is sufficiently large. Since the matrices U ′
n are Hermitian and ‖U ′

n‖ → 0, there is an

n0 such that −2I−γU ′
n ≤ −I for all n ≥ n0. Thus, considering only sequences of the

form {Fn}
∞
n=n0

and denoting the corresponding C∗-algebras by B(n0), B0(n0), S(n0),

we see that (A,D) is stabilizable in S(n0). Clearly, σ({Tn(a)}) does not intersect the

imaginary axis if Re a < 0 or Re a > 0. From Theorems 2.1 and 2.2 we now deduce

that equation (1.1) has a positive maximal solution X+ = {X+
n }∞n=n0

in S(n0).

The reasoning of the previous paragraph is applicable to each individual number

n ≥ n0, that is, Dn ≥ 0, Cn ≥ 0, (An,Dn) is stabilizable, and σ(Tn(a)) has no points

on the imaginary axis in the cases (ii) and (iii). Consequently, equation (4.4) has a

positive maximal solution Xn for each n ≥ n0. We want to show that Xn = X+
n . The

matrix Xn can be obtained by an iterative procedure such as in [18]. This procedure

yields Hermitian matrices X
(1)
n ,X

(2)
n , . . . satisfying X

(1)
n ≥ X

(2)
n ≥ . . . ≥ Xn and

X
(k)
n → Xn as k → ∞. In particular, Xn ≤ X

(1)
n . We have

X(1)
n =

∫ ∞

0

et(An−γDn)∗(γ2Dn + Cn)et(An−γDn) dt.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 348-362, March 2011

http://math.technion.ac.il/iic/ela



ELA

356 A. Böttcher

There is a constant M < ∞ such that ‖Dn‖ ≤ M (due to (4.1)) and ‖Cn‖ ≤ M

(obvious). As Re (An − γDn) ≤ −I, it follows that

‖X(1)
n ‖ ≤ (γ2 + 1)M

∫ ∞

0

e−2t dt = (γ2 + 1)M/2 =: M0.

Consequently, ‖Xn‖ ≤ M0 for n ≥ n0, which implies that {Xn}
∞
n=n0

is a Hermitian

solution of equation (1.1) in B(n0). As noted in Section 2, we then necessarily have

{Xn}
∞
n=n0

≤ {X+
n }∞n=n0

, that is Xn ≤ X+
n for all n ≥ n0. As Xn is the maximal

solution of the nth equation and X+
n is a Hermitian solution of that equation, we also

have X+
n ≤ Xn. Thus, Xn = X+

n for n ≥ n0.

As components of an element in S(n0), the matrices X+
n are of the form (4.6)

with ϕ ∈ C, K ∈ K, L ∈ K, {Un} ∈ B0(n0). We also know that X+
n ≥ 0. As n→ ∞,

the strong limit of (4.6) is T (ϕ)+K. This is positive operator if and only if ϕ = ϕ ≥ 0

and K = K∗ (recall the proof of Theorem 3.2). Multiplying (4.6) from the left and

the right by Wn and passing to the strong limit n → ∞, we obtain analogously that

L = L∗. As Tn(ϕ), K, L are Hermitian, so also is Un.

Finally, passing in (4.4) to the strong limit as n → ∞, we arrive at (3.1). Theo-

rem 3.2 therefore implies that ϕ must satisfy (4.7).

The following result on the finite section method for equation (3.1) is immediate

from Theorems 3.2 and 4.2. We silently already used it in the last paragraph of the

previous proof to establish (4.7).

Corollary 4.3. Under the hypotheses of Theorems 3.2 and 4.2, equations (4.4)

have (unique) positive maximal solutions X+
n for all sufficiently large n, and X+

n Pn

converges strongly to the (unique) positive maximal solution X+ of equation (3.1).

5. The Riccati equation with Laurent matrices as coefficients. The Lau-

rent matrix L(f) generated by a function f ∈ C is the doubly-infinite Toeplitz matrix

(fj−k)∞j,k=−∞. This matrix induces a bounded operator on ℓ2(Z) and is unitarily

equivalent to the operator of multiplication by f on L2(T). The Riccati equation (1.1)

in Laurent matrices reads

XL(d)X −XL(a) − L(a)X − L(c) = 0. (5.1)

The smallest norm closed subalgebra of B(ℓ2(Z)) which contains the set L(C) :=

{L(f) : f ∈ C} is in fact L(C) itself, it is a (commutative) unital C∗-algebra, and the

map f 7→ L(f) is an isometric ∗-isomorphism of C onto L(C). Using Theorems 2.1

and 2.2, we see that if d, a, c ∈ C and at least one of the conditions (i) d > 0 and c = 1,

(ii) d > 0, c ≥ 0, and Re a > 0, (iii) c ≥ 0 and Re a < 0 is satisfied, then equation (5.1)

has a maximal solution X+ ∈ L(C), and this solution is actually X+ = L(ϕ) where
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ϕ ∈ C, ϕ ≥ 0, and dϕ2 − (a + a)ϕ − c = 0. The finite section method for equation

(5.1) consists in passing to the equations

YnLn(d)Yn − YnLn(a) − Ln(a)Yn − Ln(c) = 0. (5.2)

where Ln(f) := (fj−k)n
j,k=−n and Yn = (y

(n)
jk )n

j,k=−n. Define the projection P̃n on

ℓ2(Z) by (P̃nx)j = xj if |j| ≤ n and (P̃nx)j = 0 if |j| > n.

Theorem 5.1. If d, a, c ∈ C and one of the hypotheses (i), (ii), (iii) of the pre-

ceding paragraph is satisfied, then equations (5.2) have (unique) positive maximal

solutions Y +
n for all sufficiently large n, and Y +

n P̃n converges strongly to the (unique)

positive maximal solution X+ = L(ϕ) of equation (5.1).

Proof. Clearly, equation (5.2) is nothing but equation (1.3) with n replaced by

2n+ 1, that is,

X2n+1T2n+1(d)X2n+1 −X2n+1T2n+1(a) − T2n+1(a)X2n+1 − T2n+1(c) = 0. (5.3)

Theorem 4.2 shows that, under the hypotheses of the preceding paragraph, the max-

imal solutions X+
2n+1 of (5.3) are of the form

X+
2n+1 = T2n+1(ϕ) + P2n+1KP2n+1 +W2n+1LW2n+1 + C2n+1 (5.4)

with compact operators K and L on ℓ2(N) and ‖C2n+1‖ → 0. Let U : ℓ2(Z) → ℓ2(Z)

be the forward shift, (Ux)j = xj−1. If M = (mjk)2n+1
j,k=0 is a (2n + 1) × (2n + 1)

matrix which is thought of as an operator on ℓ2(N), then U−nP2n+1MP2n+1U
n may

be identified with the matrix (mj+n,k+n)n
j,k=−n regarded as an operator on ℓ2(Z).

This implies that the maximal solution of (5.2) is

Y +
n = U−nP2n+1X

+
2n+1P2n+1U

n. (5.5)

Since P2n+1U
n and W2n+1U

n converge weakly to zero and K and L are compact,

it follows that U−nP2n+1KP2n+1U
n → 0 and U−nW2n+1LW2n+1U

n → 0 strongly.

We also have U−nP2n+1T2n+1(ϕ)P2n+1U
n = Ln(ϕ). Thus, combining (5.4) and (5.5)

we arrive at the conclusion that Y +
n P̃n converges strongly to the maximal solution

X+ = L(ϕ) of equation (5.1).

Results like Theorem 5.1 are known and were established in [10], [21], [25] em-

ploying different methods. Our proof is new. It makes use of the precise knowledge

of the structure of X+
2n+1, after which the rest is soft functional analysis.

We should also emphasize the different intentions behind Corollary 4.3 and The-

orem 5.1. The corollary allows us to solve a Riccati equation with infinite Toeplitz

matrices as coefficients by approximating it by a Riccati equation with large but finite

Toeplitz matrices. The latter might nevertheless be a numerical challenge, but it is
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good progress when compared with working with infinite Toeplitz matrices. On the

other hand, Theorem 5.1 interprets finite Toeplitz matrices as central sections of an

infinite Laurent matrix and enables us to pass from large but finite Toeplitz matrices

to Laurent matrices and thus to the equation dϕ2 − (a+ a)ϕ− c = 0 for functions on

the unit circle. And in certain respects, an equation in functions is simpler than an

equation in matrices.

Interesting problems for equation (5.1) arise when d, a, c are taken from a subset

W of C and one is interested in the question whether special (e.g., maximal) solutions

of the equation are of the form X = L(ϕ) with ϕ ∈ W. Usually W is characterized

by decay properties of the Fourier coefficients, and an important case is where W is

a weighted Wiener algebra (which is not a C∗-algebra). More generally, one takes

d, a, c from WN×N , the N ×N matrix functions with entries from W, and looks for

solutions of equation (5.1) of the form X = L(ϕ) with ϕ ∈ WN×N . Note that in this

case, even the problem ϕdϕ − ϕa − a∗ϕ − c = 0 is non-commutative. For results in

this field of research, we refer to [8], [9], [12], [13], [19], for example.

6. The Riccati equation in W
∗-algebras. By the Gelfand–Naimark theorem,

every C∗-algebra A is isometrically ∗-isomorphic to a closed and selfadjoint subalgebra

of B(H) for some Hilbert space H. If that subalgebra is closed in the strong (=

pointwise) operator topology for some H, then A is called a W ∗-algebra or a von

Neumann algebra. Known constructive procedures for solving Riccati equations [11],

[18] are based on Newton-like iterations and yield the solution as the strong limit

of iterates belonging to A. This makes W ∗-algebras a convenient terrain for Riccati

equations. We remark that finite-dimensional C∗-algebras as well as L∞(T), B(H),

B are W ∗-algebras, whereas C(T), T , K(H) with dimH = ∞, and S are C∗-algebras

but not W ∗-algebras.

Theorem 6.1. (Curtain and Rodman [11]) Let A be a unital W ∗-algebra and

D,A,C ∈ A. If D ≥ 0, C ≥ 0, and (A,D) is stabilizable, then equation (1.1) has a

maximal solution X+ ∈ A and this solution is positive.

Unfortunately, this is of limited use for our purposes because, as said, T and S

are not W ∗-algebras.

If J is a closed two-sided ideal of some unital C∗-algebra A, then

CI + J := {αI + J : α ∈ C, J ∈ J }

is a unital C∗-subalgebra of A. For example, CI +K(H) is a unital C∗-subalgebra of

B(H). Here is a result on the Riccati equation in such C∗-subalgebras.

Theorem 6.2. Let A be a unital C∗-algebra and let J ⊂ A be a proper closed

two-sided ideal. Suppose D,A,C are in CI + J , D ≥ 0, C > 0 (sic! ), and (A,D)
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is stabilizable. If X ∈ A is a positive solution of equation (1.1), then necessarily

X ∈ CI + J .

Proof. We abbreviate αI to α. Thus, let D = d+KD, A = a+KA, C = c+KC

with d, a, c ∈ C and KD,KA,KC ∈ J . We claim that c > 0. To see this, assume

c ≤ 0. Then 0 ≤ −cI < KC , and since ideals of C∗-algebras are hereditary (see, e.g.,

[14, Theorem I.5.3]), it follows that −cI ∈ J . If c < 0, this implies I ∈ J and thus

J = A, which contradicts our assumption that J is proper. Hence c = 0, and thus

C = KC > 0, which means that KC is invertible and therefore again leads to the

contradiction J = A. Consequently, c > 0. Analogously one can show that d ≥ 0.

For Z ∈ A, we denote by Zπ the coset Z+J ∈ A/J . Since (A,D) is stabilizable,

there is an F = f + KF ∈ CI + J such that σ(A −DF ) ⊂ C−, which implies that

σ(Aπ −DπFπ) ⊂ C−. As Aπ −DπFπ = a−df +J , it follows that a−df ∈ C−. This

is impossible if d and Re a are both zero. Therefore one of d and Re a is nonzero. We

put ξ := c/(a+ a) if d = 0, and

ξ :=
a+ a

2d
+

√(
a+ a

2d

)2

+
c

d
(6.1)

if d > 0. Then

dξ2 − (a+ a)ξ − c = 0. (6.2)

We may write X = ξ+V with V ∈ A. Our aim is to show that V ∈ J . Equivalently,

we want to prove that v := V π is the zero in A/J .

Inserting X = ξ+V in (1.1) and passing to the quotient algebra A/J , we obtain

d(ξ + v)2 − (a+ a)(ξ + v) − c = 0,

and taking into account (6.2) we get

dv2 + (2dξ − a− a)v = 0. (6.3)

If d = 0 and hence a + a 6= 0, this implies v = 0, as desired. So assume d > 0.

Then (6.3) reads

dv

(
v + 2ξ −

a+ a

d

)
= 0.

Due to (6.1),

2ξ −
a+ a

d
= 2

√(
a+ a

2d

)2

+
c

d
=: 2̺ > 0
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and thus, v(v + 2̺) = 0. We can decompose v as v = v+ − v− with v+ ≥ 0, v− ≥ 0,

v+v− = v−v+ = 0. It follows that (v+ − v−)(v+ − v− + 2̺) = 0, whence

v2
+ + v2

− + 2̺(v+ − v−) = 0. (6.4)

Since v2
+ ≥ 0, v2

− ≥ 0, ̺ > 0, we conclude from (6.4) that v+ − v− ≤ 0. Consequently,

0 ≤ v+ ≤ v−. Multiplying this from the left and the right by v+, we see that

0 ≤ v3
+ ≤ v+v−v+ = 0, that is, v3

+ = 0. We may think of v+ as a positive operator

and thus of multiplication by a function ψ ≥ 0. The equality v3
+ = 0 shows that

ψ3 = 0, which gives ψ = 0 and thus v+ = 0. Now (6.4) becomes v−(v− − 2̺) = 0.

We have 0 ≤ Xπ = ξ + v = ξ − v− and therefore v− ≤ ξ. Thus,

v− − 2̺ ≤ ξ − 2̺ =
a+ a

2d
+ ̺− 2̺

=
a+ a

2d
−

√(
a+ a

2d

)2

+
c

d
< 0,

which shows that v− − 2̺ is invertible. As v−(v− − 2̺) = 0, we arrive at the desired

equality v− = 0.

We remark that Theorem 6.2 is no longer true if instead of C > 0 we require

only that C ≥ 0. To see this, consider A = ℓ∞ (bounded sequences) and J = c0
(sequences converging to zero) with termwise operations. Clearly, CI + J is the

algebra of all convergent sequences. Take D = A = {1, 1, . . .} and C = {0, 0, . . .}.

Then X = {0, 2, 0, 2, . . .} is a positive solution of equation (1.1), but X is obviously

not in CI + J . Note that the set of all solutions is the set of all sequences {Xn}

with Xn ∈ {0, 2}. Consequently, all solutions are positive. A solution is in CI + J

if and only if Xn eventually stabilizes. Thus, there are countably many solutions in

CI + J but uncountably many solutions in A \ (CI + J ). The maximal solution

X+ = {2, 2, . . .} is of course in CI + J , as it should be by virtue of Theorem 2.2.

Corollary 6.3. Let A be a unital W ∗-algebra and J ⊂ A be a proper closed

two-sided ideal. Suppose D,A,C are in CI + J , D ≥ 0, C > 0, and (A,D) is

stabilizable. The equation (1.1) has a maximal solution X+ in CI +J and X+ ≥ 0.

Proof. The existence of X+ ∈ A and the positivity of X+ are ensured by Theo-

rem 6.1, while Theorem 6.2 shows that actually X+ ∈ CI + J .

Corollary 6.3 is in particular applicable to A = B(H) and J = K(H). The

corollary is not applicable to A = B (which is a W ∗-algebra) and the set J introduced

in Section 4, because J is not an ideal of B. Let Bc ⊂ B denote the set of all {Fn} ∈ B

for which Fn, F ∗
n , WnFnWn, WnF

∗
nWn have strong limits. The set J is a closed two-

sided ideal of Bc; this was discovered by Silbermann [26], and a proof is also in [3,

Lemma 2.21]. However, Bc is not a W ∗-algebra, its strong closure being all of B, so
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that Corollary 6.3 is again not applicable. But using Theorem 6.2 with A = Bc and

J = J, we arrive at the following conclusion: if, under the hypothesis of the theorem,

X = {Xn} = {X∗
n} is a positive solution of equation (1.1), then either X ∈ CI + J

or X /∈ Bc. The latter means that Xn or WnXnWn (or both) do not have a strong

limit as n→ ∞.
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