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Abstract. The aim of this note is to provide the complete characterization of the numerical

range of linear operators on the 2-dimensional Krein space C2.
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1. Introduction. The concept of numerical range of linear operators on a

Hilbert space was introduced by Toeplitz [16] and has been generalized in several

directions. The theory of numerical ranges of linear operators on a Krein space has

also been considered by some authors (see [2, 3, 10, 11, 13, 14, 15] and the references

therein). There are many motivations for the study of the numerical range of lin-

ear operators on Hilbert spaces or Krein spaces. We enumerate some of them: the

localization of the spectrum of an operator, related inequalities, control theory and

applications to physics (cf. [8]). Recently, an application of a generalized numer-

ical range to NMR spectroscopy has been discussed (cf. [7, 12]). The aim of this

paper is the complete determination of the numerical range of linear operators on

the 2-dimensional Krein space C
2. By addition of scalar operators, the study of the

numerical range of operators on C
2 is reduced to that of rank one operators. The

numerical range of such rank one operators has been already investigated in [14] for

non-neutral vectors.

Let C,A be (non-zero) rank one operators on the 2-dimensional Krein space C
2,

endowed with the indefinite inner product space [·, ·] defined by [ξ, ν] = (Jξ, ν) = ν∗Jξ

for J = I1 ⊕ (−I1). We refer [1, 4, 6] for general reference on Krein spaces or

Krein spaces operators. For the rank one operators C,A, there exist non-zero vectors
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η, ζ, κ, τ such that

Cξ = [ξ, η]ζ, Aξ = [ξ, κ]τ, ξ ∈ C
2.(1.1)

Denote by SU(1, 1) the group of 2 × 2 complex matrices U with determinant 1 such

that U∗JU = J . We consider the indefinite C-numerical range of A denoted and

defined by

W J
C (A) = {[Uζ, κ][Uη, τ ] : U ∈ SU(1, 1)},(1.2)

which has been characterized in [14] for η, ζ, κ, τ , non-neutral vectors, that is, [η, η],

[ζ, ζ], [κ, κ], [τ, τ ] do not vanish. An analogous object for a 2-dimensional Hilbert

space is the C-numerical range of A defined as

WC(A) = {κ∗Uζ τ∗Uη : U ∈ SU(2)},

for rank one operators C,A. The range WC(A) is a (possible degenerate) closed

elliptical disc (cf. [9]). This paper treats the analogous object for Krein spaces.

The main aim of this note is to complete the characterization of W J
C (A) consid-

ering the case of the vectors η, ζ, κ, τ being neutral. For the range WC(A) of any

dimensional matrices A,C , the numerical method to draw the boundary is given in

[7] based on a result in [5]. A numerical algorithm is not known for Krein spaces

numerical ranges except for some special cases. We give a complete characterization

for operators on 2-dimensional spaces.

The following classification takes place, being the different cases treated in the

next five sections.

First Case: All the vectors η, ζ, κ, τ are neutral.

Second Case: One of the vectors η, ζ, κ, τ is non-neutral and the other three are

neutral.

Third Case: The vectors κ, τ are neutral and η, ζ are non-neutral.

Fourth Case: The vectors κ, ζ are neutral and η, τ are non-neutral.

Fifth Case: The vectors κ, η are neutral and ζ, τ are non-neutral.

Sixth Case: One of the vectors η, ζ, κ, τ is neutral and the other three are non-neutral.

Using the concrete description of W J
C (A) given in Sections 2–6 and in [14], we

prove the following results in Section 7.

Theorem 1.1. Let C,A be arbitrary linear operators on a 2-dimensional Krein

space, and J = I1⊕−I1. If the boundary of W J
C (A) is non-empty, then it is a singleton

or it lies on a possibly degenerate conic.

Theorem 1.2. Let C,A be arbitrary linear operators on the Krein space C
2, and

J = I1 ⊕−I1. Then the fundamental group π1(W
J
C (A)) of W J

C (A) is a trivial group,
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or an abelian group isomorphic to the additive group of the integers, Z. The number

of the connected components of the complement C\W J
C (A) is 1 or 2.

2. The first case. In the sequel, we identify the complex plane with R
2 and we

denote by Eij the 2× 2 matrix with the (i, j)th entry equal to 1 and all the others 0.

For V,W ∈ U(1, 1), we have

V AV −1ξ = [V −1ξ, κ]V τ = [ξ, V κ]V τ, WCW−1ξ = [W−1ξ, η]ζ = [ξ,Wη]Wζ,(2.1)

and so we may assume that ζ = (1, 1)T , τ = (1,−1)T . We also may consider that κ =

(k1,−k2), η = (q1, q2), with |k1| = |k2| = |q1| = |q2| = 1. Under these assumptions,

we find

W J
C (A) = {(k1α+k1β+k2α+k2β)(q1α+q2β+q1β+q2α) : α, β ∈ C, |α|2−|β|2 = 1}.

Writing k1 = exp(i s) exp(iθ), k2 = exp(i s) exp(−iθ), q1 = exp(i t) exp(iφ), q2 =

exp(i t) exp(−i φ), s, t, θ, φ ∈ R, we obtain

W J
C (A) = {4 exp(i s)ℜ(exp(iθ)(α+ β)) exp(i t)ℜ(exp(−iφ)(α+ β)) :(2.2)

α, β ∈ C, |α|2 − |β|2 = 1}.

Thus, W J
C (A) is contained in a straight line passing through the origin. We may

assume that κ = (exp(−iθ),− exp(iθ))T , η = (exp(−iφ), exp(iφ))T , ζ = (1, 1)T and

τ = (1,−1)T . Under these assumptions, we prove the following.

Proposition 2.1. Let C = exp(iφ)(E11 + E21) − exp(−iφ)(E12 + E22), A =

exp(iθ)(E11 − E21) + exp(−iθ)(E12 − E22), 0 ≤ θ, φ ≤ 2π. If either θ or φ is not

congruent to 0 modulo π, then W J
C (A) is the real line. Otherwise, W J

C (A) = [0,+∞)

for θ = φ = 0 or θ = φ = π, and W J
C (A) = (−∞, 0] for θ = 0, φ = π or θ = π, φ = 0.

Proof. Having in mind (2.2), we easily find for 0 ≤ θ, φ ≤ 2π,

W J
C (A) = {4ℜ(exp(iθ)(α+ β))ℜ(exp(−iφ)(α+ β))} = {4(cosh t cos(u+ θ)

+ sinh t cos(v − θ))(cosh t cos(u− φ) + sinh t cos(v − φ)) : t ≥ 0, 0 ≤ u, v ≤ 2π}.

For fixed 0 ≤ u, v, θ, φ ≤ 2π, we study the behavior of the real valued function

ψ(t) = 4(cosh t cos(u+ θ) + sinh t cos(v − θ))(cosh t cos(u− φ) + sinh t cos(v − φ))

as t→ +∞. For this purpose, we consider the sign of the function

f(u, v) = (cos(u+ θ) + cos(v − θ))(cos(u− φ) + cos(v − φ))

= 4 cos

(

u+ v

2

)

cos

(

u+ v

2
− φ

)

cos

(

u− v

2
+ θ

)

cos

(

u− v

2

)

, u, v ∈ R.
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Hence, it is sufficient to determine the sign of the function f̃(x, y) = 4 cosx cos(x −

φ) cos y cos(y + θ) for the variables ranging over the reals. We observe that function

cosx cos(x− φ) takes positive and negative values except for φ ≡ 0 modulo π, while

cos y cos(y+ θ) takes positive and negative values except for θ ≡ 0 modulo π. There-

fore, if either φ or θ is not congruent to 0 modulo π, then f(u, v) takes positive and

negative values, and so W J
C (A) coincides with the real line.

To finish the proof we consider the following cases: (1) θ = φ = 0; (2) θ = 0

and φ = π; (3) θ = π and φ = 0; (4) θ = φ = π. We concentrate on the case

(1). Considering t = 0, u = π/2, we produce the origin. Taking u = v = 0, we get

[0,+∞) ⊂W J
C (A) and the reverse inclusion is clear.

The treatment of the remaining cases is similar and the proposition follows.

3. The fourth and fifth cases. In the fourth case, we may consider ζ = (1, 1)T ,

κ = (1,−1), τ = (1, 0)T , and η = (1, 0)T or η = (0, 1)T . In the fifth case, we may

take η = (1, 1)T , κ = (1, 1)T , ζ = (1, 0)T , and τ = (1, 0)T or τ = (0, 1)T .

Proposition 3.1. If C = E11 + E21 and A = E11 + E12, then W J
C (A) =

C\(−∞, 1] ∪ {0}.

Proof. Some computations yield

W J
C (A) = {(α+ α+ β + β)α : α, β ∈ C, |α|2 − |β|2 = 1}(3.1)

= {2(cosh t cos θ + sinh t cosφ) cosh t exp(iθ) : t ≥ 0, 0 ≤ θ, φ ≤ 2π}.

By choosing in (3.1) θ = π/2 and φ = 0 or φ = π, we conclude that the imaginary axis

is contained in W J
C (A). It can be easily seen that a non-zero real number λ belongs

to W J
C (A) if and only if it is of the form

λ(t, φ) = 2(cosh t+ sinh t cosφ) cosh t, t ≥ 0, 0 ≤ φ ≤ 2π.

For a fixed t, λ attains its minimum value when cos φ = −1 and this minimum

equals 1 + exp(−2t). Letting t vary on its domain, we find λ > 1. Thus,

W J
C (A) ∩ R = {0} ∪ (1,+∞).(3.2)

Considering 0 < θ < π and φ = π in (3.1), we find

{2(cosh t cos θ − sinh t) cosh t exp(iθ) : t ≥ 0} = {λ exp(iθ) : λ ≤ 2 cos θ}(3.3)

⊂W J
C (A),

while for φ = π/2 we get the inclusion

{2 cosh t cos θ cosh t exp(iθ) : t ≥ 0} = {λ exp(iθ) : λ ≥ 2 cos θ} ⊂W J
C (A).(3.4)
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Therefore the proposition follows from (3.2), (3.3), (3.4).

Proposition 3.2. If C = −E12 − E22 and A = E11 + E12, then W J
C (A) =

C\(−∞,−1].

Proof. We have

W J
C (A) = {(α+ α+ β + β)β : α, β ∈ C, |α|2 − |β|2 = 1}

= {2(cosh t cosφ+ sinh t cos θ) sinh t exp(iθ) : t ≥ 0, 0 ≤ θ, φ ≤ 2π}.

Choosing φ = π/2 and letting θ 6= 0 vary in [−π/2, π/2], we conclude that

{2 sinh t cos θ sinh t exp(iθ) : t ≥ 0} = {λ exp(iθ) : 0 ≤ λ} ⊂W J
C (A),(3.5)

and considering φ = π, we find

{2(− cosh t+sinh t cos θ) sinh t exp(iθ) : t ≥ 0} = {λ exp(iθ) : λ ≤ 0} ⊂W J
C (A).(3.6)

It follows from (3.5), (3.6) that every complex number with nonvanishing imaginary

part belongs to W J
C (A).

Taking θ = φ = 0 and t → +∞, we conclude that [0,+∞) ⊂ W J
C (A), be-

cause 2 sinh2 t ∈ W J
C (A). For a fixed φ different from 0 or π, we consider the

real valued function of real variable f(t) = 2(cosh t cosφ + sinh t) sinh t. Its deriva-

tive f ′(t) = (exp(2t) + exp(−2t)) cosφ + exp(2t) − exp(−2t) vanishes at exp(2t) =
√

(1 − cosφ)/(1 + cosφ), and the function attains here the minimum value −1 +
√

1 − cos2 φ. Thus, the proposition follows.

Proposition 3.3. If A = C = E11 − E12, then W J
C (A) = C\(−∞, 0].

Proof. We easily find

W J
C (A) = {(α− β)(α+ β) : α, β ∈ C, |α|2 − |β|2 = 1}

= {(cosh t+ sinh t exp(iθ))(cosh t+ sinh t exp(iφ)) : 0 ≤ t, 0 ≤ θ, φ ≤ 2π}.

Setting

G = {(cosh t+ sinh t exp(iθ)) : 0 ≤ t, 0 ≤ θ ≤ 2π},

we clearly have

{z2 : z ∈ G} ⊂W J
C (A) = {z1 z2 : z1, z2 ∈ G}.

We show that G is the family of circles (x − r)2 + y2 = r2 − 1, r ≥ 1. In fact, if

(x, y) ∈ G, then 2rx = x2 + y2 + 1 and so x > 0. Conversely, if x > 0 and y ∈ R,

then the real number r = 1
2

(

x+ 1
x

)

+ y2

2x
satisfies (x − r)2 + y2 = r2 − 1. Thus,

G = {z ∈ C : ℜ(z) > 0}.
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Proposition 3.4. If C = E11 − E12 and A = E21 − E22, then W J
C (A) =

C\(−∞, 0] ∪ {−1}.

Proof. We obtain

W J
C (A) = {(sinh t+ cosh t exp(iθ))(sinh t+ cosh t exp(iφ)) : t ∈ R, 0 ≤ θ, φ ≤ 2π}.

By similar arguments to those used in Proposition 3.3, it can be easily seen that

sinh t + cosh t exp(iθ), t ∈ R, 0 ≤ θ ≤ 2π, ranges over the complementary of the

imaginary axis, taken in the complex plane, with i and −i deleted.

4. The second case. In this case, we may assume that τ = (1, 0)T , ζ = (1, 1)T ,

κ = (k1,−k2)
T , η = (1, q)T , k1, k2, q ∈ C, |k1| = |k2| = |q| = 1, and we have

W J
C (A) = {(k1α+ k2α+ k1β + k2β)(α+ qβ) : α, β ∈ C, |α|2 − |β|2 = 1}.

Writing k1 = exp(i s) exp(iθ), k2 = exp(i s) exp(−iθ), s, θ ∈ R, it follows that

W J
C (A)= {2 exp(i s)ℜ(exp(−iθ)(α+ β))(α+ qβ) : α, β ∈ C, |α|2 − |β|2 = 1}

= {2k1 ℜ(α+ β) (α+ q β) : α, β ∈ C, |α|2 − |β|2 = 1},(4.1)

and so we may assume that k1 = 1.

Proposition 4.1. Let C = (E11 + E21) − q(E21 + E22), |q| = 1, and let A =

E11 + E12. The following hold:

1) If q = 1, then W J
C (A) = {0} ∪ {z ∈ C : ℜ(z) > 0}.

2) If q 6= 1, then W J
C (A) = C\{λ(1 − q) : λ ∈ R} ∪ {1 − q}.

Proof. 1)It may be easily seen that the origin belongs to W J
C (A). We have

ℜ(2ℜ(α+ β) (α+ β)) = 2ℜ(α+ β)2 ≥ 0

with occurrence of equality if and only if ℜ(α+ β) = 0. Thus,

W J
C (A) ⊂ {0} ∪ {z ∈ C : ℜ(z) > 0}.

We prove that the reverse inclusion holds. For every z ∈ C with θ = Arg(z) ∈

(−π/2, π/2), we may find α, β ∈ C such that |α|2−|β|2 = 1 and z = 2ℜ(α+β) (α+β).

In fact, let α = cosh t exp(iθ) and β = sinh t exp(iθ), t ∈ R, so that 2 exp(2t) cos θ =

|z|. Since cos θ > 0, we have 2 exp(2t) exp(iθ) cos θ = z.

2) Let q = q1 + i q2 6= 1. From (4.1) we easily get

W J
C (A) = {2ℜ(z)w : z, w ∈ C, 2ℜ(zw) − 2ℜ(q z w) = |1 − q|2},
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that is, the elements of W J
C (A) are the complex numbers of the form 2x0 (x + i y)

such that

(q2 x+ (1 − q1) y) y0 = (1/2)|1 − q|2 − (1 − q1)x0 x+ q2 x0 y, x0, y0, x, y ∈ R.(4.2)

If q2 x+ (1 − q1) y 6= 0, then y0 may always be found such that (4.2) is satisfied, and

thus

S = {(x, y) ∈ R
2 : q2 x+ (1 − q1) y 6= 0} ⊂W J

C (A).

Moreover, ℜ(−i (x+iy)1 − q) = q2 x+(1−q1) y = 0 if and only if z = x+i y = λ (1−q),

λ ∈ R. Clearly,

S = C\{λ(1 − q) : λ ∈ R}.

Some calculations show that there exist complex numbers α, β satisfying λ(1 − q) =

2ℜ(α+ β) (α+ q β) and |α|2 − |β|2 = 1 if and only if λ = 1. Finally, it can easily be

seen that 1 − q belongs to W J
C (A).

5. The sixth case. In this case, we may assume that κ is neutral. By replacing

the inner product [ξ1, ξ2] by −[ξ1, ξ2], we may consider (1): ζ = τ = (1, 0)T or

(2): ζ = (0, 1)T , τ = (1, 0)T . In either case, we may suppose that κ = (1, 1)T , by

replacing A by diag(1, exp(iθ))Adiag(1, exp(−iθ)) for some θ ∈ R. By performing a

transformation of this type, the components of the vector η = (η1, η2) may be assumed

to be real and such that |η1| 6= |η2|. Thus, one of the following situations occurs:

1st Subcase. Aξ = [ξ, (1, 1)T ] (1, 0)T , Cξ = [ξ, (1, q)T ] (1, 0)T , −1 < q < 1.

2nd Subcase. Aξ = [ξ, (1, 1)T ] (1, 0)T , Cξ = [ξ, (q, 1)T ] (1, 0)T , −1 < q < 1.

3rd Subcase. Aξ = [ξ, (1, 1)T ] (1, 0)T , Cξ = [ξ, (1, q)T ] (0, 1)T , −1 < q < 1.

4rd Subcase. Aξ = [ξ, (1, 1)T ] (1, 0)T , Cξ = [ξ, (q, 1)T ] (0, 1)T , −1 < q < 1.

Firstly, we treat the 1st Subcase.

Proposition 5.1. If C = E11 − qE12 and A = E11 − E12, then

W J
C (A) = {(x, y) ∈ R

2 : x > 1/2 − |q|/2 cosh t, y =
√

1 − q2/2 sinh t, t ∈ R}.

Proof. By some computations we get

W J
C (A) = {(α− β)(α+ qβ) : α, β ∈ C, |α|2 − |β|2 = 1}

= {(cosh t+ sinh t exp(iθ))(cosh t+ q sinh t exp(iφ)) : t ≥ 0, 0 ≤ θ, φ ≤ 2π}.

The case q = 0 is easily treated, so we may assume that 0 < q < 1. The above set

is the union of the family of circles centered at z = z(t, θ) = x0 + i y0 = cosh2 t +
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sinh t cosh t exp(iθ) whose radii r = r(t, θ) satisfy R = r2 = q2 sinh2 t (1 + 2 sinh2 t+

2 sinh t cosh t cos θ), and R = q2 ((x0 − 1)2 + y2
0). It may be shown that the centers of

these circles describe the open half-plane x > 1/2. Thus,

W J
C (A) = {(x, y) ∈ R

2 : (x−x0)
2 +(y−y0)

2 = q2((x0−1)2 +y2
0), x0 > 1/2, y0 ∈ R }.

The boundary of W J
C (A) is the envelope of the family of circles when their centers

run over x = 1/2 (cf. Proposition 2.3 in [14]) and the result follows.

Next, the 2nd Subcase is studied.

Proposition 5.2. If C = qE11 − E12, −1 < q < 1, A = E11 − E12, then

W J
C (A) = C.

Proof. Some computations yield

W J
C (A) = {(α− β)(qα+ β) : α, β ∈ C, |α|2 − |β|2 = 1}

= {(cosh t+ sinh t exp(iθ))(q cosh t+ sinh t exp(iφ)) : t ≥ 0, 0 ≤ θ, φ ≤ 2π},

where we may assume q > 0. Therefore, W J
C (A) is the union of the family of circles

centered at z(t, θ) = x0 + i y0 = q (cosh t+sinh t exp(iθ)) cosh t, whose radii r = r(t, θ)

satisfy R = r2 = sinh2 t (1 + 2 sinh2 t+ 2 sinh t cosh t cos θ), and the following relation

holds

R =
1

q2
((x0 − q)2 + y2

0).

The centers of the circles describe the open half-plane x > q/2. Thus,

W J
C (A) =

{

(x, y) ∈ R
2 : (x− x0)

2+(y − y0)
2 =

1

q2
((x0 − q)2 + y2

0)x0 > q/2, y0 ∈R

}

.

Clearly, we have

(x− x0)
2 + (y − y0)

2 =
1

q2
((x0 − q)2 + y2

0).

If (x− x0)
2 = 1

q2 (x0 − q)2 and (y − y0)
2 = 1

q2 y
2
0 , then (x, y) belongs to W J

C (A). It is

always possible to find a real y0 such that the first equation holds, while the second

equation is satisfied if x0 = q
1±q

(1 ± x). Since x0 > q/2, this equation has a real

solution x0 for x > (q − 1)/2 and also for x < (1 + q)/2.

The 3rd Subcase is investigated in the following.

Proposition 5.3. If C = E12 − qE22, −1 < q < 1, and A = E11 − E12, then

W J
C (A) =

{

(x, y) ∈ R
2 : (x+ q/2)2 +

y2

(1 − q2)
>

1

4

}

.
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Proof. We easily find

W J
C (A) = {(β − α)(qα+ β) : α, β ∈ C, |α|2 − |β|2 = 1}

= {(sinh t+ cosh t exp(iθ))(q sinh t+ cosh t exp(iφ)) : t ≥ 0, 0 ≤ θ, φ ≤ 2π},

and we may consider q ≥ 0. Since W J
C (A) is invariant under rotations around the

origin in the case q = 0, we may concentrate on the case q > 0. Thus, W J
C (A) is the

union of the family of circles centered at z = x0+i y0 = q sinh t (sinh t+cosh t exp(i θ))

and whose radii r = r(t, θ) satisfy R = r2 = cosh2 t (1+2 sinh2 t+2 sinh t cosh t cos θ).

The following relation holds

R =
1

q2
((x+ q)2 + y2).

The centers z = z(t, θ) of the circles describe the half-plane x > −q/2. Thus,

W J
C (A) = {(x, y) ∈ R

2 : (x− x0)
2 + (y − y0)

2 = 1/q2 ((x0 + q)2 + y2
0),

x0 > −q/2, y0 ∈ R}.

For a fixed complex number x+ i y, we consider the Apolonius circle

{(X,Y ) ∈ R
2 : (X + q)2 + Y 2 = q2((X − x)2 + (Y − y)2)

with center (− q(1+q x)
1−q2 ,− q2 y

1−q2 ), and radius q
1−q2

√

(x+ q)2 + y2. Hence,

M(x, y)= max{x0 : |(x0 + i y0) +
q(1 + q x)

1 − q2
+ i

q2 y

1 − q2
| =

q

1 − q2

√

(x+ q)2 + y2}

= −
q(1 + q x)

1 − q2
+
q
√

(x+ q)2 + y2

1 − q2
.

The point x+ i y belongs to W J
C (A) if and only if M(x, y) > −q/2. Thus, we conclude

W J
C (A) = {(x, y) ∈ R

2 : 4((x+ q)2 + y2) − (1 + q2 + 2q x)2 > 0}.

The 4th Subcase is analysed in the following.

Proposition 5.4. If C = qE21 − E22, −1 < q < 1, and A = E11 − E12, then

W J
C (A) = {(x, y) ∈ R

2 : y =
√

1 − q2/2 sinh t, x > −1/2 − |q|/2 cosh t, t ∈ R}.

Proof. We find

W J
C (A) = {(β − α)(qα+ β) : α, β ∈ C, |α|2 − |β|2 = 1}

= {(sinh t+ cosh t exp(iθ))(sinh t+ q cosh t exp(iφ)) : t ≥ 0, 0 ≤ θ, φ ≤ 2π}.
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The case q = 0 is trivial, so we assume 0 < q < 1. Under this assumption, W J
C (A)

is the union of the family of circles centered at z = z(t, θ) = x+ i y = sinh t (sinh t+

cosh t exp(i θ)), whose radii r = r(t, θ) satisfy R = r2 = q2 cosh2 (1 + 2 sinh2 t +

2 sinh t cosh t cos θ), and also R = q2 ((x+ 1)2 + y2). The centers of the circles range

over the half-plane x > −1/2 and the proposition easily follows from Proposition

5.1.

6. The third case. In this case, we are assuming that κ, τ are neutral and η, ζ

are non- neutral. We may consider ζ = (1, 0)T , τ = (1,−1)T , κ = (1,−k), k ∈ C with

|k| = 1 and η = (η1, η2), η1, η2 ∈ R, |η1| 6= |η2|. Under these assumptions, we obtain

W J
C (A) = {(α+ kβ)(η1(α+ β) + η2(α+ β)) : α, β ∈ C, |α|2 − |β|2 = 1}.

Firstly, we consider the three special Subcases: (1) η2 = 0, η1 = 1; (2) η1 = 0, η2 = 1;

(3) k = 1. Finally, in Proposition 6.4 we treat the case k 6= 1 and η1 6= η2 6= 0.

If the Subcase (1) occurs, then

W J
C (A) = {(α+ β)(α+ k β) : α, β ∈ C, |α|2 − |β|2 = 1}.

If k = 1, then W J
C (A) is the positive real line. Let k 6= 1 and let k1 be a complex

number such that k2
1 = k. Thus, |k1| = 1, k1 6= 1, k1 6= −1 and

W J
C (A) = k1{(α+ β)(k1α+ k1β) : α, β ∈ C, |α|2 − |β|2 = 1}

= k1{k1 + (k1 + k1)|β|
2t+ 2ℜ(k1αβ) : α, β ∈ C, |α|2 − |β|2 = 1}.

Multiplying W J
C (A) by a complex number k1, and performing some calculations, the

next proposition follows.

Proposition 6.1. Let C = E11, A = k1(E11 − E21) + k1(E21 − E22), k1 =

exp(iφ), −π < φ < π, φ 6= 0. Then W J
C (A) = {i sinφ+ t : t ∈ R}.

In the Subcase (2), we replace (1,−k)T by (1,−k)T and we prove.

Proposition 6.2. Let C = −E12, A = (E11 − E21) + k(E12 − E22), k =

exp(iφ), −π < φ ≤ π. Then W J
C (A) = {z ∈ C : |z| ≥ sin(|φ|/2)} for φ 6= 0, and

W J
C (A) = C\{0} for φ = 0.

Proof. We get

W J
C (A) = {(α+ kβ)(α+ β) : α, β ∈ C, |α|2 − |β|2 = 1},

being this set invariant under the rotation z 7→ exp(iθ) z, θ ∈ R. Therefore, to

conclude the proof it is sufficient to show that the function defined on [0,+∞)×[0, 2π]

by f(t, θ) = | cosh t + exp(i φ) exp(i θ) sinh t|2 | cosh t + exp(i θ) sinh t|2 ranges over
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[sin2(|φ|/2),+∞) for φ 6= 0, and (0,+∞) in the case φ = 0. This can be done by

simple standard arguments.

Next we consider the Subcase (3).

Proposition 6.3. Let C = E11 − qE12, q ∈ R, q 6= 1, q 6= −1, and let A =

E11 + E12 − E21 − E22. The following hold:

1) If |q| > 1, then W J
C (A) = C\{0}.

2) If −1 < q < 1, then W J
C (A) = {(x, y) ∈ R

2 : x > 0, |y| ≤ |q|x/
√

1 − q2}.

Proof. Performing some computations, we obtain

W J
C (A) = {(α+ β)(α+ β + q α+ q β) : α, β ∈ C, |α|2 − |β|2 = 1}

= {|z| + |q| z : z ∈ C\{0}}.

1) Let |q| > 1. The equation |z| + |q| z = 0 holds if and only if z 6= 0. Given

a non-zero complex number z0 = x0 + iy0 it is always possible to find a complex z

satisfying z0 = |z| + |q| z, since the real system x0 =
√

x2 + y2 + |q|x, y0 = |q|y is

possible.

2) Let −1 < q < 1. We may assume q 6= 0. It can be easily checked that the

equations of the above system are satisfied for real numbers x0, y0 if and only if x0 > 0

and
y2

0

x2

0

< q2

1−q2 .

Proposition 6.4. Let C = E11 − qE12, q ∈ R, q 6= 1, q 6= −1, A = k1(E11 −

E21) + k1(E12 − E22), k1 = exp(i ψ), −π < ψ < π, ψ 6= 0. The following hold:

1) If |q| > 1, then

W J
C (A) =

{

(x, y) ∈ R
2 :

x2

q2 − 1
+

(y − sinψ)2

q2
≥ sin2(ψ)

}

.(6.1)

2) If 0 < |q| < 1, then

W J
C (A) =

{

(x, y) ∈ R
2 :

(y − sinψ)2

q2
−

x2

1 − q2
≤ sin2(ψ)

}

.

Proof. Some computations yield

W J
C (A) = {(k1α+ k1β)(α+ β + qα+ qβ) : α, β ∈ C, |α|2 − |β|2 = 1}

= {[(k1 cosh t+ k1 sinh t exp(iφ)][cosh t+ sinh t exp(−iφ)] + q [k1 cosh t

+ k1 sinh exp(iφ)][cosh t+ sinh t exp(iφ)] exp(iθ) : t ≥ 0, 0 ≤ φ, θ ≤ 2π}.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 430-442, April 2011

http://math.technion.ac.il/iic/ela



ELA

The Numerical Range of Linear Operators on the 2-Dimentional Krein Space 441

Then, W J
C (A) is the union of the family of circles centered at

z = z(t, φ, ψ) = x+ i y = [(k1 cosh t+ k1 sinh t exp(iφ)][cosh t+ sinh t exp(−iφ)]

= k1 + 2 cos(ψ) sinh2 t+ 2 sinh t cosh t cos(φ− ψ),

where ψ = arg k1. The radii of the above family, r = r(t, θ), satisfy R = r2 =

q2 [cosh2 t+ sinh2 t+ 2 sinh t cosh t cos(φ− 2ψ)][cosh2 t+ sinh2 t+ 2 sinh t cosh t cosφ].

Thus, R = q2 (x2 + sin2(ψ)), y = sinψ, and we easily get

W J
C (A) = {(x, y) ∈ R

2 : (x− x0)
2 + (y − sinψ)2 = q2 (x2

0 + sin2 ψ), x ∈ R}.(6.2)

1) Let |q| > 1. If x+ i y is a boundary point of W J
C (A), then it satisfies

F (x, y;x0) = (x− x0)
2 + (y − sinψ)2 − q2(x2

0 + sin2 ψ) = 0,

and Fx(x, y;x0) = −2 (x+ (q2 − 1)x0) = 0. By eliminating x0 in the above equations,

we get

x2

q2 − 1
+

(y − sinψ)2

q2
= sin2 ψ,

and so the boundary of W J
C (A) is contained in this ellipse. Conversely, we claim that

every point of this ellipse is contained in the boundary of W J
C (A). Indeed, every point

(x, y) of the ellipse is parametrically represented as x =
√

(q2 − 1) sinψ cos θ, y =

sinψ + q sinψ sin θ, θ ∈ R, and satisfies

(

x+
sinψ cos θ
√

q2 − 1

)2

+ (y − sinψ)
2
− q2

(

sin2 ψ cos2 θ

q2 − 1
+ sin2 ψ

)

= 0.

Thus, (x, y) is an element of (6.2). To finish the proof, we observe that if x0 → ∞,

then the circle F (x, y;x0) = 0 contains points x+i 0 with x→ ∞. Let 0 < |q| < 1. By

similar arguments to the above, we find that the boundary of W J
C (A) is the hyperbola:

(y − sinψ)2

q2
−

x2

1 − q2
= sin2(ψ).

If x0 → +∞, then the circle F (x, y;x0) = 0 contains points x of the real line with

x→ +∞.

7. Proof of main theorems and a concluding remark. As a consequence

of the descriptions of the shape of W J
C (A) in Sections 2–6 and [14], we obtain The-

orem 1.1. We remark that W J
C (A), or each connected component of its complement

C\W J
C (A), is convex. This property does not hold for 3-dimensional Krein spaces.

From Theorem 1.2 it follows that W J
C (A) has at most 1 hole.
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