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ON THE GROUP INVERSE OF LINEAR COMBINATIONS

OF TWO GROUP INVERTIBLE MATRICES∗
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Abstract. In this paper, some formulas are found for the group inverse of aP +bQ, where P and

Q are two nonzero group invertible complex matrices satisfying certain conditions and a, b nonzero

complex numbers.
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1. Introduction. Throughout this paper, C
n×m stands for the set of n × m

complex matrices. A∗ denotes the conjugate transpose of A ∈ C
n×m. A matrix

A ∈ C
n×n is said to be group invertible if there exists X ∈ C

n×n such that

AXA = A, XAX = X, AX = XA

hold. If such matrix X exists, then it is unique, denoted by A#, and called the group

inverse of A. It is well known that the group inverse of a square matrix A exists

if and only if rank(A2) = rank(A) (see, for example, [1, Section 4.4] for details).

Clearly, not every matrix is group invertible. It is straightforward to prove that A

is group invertible if and only if A∗ is group invertible, and in this case, one has

(A#)∗ = (A∗)#. Also, it should be evident that if A ∈ C
n×n and S ∈ C

n×n is

nonsingular, then A is group invertible if and only if SAS−1 is group invertible, and

in this situation, one has (SAS−1)# = SA#S−1.

Recently, some formulas for the Drazin inverse of a sum of two matrices (or

two bounded operators in a Banach space) under some conditions were given (see

[4, 5, 7, 8, 9, 10, 11, 14] and references therein). Let us remark that the group inverse
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is a particular case of the Drazin inverse. Here, we will find sufficient conditions for

a linear combination of two group invertible matrices be group invertible, and under

these conditions, we will give some expressions for the group inverse of this linear

combination. It is noteworthy that Theorem 2.3 given here generalizes [2, Theorem

3.1].

A previous study of the group invertibility of expressions containing two idempo-

tents was made in [12]. In [12], under the conditions

(PQ)2 = (QP )2 or

PQ = QP or PQP = QPQ = PQ or PQP = QPQ or (PQ)2 = 0,(1.1)

where P,Q ∈ Cn,n are two distinct nonzero idempotents, the authors studied the

group invertibility of expressions of the form aP + bQ + cPQ + dQP + ePQP +

fQPQ + gPQPQ, being a, b, c, d, e, f, g ∈ C. In this present paper, we will study the

group invertibility of linear combinations of two group invertible matrices P,Q ∈ Cn,n

satisfying

(1.2) PQQ# = QPP# or PQQ# = QPP#, QQ#P = PP#Q or QP#P = P.

Let us note that there two main differences between [12] and our paper:

(a) The matrices considered in [12] are idempotents and the matrices considered

here are group invertible (observe that if X ∈ Cn,n is idempotent, then X

is group invertible and X# = X). The class of square matrices considered

here is strictly greater than the class of idempotent matrices. It is easy to

construct nontrivial and interesting examples: it is sufficient to consider a

diagonalizable matrix which is not an idempotent.

(b) The conditions (1.1) and (1.2) are quite different. For instance, when we

particularize (1.2) for two idempotents P,Q ∈ Cn,n we get

PQ = QP or QP = P,

or if we particularize (1.2) for two tripotent matrices P,Q ∈ Cn,n we get

PQ2 = QP 2 or PQ2 = QP 2, Q2P = P 2Q or QP 2 = P.

It will be useful to introduce the concept of the spectral idempotent corresponding

to 0; If P ∈ C
n×n is group invertible, we shall denote Pπ = In − PP#. It is evident

that Pπ is an idempotent and PPπ = PπP = 0. It is obvious that if P ∈ C
n×n is

group invertible and c ∈ C \ {0}, then Pπ = (cP )π.

2. Some additive results on group inverses. The following two results will

be useful in the sequel.
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Theorem 2.1. [13, Exercises 5.10.12 and 5.10.13] Let A ∈ C
n×n. Then A is a

group invertible matrix if and only if there are nonsingular matrices U ∈ C
n×n and

C ∈ C
r×r such that A = U(C ⊕ 0)U−1, where r is the rank of A. In this case, one

has A# = U(C−1 ⊕ 0)U−1.

Theorem 2.2. [3] Suppose M =

[

A B

0 C

]

∈ C
n×n, A ∈ C

m×m. Then

(i) M# exists if and only if A# and C# exist and AπBCπ = 0.

(ii) If M# exists, then M# =

[

A# X

0 C#

]

, where

X = (A#)2BCπ + AπB(C#)2 − A#BC#.

The following result gives a sufficient condition for a linear combination of two

group invertible matrices be another group invertible matrix. Let us remark that if λ is

a nonzero complex number and A ∈ C
n×n is group invertible, then (λA)# = λ−1A#,

which justifies inclusion of the last statement in Theorem 2.3 since it permits to find

the group inverse of aP + bQ when a + b = 0.

Theorem 2.3. Let P,Q ∈ C
n×n be two group invertible matrices and let a, b be

two nonzero complex numbers. If PQQ# = QPP#, then aP + bQ is group invertible.

If a + b 6= 0, then

(aP + bQ)#

=
1

a + b

[

P# + Q# − P#QQ#
]

+

(

1

a
−

1

a + b

)

QπP# +

(

1

b
−

1

a + b

)

PπQ#.

Moreover,

(P − Q)# = (P − Q)(P# − Q#)2.

Proof. Let r be the rank of P . Since P is group invertible, there are nonsingular

matrices U ∈ C
n×n and A ∈ C

r×r such that

(2.1) P = U(A ⊕ 0)U−1.

Let us write

(2.2) Q = U

[

Q1 Q2

Q3 Q4

]

U−1, QQ# = U

[

X1 X2

X3 X4

]

U−1, Q1,X1 ∈ C
r×r.

Since

PQQ# = U

[

AX1 AX2

0 0

]

U−1 and QPP# = U

[

Q1 0

Q3 0

]

U−1,
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from the hypothesis and the nonsingularity of A, we get

(2.3) X2 = 0, Q3 = 0, AX1 = Q1.

Since

(2.4) Q = U

[

Q1 Q2

0 Q4

]

U−1,

by applying Theorem 2.2, we have that Q1 and Q4 are group invertible and

(2.5) Q# = U

[

Q
#
1 M

0 Q
#
4

]

U−1,

where M is some matrix in C
r×(n−r) whose explicit form will be unnecessary. Using

(2.4), (2.5), and the representation of QQ# in (2.2), we get

(2.6) X1 = Q1Q
#
1 , X3 = 0, X4 = Q4Q

#
4 .

Using the representation of QQ# in (2.2), the first equality of (2.3), and (2.6) we get

(2.7) QQ# = U

[

Q1Q
#
1 0

0 Q4Q
#
4

]

U−1.

Using the equalities Q = Q(QQ#) = (QQ#)Q and the representations of Q and QQ#

written in (2.4) and (2.7), respectively, we get

Q2 = Q2Q4Q
#
4 = Q1Q

#
1 Q2.

Let x and y be the rank of Q1 and Q4, respectively. Since Q1 and Q4 are group

invertible matrices, there exist nonsingular matrices W ∈ C
r×r, B1 ∈ C

x×x, V ∈

C
(n−r)×(n−r), and B2 ∈ C

y×y such that

(2.8) Q1 = W (B1 ⊕ 0)W−1, Q4 = V (B2 ⊕ 0)V −1.

Let us write Q2 ∈ C
r×(n−r) as follows:

(2.9) Q2 = W

[

B3 B4

B5 B6

]

V −1, B3 ∈ C
x×y.

From Q2 = Q1Q
#
1 Q2, (2.8), and (2.9) we get B5 = 0 and B6 = 0. Using Q2 =

Q2Q4Q
#
4 , (2.8), and (2.9) leads to B4 = 0. Hence,

(2.10) Q2 = W

[

B3 0

0 0

]

V −1.
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Now, let us write A as follows

(2.11) A = W

[

A1 A2

A3 A4

]

W−1, A1 ∈ C
x×x.

From the last equality of (2.3), the first one of (2.6), the representation of Q1 in (2.8)

and the representation of A in (2.11) we get

(2.12) A1 = B1, A3 = 0.

The representation (2.11), A3 = 0, and the nonsingularity of A yield that A1 and A4

are nonsingular (in fact, we have previously obtained A1 = B1, which is another way

to prove the nonsingularity of A1) and

A−1 = W

[

A−1
1 −A−1

1 A2A
−1
4

0 A−1
4

]

W−1.

Let us define the nonsingular matrix Z = U(W ⊕V ). From (2.1) and (2.4), we obtain

P = Z

[

W−1AW 0

0 0

]

Z−1, Q = Z

[

W−1Q1W W−1Q2V

0 V −1Q4V

]

Z−1.

Now we use (2.11), (2.12), (2.8), and (2.10):

(2.13) P = Z









B1 A2 0 0

0 A4 0 0

0 0 0 0

0 0 0 0









Z−1, Q = Z









B1 0 B3 0

0 0 0 0

0 0 B2 0

0 0 0 0









Z−1,

and thus

aP + bQ = Z









(a + b)B1 aA2 bB3 0

0 aA4 0 0

0 0 bB2 0

0 0 0 0









Z−1.

As is easy to see from the definition of group inverse and the representations given in

(2.13)

(2.14) P# = Z









B−1
1 −B−1

1 A2A
−1
4 0 0

0 A−1
4 0 0

0 0 0 0

0 0 0 0









Z−1,

and

(2.15) Q# = Z









B−1
1 0 −B−1

1 B3B
−1
2 0

0 0 0 0

0 0 B−1
2 0

0 0 0 0









Z−1.
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Moreover, a representation for PP# and QQ# will be useful. From (2.1) and the

definition of Z we get

PP# = U(Ir ⊕ 0)U−1 = Z(W−1 ⊕ V −1)(Ir ⊕ 0)(W ⊕ V )Z−1 = Z(Ir ⊕ 0)Z−1.

Hence,

(2.16) PP# = Z(Ix ⊕ Ir−x ⊕ 0 ⊕ 0)Z−1.

From (2.7) and (2.8) we obtain

(2.17) QQ# = U(Q1Q
#
1 ⊕ Q4Q

#
4 )U−1 = Z(Ix ⊕ 0 ⊕ Iy ⊕ 0)Z−1.

Assume that a + b 6= 0. It is not hard to see that the matrix

X = Z









(a + b)−1B−1
1 −(a + b)−1B−1

1 A2A
−1
4 −(a + b)−1B−1

1 B3B
−1
2 0

0 a−1A−1
4 0 0

0 0 b−1B−1
2 0

0 0 0 0









Z−1

satisfies (aP + bQ)X = X(aP + bQ), (aP + bQ)X(aP + bQ) = aP + bQ, and X(aP +

bQ)X = X. Therefore, aP + bQ is group invertible and (aP + bQ)# = X. We shall

express X in terms of expressions containing matrices P and Q. To this end, let us

observe that

X =
1

a + b
Z









B−1
1 −B−1

1 A2A
−1
4 −B−1

1 B3B
−1
2 0

0 0 0 0

0 0 0 0

0 0 0 0









Z−1+

+
1

a
Z









0 0 0 0

0 A−1
4 0 0

0 0 0 0

0 0 0 0









Z−1 +
1

b
Z









0 0 0 0

0 0 0 0

0 0 B−1
2 0

0 0 0 0









Z−1.

We compute QπP# and PπQ#. By using (2.14) and (2.17) we get

QπP# = Z









0 0 0 0

0 Ir−x 0 0

0 0 0 0

0 0 0 In−r−y

















B−1
1 −B−1

1 A2B
−1
4 0 0

0 A−1
4 0 0

0 0 0 0

0 0 0 0









Z−1

= Z









0 0 0 0

0 A−1
4 0 0

0 0 0 0

0 0 0 0









Z−1.(2.18)
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By using (2.15) and (2.16) we obtain

PπQ# = Z









0 0 0 0

0 0 0 0

0 0 Iy 0

0 0 0 In−r−y

















B−1
1 0 −B−1

1 B3B
−1
2 0

0 0 0 0

0 0 B−1
2 0

0 0 0 0









Z−1

= Z









0 0 0 0

0 0 0 0

0 0 B−1
2 0

0 0 0 0









Z−1.(2.19)

Now, we shall compute P#QQ#:

P#QQ# = Z









B−1
1 −B−1

1 A2B
−1
4 0 0

0 A−1
4 0 0

0 0 0 0

0 0 0 0

















Ix 0 0 0

0 0 0 0

0 0 Iy 0

0 0 0 0









Z−1

= Z









B−1
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









Z−1,(2.20)

parenthetically, we can prove that P#QQ# = Q#PP#. Therefore,

X =
1

a + b

[

P# + Q# − P#QQ#
]

+

(

1

a
−

1

a + b

)

QπP# +

(

1

b
−

1

a + b

)

PπQ#.

On the other hand, we will prove that P −Q is group invertible and we will find

an expression for (P − Q)#. From (2.13) we have

P − Q = Z









0 A2 −B3 0

0 A4 0 0

0 0 −B2 0

0 0 0 0









Z−1.

It is not hard to see that

Y = Z









0 A2(A
−1
4 )2 −B3(B

−1
2 )2 0

0 A−1
4 0 0

0 0 −B−1
2 0

0 0 0 0









Z−1.

satisfies (P − Q)Y = Y (P − Q), (P − Q)Y (P − Q) = P − Q, and Y (P − Q)Y = Y .

Therefore, P −Q is group invertible and (P −Q)# = Y . We shall express Y in terms

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 490-503, May 2011

http://math.technion.ac.il/iic/ela



ELA

On the Group Inverse of Linear Combinations of Two Group Invertible Matrices 497

of expressions containing matrices P and Q. We compute P# −Q#. By using (2.14)

and (2.15) we get

P# − Q# = Z









0 −B−1
1 A2A

−1
4 B−1

1 B3B
−1
2 0

0 A−1
4 0 0

0 0 −B−1
2 0

0 0 0 0









Z−1.(2.21)

Now, by using (2.21) we compute

(P# − Q#)2 = Z









0 −B−1
1 A2(A

−1
4 )2 −B−1

1 B3(B
−1
2 )2 0

0 (A−1
4 )2 0 0

0 0 (B−1
2 )2 0

0 0 0 0









Z−1.

So, we have

(P − Q)(P# − Q#)2 = Z









0 A2(A
−1
4 )2 −B3(B

−1
2 )2 0

0 A−1
4 0 0

0 0 −B−1
2 0

0 0 0 0









Z−1 = Y.

This finishes the proof.

Theorem 2.4. Let P,Q ∈ C
n×n be two group invertible matrices and let a, b be

two nonzero complex numbers. If QQ#P = PP#Q, then aP + bQ is group invertible.

If a + b 6= 0, then

(aP + bQ)# =

1

a + b

[

P# + Q# − Q#QP#
]

+

(

1

a
−

1

a + b

)

P#Qπ +

(

1

b
−

1

a + b

)

Q#Pπ.

Moreover,

(P − Q)# = (P# − Q#)2(P − Q).

Proof. It is enough to apply Theorem 2.3 for the linear combination aP ∗ + bQ∗

and using that a matrix C has group inverse if and only if C∗ is group invertible and

in this case one has (C∗)# = (C#)∗.

Corollary 2.5. Let P,Q ∈ C
n×n be two group invertible matrices and let a, b

be two nonzero complex numbers. If PQQ# = QPP# and QQ#P = PP#Q, then

aP + bQ and PQ are group invertible. If a + b 6= 0, then

(aP + bQ)# =
1

a + b
P#QQ# +

1

a
QπP# +

1

b
PπQ#.
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Moreover,

(P − Q)# = P# − Q#

and

(PQ)# = (P#QQ#)2 = (QP )#.

Proof. Since PQQ# = QPP#, by following the proof of Theorem 2.3 we get that

P and Q can be written as in (2.13), PP# as in (2.16), and QQ# as in (2.17). From

QQ#P = PP#Q we get A2 = 0 and B3 = 0. Hence,

P = Z(B1 ⊕ A4 ⊕ 0 ⊕ 0)Z−1, Q = Z(B1 ⊕ 0 ⊕ B2 ⊕ 0)Z−1.

Therefore,

aP + bQ = Z ((a + b)B1 ⊕ aA4 ⊕ bB2 ⊕ 0) Z−1, PQ = Z(B2
1 ⊕ 0 ⊕ 0 ⊕ 0)Z−1,

and thus aP + bQ and PQ are group invertible and

(aP + bQ)# = Z

(

(a + b)#B−1
1 ⊕

1

a
A−1

4 ⊕
1

b
B−1

2 ⊕ 0

)

Z−1,

(PQ)# = Z(B−2
1 ⊕ 0 ⊕ 0 ⊕ 0)Z−1,

where we have denoted λ# = λ−1 for λ ∈ C \ {0} and 0# = 0. Now, the proof should

be easy to be finished by taking into account (2.18), (2.19), and (2.20).

If P and Q are idempotent matrices, then P and Q are group invertible, P# = P

and Q# = Q. By using Theorem 2.3 we recover the following result:

Corollary 2.6. [6, Theorem 3.4] Let P,Q ∈ C
n×n be two idempotent matrices

such that PQ = QP , then

(P + Q)# = P + Q −
3

2
PQ, (P − Q)# = P − Q.

If P and Q are tripotent matrices, then P and Q are group invertible, P# = P

and Q# = Q. By using Theorem 2.3 we get the following corollary.

Corollary 2.7. Let P,Q ∈ C
n×n be two tripotent matrices such that PQ2 =

QP 2, then

(P + Q)# = P + Q −
1

2
PQ2 −

1

2
P 2Q −

1

2
Q2P
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and

(P − Q)# = (P − Q)3 = (P − Q) + (Q2P − P 2Q) + (QPQ − PQP ).

By using Theorem 2.4, we get the following corollary.

Corollary 2.8. Let P,Q ∈ C
n×n be two tripotent matrices such that P 2Q =

Q2P , then

(P + Q)# = P + Q −
1

2
PQ2 −

1

2
P 2Q −

1

2
QP 2,

and

(P − Q)# = (P − Q)3 = (P − Q) + (QP 2 − PQ2) + (QPQ − PQP ).

When P,Q ∈ C
n×n are idempotents, the condition QP = P has been studied

many times and it appears in many different fields of applied mathematics (since

it can be proved that QP = P if and only if the range of P is a subspace of the

range of Q). In [6, Corollary 3.2] the authors gave a formula for (p + q)# when p

and q are idempotents in a complex Banach algebra with unity. Here we remove the

idempotency condition working in the setting of square complex matrices.

Theorem 2.9. Let P,Q ∈ C
n×n be group invertible. If QP#P = P and a, b ∈

C \ {0} satisfy a + b 6= 0, then aP + bQ is group invertible and

(aP+bQ)# =
a

(a + b)2
P#+

b

(a + b)2
Q#+

a2 + 2ab

b(a + b)2
PπQ#Pπ−

a

(a + b)2
P#(Q−P )Q#.

Proof. Let r be the rank of P . By Theorem 2.1, there are nonsingular matrices

U ∈ C
n×n and A ∈ C

r×r such that P = U(A⊕ 0)U−1, and therefore, P# = U(A−1 ⊕

0)U−1 and Pπ = U(0 ⊕ In−r)U
−1. Let us write

Q = U

[

Q1 Q2

Q3 Q4

]

U−1.

From QPP# = P we get Q1 = A and Q3 = 0. Thus, we can apply Theorem 2.2 for

the group invertible matrix Q obtaining that Q4 is group invertible, and

Q# = U

[

A−1 X

0 Q
#
4

]

U−1, X = A−2Q2Q
π

4 − A−1Q2Q
#
4 .
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Since

aP + bQ = U

[

(a + b)A bQ2

0 bQ4

]

U−1,

by using again Theorem 2.2, we get the existence of (aP + bQ)# and

(aP + bQ)# = U

[

(a + b)−1A−1 Y

0 b−1Q
#
4

]

U−1,

where

Y = (a + b)−2A−2(bQ2)(bQ4)
π − (a + b)−1A−1(bQ2)(bQ4)

#

= b(a + b)−2A−2Q2Q
π

4 − (a + b)−1A−1Q2Q
#
4 .

Now,

U−1

[

(a + b)−1A−1 Y

0 b−1Q
#
4

]

U =
1

a + b
P# +

1

b
PπQ#Pπ + U−1

[

0 Y

0 0

]

U.

But,

[

0 Y

0 0

]

=
b

(a + b)2

[

0 A−2Q2Q
π

4

0 0

]

−
1

a + b

[

0 A−1Q2Q
#
4

0 0

]

=
b

(a + b)2

[

A−1 A−2Q2Q
π

4 − A−1Q2Q
#
4

0 Q
#
4

]

−
b

(a + b)2

[

A−1 0

0 0

]

−
b

(a + b)2

[

0 0

0 Q
#
4

]

+

(

b

(a + b)2
−

1

a + b

)

[

0 A−1Q2Q
#
4

0 0

]

= U

{

b

(a + b)2
(

Q# − P# − PπQ#Pπ
)

+

(

b

(a + b)2
−

1

a + b

)

P#(Q − P )Q#

}

U−1.

After doing a little algebra we have

U−1

[

(a + b)−1A−1 Y

0 b−1Q
#
4

]

U

=
a

(a + b)2
P# +

b

(a + b)2
Q# +

a2 + 2ab

b(a + b)2
PπQ#Pπ −

a

(a + b)2
P#(Q − P )Q#.

This proves the theorem.
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3. Group invertibility of a linear combination of two commuting group

invertible matrices. The following results are concerned with the group invertibility

of a linear combination of two commuting group invertible matrices. Theorem 3.1

below, which is important on its own, permits us to deal with two commuting group

invertible matrices in a very simple form. In particular, Theorem 3.1 will allow us to

manage linear combinations of two commuting group invertible matrices.

Theorem 3.1. Let P,Q ∈ C
n×n be two group invertible matrices such that

PQ = QP , then there are nonsingular matrices Z ∈ C
n×n, A1, B1 ∈ C

x×x, A2 ∈

C
(r−x)×(r−x), and B2 ∈ C

y×y such that

(3.1) P = Z(A1 ⊕A2 ⊕ 0⊕ 0)Z−1, Q = Z(B1 ⊕ 0⊕B2 ⊕ 0)Z−1, A1B1 = B1A1.

Proof. Let r be the rank of P . Since P is group invertible, by applying Lemma 2.1,

there are nonsingular matrices U ∈ C
n×n and A ∈ C

r×r such that P = U(A⊕0)U−1.

Let us write

Q = U

[

Q1 Q2

Q3 Q4

]

U−1.

Since

QP = U

[

Q1A 0

Q3A 0

]

U−1, PQ = U

[

AQ1 AQ2

0 0

]

U−1, PQ = QP,

from the nonsingularity of A, we get Q1A = AQ1, Q2 = 0, and Q3 = 0. Since

Q = U(Q1 ⊕ Q4)U
−1, by applying Theorem 2.2 we get that Q1 and Q4 are group

invertible. Let x and y be the rank of Q1 and Q4, respectively. By Theorem 2.1, there

exist nonsingular matrices B1 ∈ C
x×x, W ∈ C

r×r, B2 ∈ C
y×y, V ∈ C

(n−r)×(n−r) such

that Q1 = W (B1 ⊕ 0)W−1 and Q4 = V (B2 ⊕ 0)V −1. If we denote Z = U(W ⊕ V ),

we have Q = Z(B1 ⊕ 0 ⊕ B2 ⊕ 0)Z−1 and

P = U(A ⊕ 0)U−1

= U

[

W 0

0 V

] [

W−1AW 0

0 0

] [

W−1 0

0 V −1

]

U−1

= Z(W−1AW ⊕ 0)Z−1.

Let us write

W−1AW =

[

X1 X2

X3 X4

]

, X1 ∈ C
x×x.

From AQ1 = Q1A we get
[

X1 X2

X3 X4

] [

B1 0

0 0

]

=

[

B1 0

0 0

] [

X1 X2

X3 X4

]

,
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which, having in mind the nonsingularity of B1, entails X1B1 = B1X1, X2 = 0, and

X3 = 0. In order to prove the theorem, it is enough to prove that X1 and X4 are

nonsingular; but this follows from W−1AW = X1⊕X4 and the nonsingularity of A.

Corollary 3.2. Let P,Q ∈ C
n×n be two group invertible matrices such that

PQ = QP . Then the algebra generated by P,Q, P#, and Q# is commutative.

Proof. It follows from Theorem 3.1.

Corollary 3.3. Let P,Q ∈ C
n×n be two group invertible matrices such that

PQ = QP and a, b ∈ C \ {0}. Then aP + bQ is group invertible if and only if

aPQQ# + bQPP# is group invertible. In this situation one has

(aP + bQ)# = (aPQQ# + bQPP#)# +
1

a
P#Qπ +

1

b
Q#Pπ.

Proof. By using the representation (3.1) we have

aP + bQ = Z((aA1 + bB1) ⊕ aA2 ⊕ bB2 ⊕ 0)Z−1

and

aPQQ# + bQPP# = Z(aA1 + bB1 ⊕ 0 ⊕ 0 ⊕ 0)Z−1.

Since A1 and B1 are nonsingular, we have that aP + bQ is group invertible if and

only if aPQQ# + bQPP# is group invertible; and in this situation we have

(aP + bQ)#

= Z((aA1 + bB1)
# ⊕ 0 ⊕ 0 ⊕ 0)Z−1 +

1

a
Z(0 ⊕ A−1

2 ⊕ 0 ⊕ 0)Z−1 +

+
1

b
Z(0 ⊕ 0 ⊕ B−1

2 ⊕ 0)Z−1

= (aPQQ# + bQPP#)# +
1

a
P#Qπ +

1

b
Q#Pπ.

The proof is completed.
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[10] D.S. Djordjević and Y. Wei, Additive results for the generalized Drazin inverse. J. Aust. Math.

Soc., 73:115–125, 2002.

[11] R.E. Hartwig, G.R. Wang, and Y. Wei. Some additive results on Drazin inverse. Linear Algebra

Appl., 322:207–217, 2001.

[12] X. Liu, L. Wu, and Y. Yu. The group inverse of the combinations of two idempotent matrices.

Linear Multilinear Algebra, 59:101–115, 2011.

[13] C.D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, 2000.

[14] Y. Wei and C.Y. Deng. A note on additive results for the Drazin inverse. Linear Multilinear

Algebra, to appear, 2011. DOI: 10.1080/03081087.2010.496110.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 490-503, May 2011

http://math.technion.ac.il/iic/ela


