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Abstract. A class of matrix valued analytic functions of two non-commuting matrices is con-

sidered. A sharp norm estimate is established. Applications to matrix and differential equations are

also discussed.
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1. Introduction and statement of the main result. In the book [5], I.M.

Gel’fand and G.E. Shilov have established an estimate for the norm of a regular

matrix-valued function in connection with their investigations of partial differential

equations. However, that estimate is not sharp; it is not attained for any matrix. The

problem of obtaining a sharp estimate for the norm of a matrix-valued function has

been repeatedly discussed in the literature, cf. [2]. In the paper [6] (see also [7]), the

author has derived an estimate for regular matrix-valued functions, which is attained

in the case of normal matrices. In [8], the results of the paper [6] were generalized

to functions of two commuting matrices. In the present paper, we establish a sharp

estimate for the norm of a matrix-valued function of two non-commuting matrices.

It should be noted that functions of many operators were investigated by many

mathematicians, (cf. [1, 15, 16] and references therein) however the norm estimates

were not considered, but as it is well-known, matrix valued functions give us represen-

tations of solutions of various differential, difference equations and matrix equations.

This fact allows us to investigate stability, well-posedness and perturbations of these

equations by norm estimates for matrix valued functions, cf. [2].

Let C
n be the Euclidean space with scalar product (·, ·), the Euclidean norm

‖ · ‖ =
√

(·, ·) and the unit operator I. Unless otherwise stated A, K and Ã will be

n × n matrices. ‖A‖ = suph∈Cn ‖Ah‖/‖h‖ is the spectral (operator) norm of A. By

σ(A) and Rz(A) = (A − zI)−1 (z 6∈ σ(A)) we denote the spectrum and resolvent of

A, respectively.
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Let ΩA and ΩÃ be open simple connected supersets of σ(A) and σ(Ã), respec-

tively, and f be a scalar function analytic on ΩA × ΩÃ. We define the matrix valued

function

F (f,A,K, Ã) := − 1

4π2

∫

CÃ

∫

CA

f(z, w)Rz(A)KRw(Ã)dw dz, (1.1)

where CA ⊂ ΩA, CÃ ⊂ ΩÃ are closed contour surrounding σ(A) and σ(Ã), respec-

tively. Such functions play an essential role in the theory of matrix equations. More

specifically, consider the matrix equation

m1
∑

j=0

m2
∑

k=0

cjkAjXÃk = K, (1.2)

where X should be found and cjk are complex numbers. Put

p(z, w) =

m1
∑

j=0

m2
∑

k=0

cjkzjw̃k.

Then by Theorem 3.1 from [2, Chapter 1] a unique solution of equation (1.2) is given

by the formula

X = F

(

1

p(z, w)
, A,K, Ã

)

(1.3)

provided λk 6= λ̃j (j, k = 1, . . . , n). Throughout the rest of this paper λk and λ̃j are

the eigenvalues counted with their multiplicities of A and Ã, respectively. Equations

of the type (1.2) naturally arose in various applications, cf. [2, 14, 12]. The Lyapunov

equation A∗X + XA = K, cf. [2], and the Lyapunov type equation

X + A∗XA = K (1.4)

which play an important role in the theory of difference equations, cf. [9] are the

examples of equation (1.2). These equations recently attracted the attention of many

mathematicians. Mainly, numerical methods for the solutions of matrix equations

were developed, cf. [11, 13, 17]. In the paper [3], reflexive and anti-reflexive solutions

of a linear matrix equation were explored. No estimates were established for solutions

of these equations. Furthermore, suppose that

T (t) := − 1

4π2

∫

CÃ

∫

CA

et(z+w)Rz(A)KRw(Ã)dw dz. (1.5)

Take into account that zRz(A) = ARz(A) − I. Then simple calculations show that

T ′(t) = − 1

4π2

∫

CÃ

∫

CA

(z + w)et(z+w)Rz(A)KRw(Ã)dw dz =
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− 1

4π2

∫

CÃ

∫

CA

et(z+w)[ARz(A)KRw(Ã) + Rz(A)KRw(Ã)Ã]dw dz.

So

T ′(t) = AT (t) + T (t)Ã. (1.6)

Such equations arise in numerous applications, in particular in the theory of vector

differential equations, cf. [10, p. 509], [2, Section VI.4, equation (4.15) and Section

VI.2], [4, Section XV.10]. Additional examples are given in Section 3.

The following quantity plays a key role in this article:

g(A) =

[

N2
2 (A) −

n
∑

k=1

|λk|2
]1/2

,

where N2(A) = (Trace AA∗)1/2 is the Frobenius (Hilbert-Schmidt norm) of A. Here,

A∗ is adjoint to A. The following relations are checked in [7, Section 2.1]:

g2(A) ≤ N2
2 (A) − |Trace A2| and g2(A) ≤ N2

2 (A − A∗)

2
= 2N2

2 (AI), (1.7)

where AI = (A − A∗)/2i. If A is a normal matrix: AA∗ = A∗A, then g(A) = 0.

By co(A) we denote the closed convex hull of σ(A). Let f(z, w) be regular on a

neighborhood of co(A) × co(Ã). Put

f (j,k)(z, w) =
∂j+kf(z, w)

∂zj∂wk
,

and let the numbers ηjk = ηjk(f,A, Ã) be given by

η00 = sup
z∈σ(A),w∈σ(Ã)

|f(z, w)|; ηjk =
1

(j!k!)3/2
sup

z∈co(A),w∈co(Ã)

|f (j,k)(z, w)|;

η0j :=
1

(j!)3/2
sup

z∈σ(A),w∈co(Ã)

∣

∣

∣

∣

∂jf(z, w)

∂wj

∣

∣

∣

∣

,

and

ηj0 :=
1

(j!)3/2
sup

z∈co(A),w∈σ(Ã)

∣

∣

∣

∣

∂jf(z, w)

∂zj

∣

∣

∣

∣

(j, k ≥ 1).

Now we are in a position to formulate the main result of the paper.
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Theorem 1.1. Let both A and Ã be non-normal matrices and f(z, w) be regular

on a neighborhood of co(A) × co(Ã). Then

‖F (f,A,K, Ã)‖ ≤ N2(K)

n−1
∑

j,k=0

ηjkgj(A)gk(Ã).

If A is normal, Ã is non-normal and f(z, w) is regular on a neighborhood of σ(A) ×
co(Ã), then

‖F (f,A,K, Ã)‖ ≤ N2(K)

n−1
∑

j=0

η0jg
j(Ã).

If Ã is normal, A is non-normal and f(z, w) is regular on a neighborhood of σ(Ã) ×
co(A), then

‖F (f,A,K, Ã)‖ ≤ N2(K)

n−1
∑

j=0

ηj0g
j(A).

If both A and Ã are normal and f(z, w) is regular on a neighborhood of σ(A)×σ(Ã),

then

‖F (f,A,K, Ã)‖ ≤ N2(K)max
j,k

|f(λj , λ̃k)|.

2. Proof of Theorem 1.1. We need the following result proved in [8].

Lemma 2.1. Let Ω and Ω̃ be the closed convex hulls of the complex points

x0, x1, . . . , xn and y0, y1, . . . , ym, respectively, and let a scalar-valued function f(z, w)

be regular on a neighborhood of Ω× Ω̃. Additionally, let L and L̃ be the boundaries of

Ω and Ω̃, respectively. Then with the notation

Y (x0, . . . , xn; y0, . . . , ym) = − 1

4π2

∫

L

∫

L̃

f(z, w)dz dw

(z − x0) · · · (z − xn)(w − y0) · · · (w − ym)
,

we have

|Y (x0, . . . , xn; y0, . . . , ym)| ≤ 1

n!m!
sup

z∈Ω,w∈Ω̃

|f (n,m)(z, w)|.

Let {ek} and {ẽk} be the orthogonal normal bases of the triangular representation

(Schur’s bases) to A and Ã, respectively. So,

Aek =

k
∑

j=1

ajkej .
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We can write

A = DA + VA, Ã = DÃ + VÃ, (2.1)

where DA,DÃ are the diagonal parts, VA and VÃ are the nilpotent parts of A and Ã,

respectively. Namely,

DAek = λkek; VAek =

k−1
∑

j=1

ajkej .

Similarly, DÃ and VÃ are defined. Furthermore, let |VA| be the operator whose entries

in {ek} are the absolute values of the entries of a matrix VA. That is, (|VA|ej , ek) =

|(VAej , ek)| and

|VA| =

n
∑

k=1

k−1
∑

j=1

|ajk|(·, ek)ej .

Similarly, |VÃ| is defined with respect to {ẽk}. In addition, |K| is defined by

|K|ẽj =

n
∑

k=1

|(Kẽj , ek)|ek.

Lemma 2.2. Under the hypothesis of Theorem 1.1, the inequality

‖F (f,A,K, Ã)‖ ≤ ‖|K|‖
n−1
∑

j,k=1

√

k!j!ηjk‖|VÃ|j‖‖ |VÃ|k‖

is true, where VA and VÃ are the nilpotent parts of A and Ã, respectively.

Proof. It is not hard to see that the representation (2.1) implies the equality

(A − Iλ)−1 = (DA + VA − λI)−1 = (I + Rλ(DA)VA)−1Rλ(DA)

for all regular λ. According to Lemma 1.7.1 from [7] Rλ(DA)VA is a nilpotent opera-

tor, because VA and Rλ(DA) the same invariant subspaces. Hence, (Rλ(DA)VA)n = 0.

Therefore, from (1.1) it follows

F (f,A,K, Ã) =
n−1
∑

j,k=0

Mjk, (2.2)

where

Mjk =
(−1)k+j

4π2

∫

CÃ

∫

CA

f(z, w)(Rz(DA)VA)jRz(DA)K(Rw(DÃ)VÃ)kRw(DÃ)dz dw.
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Since DA is a diagonal matrix with respect to the Schur basis {ek} and its diagonal

entries are the eigenvalues of A, we obtain

Rz(DA) =

n
∑

j=1

Qj

λj(A) − z
,

where Qk = (·, ek)ek. Similarly,

Rz(DÃ) =

n
∑

j=1

Q̃j

λj(Ã) − z
,

where Q̃k = (·, ẽk)ẽk. Taking into account that QsVAQm = 0, Q̃sVÃQ̃m = 0 (s ≥ m),

we get

Mjk =
∑

1≤s1<s2<···<sj+1≤n

Qs1
VAQs2

VA · · ·VAQsj+1
K×

×
∑

1≤m1<m2<···<mk+1≤n

Q̃m1
VÃQ̃m2

VÃ · · ·VÃQ̃mk+1
Î(s1, . . . , sj+1,m1, . . . ,mk+1),

where 0 ≤ j, k ≤ n − 1 and

Î(s1, . . . , sj+1,m1, . . . mk+1) =

(−1)k+j

4π2

∫

CA

∫

CÃ

f(z, w)dz dw

(λs1
(A) − z) · · · (λsk+1

(A) − z)(λm1
(Ã) − w) · · · (λmk+1

(Ã) − w)
.

Hence, with Mjk = M , we have

|(Mẽm, es)| = |
∑

s<s2<···<sj+1≤n

∑

1≤m1<m2<···<m

Î(s, . . . , sj+1,m1, . . . ,m)×

×(QsVAQs2
VA · · ·VAQsj+1

KQ̃m1
VÃQ̃m2

VÃ · · ·VÃQ̃mẽm, es)| ≤ Jjk

∑

s<s2<···<sj+1≤n

×
∑

1≤m1<m2<···<m

(Qs|VA|Qs2
|VA| · · ·Qsj+1

|K|Q̃m1
|VÃ|Q̃m2

|VÃ| · · · Q̃mẽm, es),

where

Jjk := max
1≤s1<···<sj+1≤n;1≤m1<···<mk+1≤n

|Î(s1, . . . , sj+1,m1, . . . mk+1)|.
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Thus |(Mẽm, es)| ≤ (T ẽm, es), where

T = Jjk

∑

s1<s2<···<sj+1≤n

∑

1≤m1<m2<···<mk+1≤n

Qs1
|VA|Qs2

|VA| · · · |VA|Qsj+1
|K|×

×Q̃m1
|VÃ|Q̃m2

|VÃ| · · · |VÃ|Q̃mk+1
. (2.3)

Take into account that

Mx =
n
∑

k=1

(x, ẽk)Mẽk =
n
∑

j=1

n
∑

k=1

(x, ẽk)(Mẽk, ej)ej (x ∈ C
n).

So

‖Mx‖2 =

n
∑

j=1

∣

∣

∣

∣

∣

n
∑

k=1

(x, ẽk)(Mẽk, ej)

∣

∣

∣

∣

∣

2

≤

n
∑

j=1

(

n
∑

k=1

(x, ẽk)(T ẽk, ej)

)2

.

Since ‖x‖ = ‖y‖ for

y =
n
∑

k=1

|(x, ẽk)|ẽk,

we obtain ‖M‖ ≤ ‖T‖. But

∑

1≤s1<s2<···<sj+1≤n

Qs1
|VA|Qs2

|VA| · · · |VA|Qsj+1
= |VA|j

and

∑

1≤m1<m2<···<mk+1≤n

Q̃m1
|VÃ|Q̃m2

|VÃ| · · · |VÃ|Qmk+1
= |VÃ|k.

So by (2.3)

‖Mjk‖ ≤ ‖T‖ ≤ Jjk‖ |VA|j |K||VÃ|k ‖ (j, k ≥ 0). (2.4)

Due to Lemma 2.1

Jjk ≤ sup
z∈co(A),w∈co(Ã)

|f (j,k)(z, w)|
j!k!

=
√

j!k!ηjk (j, k ≥ 1).
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Thus,

‖Mjk‖ ≤
√

j!k!ηjk‖ |VA|j |K||VÃ|k ‖ (j, k ≥ 0). (2.5)

This inequality and (2.2) imply the required result.

Proof of Theorem 1.1. Theorem 2.5.1 from [7] implies

‖W k ‖ ≤ 1√
k!

Nk
2 (W ) (2.6)

for any n × n nilpotent matrix W . Take into account that N2(|VA|) = N2(VA).

Moreover, by Lemma 2.3.2 from [7], N2(VA) = g(A). Thus,

‖ |VA|k ‖ ≤ 1√
k!

gk(A) (k = 1, . . . , n − 1).

The similar inequality holds for VÃ. In addition,

N2
2 (|K|) =

n
∑

j=1

‖|K|ẽj‖2 =
n
∑

j=1

n
∑

k=1

|(Kẽj , ek)|2 =
n
∑

j=1

n
∑

k=1

‖Kẽj‖2 = N2
2 (K).

Now the previous lemma yields the required result.

3. Examples. Consider the equation

AX − XÃ = K (3.1)

assuming that

δ := dist (co(A), co(Ã)) > 0.

Take f(z, w) = 1
z−w . Then

ηjk ≤ (k + j)!

δj+k+1(k!j!)3/2
(j, k = 0, 1, . . . , n − 1).

Hence, by Theorem 1.1 and (1.3) a solution of (3.1) satisfies the inequality

‖X‖ ≤ N2(K)

n−1
∑

j,k=0

(k + j)!

δj+k+1(k!j!)3/2
gj(A)gk(Ã).

Finally, consider the function

S(x) := − 1

4π2

∫

CÃ

∫

CA

sin (x(z + w))Rz(A)KRw(Ã)dw dz (x ∈ R).
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We have

S′′(x) =
1

4π2

∫

CÃ

∫

CA

(z + w)2sin (x(z + w))Rz(A)KRw(Ã)dw dz.

But zRz(A) = ARz(A) − I and therefore,

z2Rz(A) = zARz(A) − zI = A(ARz(A) − I) − zI = A2Rz(A) − I − zI.

So, S(x) is a solution of the equation

S′′ = A2S + ASÃ + SÃ2.
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