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PAIRS OF MATRICES, ONE OF WHICH COMMUTES

WITH THEIR COMMUTATOR∗

GERALD BOURGEOIS†

Abstract. Let A, B be n × n complex matrices such that C = AB − BA and A commute.

For n = 2, we prove that A, B are simultaneously triangularizable. For n ≥ 3, we give an example

of matrices A, B such that the pair (A, B) does not have property L of Motzkin-Taussky, and such

that B and C are not simultaneously triangularizable. Finally, we estimate the complexity of the

Alp’in-Koreshkov’s algorithm that checks whether two matrices are simultaneously triangularizable.

Practically, one cannot test a pair of numerical matrices of dimension greater than five.
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1. Introduction.

Definition 1.1. i) We say that the n×n complex matrices A,B quasi-commute

if both A and B commute with AB −BA.

ii) The n × n complex matrices A,B are said to be simultaneously triangularizable

(ST ) if there exists an invertible matrix P such that P−1AP and P−1BP are upper

triangular.

Consider the following standard result.

Theorem 1.2. (Little McCoy’s Theorem [6]) If A and B quasi-commute, then

they are ST .

In this article, we deal with pairs of n × n complex matrices (A,B) such that

only A commutes with AB − BA. If (A,B) is such a pair, then for any complex

numbers λ, µ, (A + λIn, B + µIn) is another one. Then we may assume that A and

B are invertible. In the sequel, we put C = AB − BA. We introduce notation and

definitions that will be used in the paper.

Notation. i) If U is a square matrix, then σ(U) and χU denote the spectrum

and the characteristic polynomial of U .

ii) Denote by In and 0n the identity matrix and the zero matrix of dimension n.
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Definition 1.3. (See [7]) A pair (A,B) of complex n × n matrices is said to

have property L if for a special ordering of the eigenvalues (λi)i≤n, (µi)i≤n of A,B,

the eigenvalues of xA+ yB are (xλi + yµi)i≤n for all values of the complex numbers

x, y.

Remark 1.4. (See [7]) If A,B are ST , then the pair (A,B) has property L but,

except if n = 2, the converse is false.

Several known results are gathered in the following Proposition.

Proposition 1.5. Let A,B be complex n× n matrices. We assume that C and

A commute. Then C is nilpotent and the pair (B,C) has property L. Moreover, if

A,B are invertible, then A−1B−1C,B−1A−1C and B−1C are nilpotent.

Proof. By Jacobson’s Lemma, see [5, Lemma 2], C is nilpotent. According to [3],

one has, for every t ∈ R and for any A,B ∈ Mn(C), etABe−tA = B+ tC+ t2

2!
[A,C]+

t3

3!
[A, [A,C]] + · · · . By an analytic continuation, this equality works also for complex

numbers t. Here, we obtain for every t ∈ C

etABe−tA = B + tC,

and therefore, σ(B+ tC) = σ(B). It follows that the pair (B,C) has property L. Now

we assume that A,B are invertible. We have

A−1CB−1 = CA−1B−1 = ABA−1B−1 − In.

By [9, Theorem 2], ABA−1B−1 − In is nilpotent. Since

σ(A−1B−1C) = σ(CA−1B−1) = {0} and σ(B−1A−1C) = σ(A−1CB−1) = {0},

we conclude that A−1B−1C andB−1A−1C are also nilpotent. By [9, proof of Theorem

1], we obtain that CB−1 is nilpotent (or equivalently B−1C is nilpotent).

2. Positive and negative results. We may wonder whether A and B are ST

or, at least, the pair (A,B) has property L. We have a positive answer in the following

case.

Definition 2.1. A complex matrix A is said to be non-derogatory if for every

λ ∈ σ(A), the number of Jordan blocks of A associated with λ is 1.

Proposition 2.2. If A is a non-derogatory matrix and if AC = CA, then A and

B are ST .

Proof. Necessarily, C is a polynomial in A. According to [2, Theorem 1], A and

B are ST .
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Remark 2.3. i) Note that the set of derogatory matrices is included in the set

NS of non-separable matrices, that is they have at least one multiple eigenvalue. The

set NS is an algebraic variety in Mn(C) of codimension 1. Therefore, it is a null set

in the sense of Lebesgue measure (see [8] for an outline of the proof).

ii) If we fix the matrix A, then the equation A(AB − BA) = (AB − BA)A is linear

in the unknown B. More precisely B ∈ ker(φ) where φ : X → A2X +XA2 − 2AXA.

Hence,

φ = A2 ⊗ I + I ⊗ (AT )2 − 2A⊗AT = ψ2,

where ψ = A ⊗ In − In ⊗ AT . Thus, if σ(A) = (λi)i, then σ(ψ) = (λi − λj)i,j and

σ(φ) = ((λi − λj)
2)i,j . The quantity

i(A) =
dim(ker(ψ2)) − dim(ker(ψ))

n2

indicates the existence of a matrix B such that AB − BA and A commute and such

that A,B are not ST .

Now we prove our main result.

Proposition 2.4. i) If n = 2 and AC = CA, then A and B are ST .

ii) If n ≥ 3, then there exists a pair (A,B) such that

• AC = CA,

• (A,B) does not have property L,

• B and C are not ST .

Proof. i) According to Proposition 2.2, we may assume that A is derogatory, that

is, A is a scalar matrix, which gives the conclusion immediately.

ii) It is sufficient to find such a counterexample (A0, B0) when n = 3. Indeed, if

n > 3, consider the pair (A0

⊕

0n−3, B0

⊕

0n−3).

Now suppose that n = 3 and that A0 is the derogatory matrix A0 =





0 1 0

0 0 0

0 0 0



.

Then ψ is nilpotent and we have the equalities

dim(ker(ψ)) = 5,dim(ker(ψ2)) = 8 and i(A0) =
1

3
.

The associated matrices B are the matrices with a zero entry in position (2, 1). We

choose

B =





0 0 0

0 0 1

1 0 0



 .
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• (A0, B) does not have property L because σ(A0) = {0} and for every pair of complex

numbers (t, x), χtA0+B(x) = x3 − t.

• We observe that Tr(B2C2) = −1. This implies that B and C are not ST .

Remark 2.5. We can prove i) by reducing A to Jordan canonical form and

examining the cases in which A is diagonalizable or not.

Proposition 2.6. For every n ≥ 4, there exists a derogatory matrix A1 such

that A1 and each associated matrix B are ST .

Proof. We take n = 4 and A1 =

[

02 I2

02 02

]

. Note that A1 is in Weyr canonical

form (see [10]) and not in Jordan canonical form. One has

dim(ker(ψ)) = 8,dim(ker(ψ2)) = 12 and i(A1) =
1

4
< i(A0).

The associated matrices B are in the form B =

[

E F

0 G

]

where E,F,G are arbitrary

2×2 complex matrices. Let U, V be 2×2 invertible complex matrices such that U−1EU

and V −1GV are upper triangular. We remark that P−1A1P and P−1BP are upper

triangular where P = diag(U, V ).

3. How to determine whether two matrices are ST . In general, how can

one determine whether two n×n complex matrices are ST or not? McCoy’s Theorem

(see Section 2.4 of [4]) is an available tool, but it does not give a finite verification

procedure.

The following theorem leads to an algorithm to check whether two matrices are

ST .

Theorem 3.1. (Alp’in-Koreshkov, see [1, Theorem 6]) Two n× n complex ma-

trices A and B are ST if and only if for every k ∈ [[1, n2 − 1]], each matrix of the

form U1 · · ·Uk(AB −BA) ( where, for every i, Ui is A or B) has a zero trace.

Remark 3.2. If the entries of A,B are in a subringK of C, then all computations

are performed in K.

Using Theorem 3.1, we must check that 2n2

− 2 matrices have a zero trace. If

A,B are not ST , then the test stops when it finds a matrix with non-zero trace. If

A,B are ST , then the test requires 2n2

matricial multiplications in Mn(C). We can

deduce the following.

Proposition 3.3. The complexity of the computation induced by Theorem 3.1

is equivalent to 2n2

n3 complex multiplications.
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Experiments. We used a cluster provided with 16 GB of RAM.

For the following 4 × 4 matrices, that are ST ,

A =









308831848 3514720569 −2393248600 −933664618

1653458482 −2646203334 1951033145 1428485078

185766230 −909262575 2221156990 78496990

1349546744 −2237843658 4279424410 96552841









,

B =









−277500618 34522275 180434913 −933966414

2348943678 1523928630 −700130673 1316048154

−97303050 −203818485 577843890 179268180

394577946 431913075 −336185991 967683108









,

the duration of the test was less than one second and the used memory was about 90

MB.

In dimension five, there is a big storage at the end of the penultimate step.

Precisely, at this stage, we store 223 matrices of dimension 5. We considered a pair of

numerical 5× 5 matrices, that were ST and such that their entries were integers with

absolute value at most 1000. Then the duration of the test was 2 minutes 26 seconds.

In dimension six, the maximal storage theoretically uses tens of terabytes of RAM

and consequently this test only works to show eventually that two matrices are not

ST .
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