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Abstract. The purpose of this article is to obtain some new infinite families of Toeplitz matri-

ces, 7-matrices and generalized Pascal triangles whose leading principal minors form the Fibonacci,
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1. Introduction and notation. Throughout this article, unless noted other-

wise, we will use the following notation (see for instance [1, 10]):

• α = (αi)i≥0 and β = (βi)i≥0 are two arbitrary sequences with α0 = β0(:= γ).

• Pα,β(n) is the generalized Pascal triangle associated with the sequences α and

β (see [1]), which we introduce as follows. In fact, Pα,β(n) = (Pi,j)0≤i,j≤n is a square

matrix of order n + 1 whose (i, j)-entry Pi,j obeys the following rule:

Pi,0 = αi, P0,i = βi for 0 ≤ i ≤ n, and Pi,j = Pi,j−1 + Pi−1,j for 1 ≤ i, j ≤ n.

• Aα,β(n) = (Ai,j)0≤i,j≤n is the 7-matrix associated with the sequences α and β
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of order n + 1, whose entries satisfy Ai,0 = αi, A0,i = βi for 0 ≤ i ≤ n, and

Ai,j = Ai−1,j−1 + Ai−1,j for 1 ≤ i, j ≤ n.

This class of matrices was first introduced in [6].

• L(n) = A(1,1,1,...),(1,0,0,0,...)(n), which is called the unipotent lower triangular

matrix of order n+1. If L(n) = (Li,j)0≤i,j≤n, then an explicit formula for (i, j)-entry

Li,j is also given by the following formula

Li,j =

{
0 if i < j,(
i
j

)
if i ≥ j.

Moreover, we put U(n) = L(n)t, where At signifies the transpose of matrix A.

• Tα,β(n) = (Ti,j)0≤i,j≤n is the Toeplitz matrix with Ti,0 = αi and T0,i = βi,

0 ≤ i ≤ n, and Ti,j = Tk,l whenever i − j = k − l.

• Ri(A) (resp., Cj(A)) denotes the row i (resp., column j) of matrix A.

• Eij denotes the square matrix having 1 in the (i, j) position and 0 elsewhere.

• α̂ = (α̂i)i≥0 with α̂i =
∑i

k=0(−1)i+k
(

i
k

)
αk, which is called the binomial trans-

form.

• α̌ = (α̌i)i≥0 with α̌i =
∑i

k=0

(
i
k

)
αk, which is called the inverse binomial trans-

form.

• φ = 1+
√

5
2 is the golden ratio and Φ = 1−

√
5

2 is the golden ratio conjugate.

• Fn is the nth Fibonacci number (A000045), which satisfies

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

• Ln is the nth Lucas number (A000032), which satisfies

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

• Pn is the nth Pell number (A000129), which satisfies

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2.

• Jn is the nth Jacobsthal number (A001045), which satisfies

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2.

Remark 1.1. Let a, b, r, s be integers with r, s ≥ 1. The (a, b, r, s)-Gibonacci

sequence (or generalized Fibonacci sequence), (G
(a,b,r,s)
n )n≥0, is recursively defined by:

G
(a,b,r,s)
0 = a, G

(a,b,r,s)
1 = b and G(a,b,r,s)

n = rG
(a,b,r,s)
n−1 + sG

(a,b,r,s)
n−2 , for n ≥ 2.
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The Fibonacci sequence (resp., Lucas sequence, Pell sequence, or Jacobsthal se-

quence) correspond to the case (a, b, r, s) = (0, 1, 1, 1) (resp., (2, 1, 1, 1), (0, 1, 2, 1) or

(0, 1, 1, 2)).

For convenience, some values of Fn, Ln, Pn and Jn for 0 ≤ n ≤ 13 are determined

in the following:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 . . .

Pn 0 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 . . .

Jn 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 . . .

Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521 . . .

Considerable attention has been devoted in the literature to the study of symbolic

evaluation of determinants (for two excellent surveys on determinant evaluations, we

refer to [8, 9]). Given an arbitrary infinite matrix A = (Ai,j)i,j≥0, denote by dn the nth

leading principal minor of A defined as the determinant of the submatrix consisting

of the entries in its first n + 1 rows and columns. In this article, we are mainly

interested in computation of the sequence of leading principal minors (d0, d1, d2, . . .),

especially in the case that dn is the nth Fibonacci (Lucas, Pell or Jacobsthal) number.

As a matter of fact, in many papers one may encounter certain infinite matrices,

the leading principal minors of which constitute a Fibonacci (sub)sequence (see for

instance [3, 4, 5, 7, 10, 11]). One of the interesting examples is the infinite matrix

given by:

A(∞) = (Ai,j)i,j≥0 =




1 1 1 1 1 · · ·
1 2 2 1 −1 · · ·
1 4 6 6 3 · · ·
1 6 13 19 21 · · ·
1 10 25 45 66 · · ·
...

...
...

...
...

. . .




.

Indeed, the leading principal minors of A(∞) form the Fibonacci subsequence

(Fn+1)n≥0 (see [10]). This matrix is described as follows. The first row and col-

umn are the constant sequence (1, 1, 1, . . .). The remaining entries Ai,j are obtained

from the following nonhomogeneous recurrence relation:

Ai,j = Ai,j−1 + Ai−1,j + i − j, i, j ≥ 1.

There are also other infinite integer matrices where the sequence of their leading

principal minors consist of Fibonacci or Lucas numbers (see Table 1). In this table, i

denotes
√
−1.
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Table 1. Some integer matrices with determinants as Fibonacci or Lucas numbers.

γ α β Determinant Refs.

2 (2, 1, 1, . . .) (2,−1, 0, 0, . . .) det Tα,β(n) = F2n+3 [3]

2 (2, 1, 1, . . .) (2, 1, 0, 0, . . .) det Tα,β(n) = Fn+3 [3]

1 (1, i, 0, 0, . . .) (1, i, 0, 0, . . .) det Tα,β(n) = Fn+2 [3], [4]

1 (1,−1, 0, 0, . . .) (1, 1, 0, 0, . . .) det Tα,β(n) = Fn+2 [12]

3 (3, 1, 0, 0, . . .) (3, 1, 0, 0, . . .) det Tα,β(n) = F2n+4 [12], [13]

3 (3,−1, 0, 0, . . .) (3,−1, 0, 0, . . .) det Tα,β(n) = F2n+4 [13]

1 (1, i, 0, 0, . . .) (1, i, 0, 0, . . .) det
(
Tα,β(n) + E22

)
= Ln+1 [3]

1 (1, 1, 1, . . .) (1,−1, 0, 0, . . .) det
(
Tα,β(n) +

∑n

i=2
Eii

)
= F2n+2 [3]

1 (1, i, 0, 0, . . .) (1, i, 0, 0, . . .) det
(
Tα,β(n) + 2E11

)
= Ln+3 [2]

1 (1, Φ, Φ, . . .) (1, φ, φ, . . .) det Tα,β(n) = Fn+1 [7]

1 (0,−Φ,−Φ, . . .) (0,−φ,−φ, . . .) det Tα,β(n) = Fn−1 [7]

1 αi = αi−1 + c βi = βi−1 − c−1 det Pα,β(n) = Fn+2 [11]

1 αi = αi−1 + 1 β1 = 0, βi = βi+2 det Aα,β(n) = Fn+1 [11]

1 αi = αi−1 − 1 β1 = 0, βi = βi+2 det Aα,β(n) = Fn+1 [11]

1 αi = αi−1 + i β1 = 2i, βi = βi+2 det Aα,β(n) = Ln+1 [11]

1 αi = αi−1 − i β1 = −2i, βi = βi+2 det Aα,β(n) = Ln+1 [11]

The purpose of this article is twofold. First, we want to find some new infi-

nite families of integer matrices whose leading principal minors form the sequences

(Fn+1)n≥0, (Fn)n≥0, (Pn)n≥0, (Jn)n≥0 and (Ln)n≥0. Second, we provide a new proof

for Theorem 3.1 in [1].

2. Preliminary results. In this section, we introduce some definitions and sev-

eral auxiliary results to be used later. We begin with the following definition.

Definition 2.1 (See [15]). Infinite matrices A = [ai,j ]i,j≥0 and B = [bi,j ]i,j≥0

are equimodular if the sequences of their leading principal minors agree, i.e.,

det[ai,j ]0≤i,j≤n = det[bi,j ]0≤i,j≤n for all n ≥ 0.

We continue with the following simple observations.

Lemma 2.2 (See [10]). Let i, j be positive integers. Then, we have

i−j∑

k=0

(−1)k

(
i

k + j

)(
k + j

j

)
=

{
0 if i 6= j,

1 if i = j.
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Lemma 2.3 (See [10]). Let ϕ be an arbitrary sequence. Then, we have ˆ̌ϕ = ˇ̂ϕ =

ϕ.

In [10], we showed that generalized Pascal triangles are strongly related to Toeplitz

matrices. Actually, we obtained a factorization of the generalized Pascal triangle

Pα,β(n) associated with the arbitrary sequences α and β, as a product of the unipo-

tent lower triangular matrix L(n), the Toeplitz matrix T
α̂,β̂

(n) and the unipotent

upper triangular matrix U(n) (see [10] and [14]), that is

Pα,β(n) = L(n) · T
α̂,β̂

(n) · U(n).(2.1)

Moreover, we showed that

Tα,β(n) = L(n)−1 · Pα̌,β̌(n) · U(n)−1.(2.2)

In fact, we obtained a relationship between generalized Pascal triangles and

Toeplitz matrices. In particular, from the identities (2.1) and (2.2), it follows that

det Pα,β(n) = detT
α̂,β̂

(n) and detTα,β(n) = detPα̌,β̌(n).(2.3)

Note that, in general, we have

Pα,β(n) = Pβ,α(n)t and Tα,β(n) = Tβ,α(n)t.

Hence, one can immediately obtain the following results:

det Pα,β(n) = detPβ,α(n) and detTα,β(n) = detTβ,α(n).(2.4)

In this section, we first give a factorization of Aα,β(n) as a product of the unipo-

tent lower triangular matrix and a Toeplitz matrix. The next result is already obtained

in [6, 14]. However, we will include a brief new proof for completeness.

Theorem 2.4. We have the following factorizations:

Aα,β(n) = L(n) · Tα̂,β(n)(2.5)

and

Tα,β(n) = L(n)−1 · Aα̌,β(n).(2.6)

In particular, we have det Aα,β(n) = detTα̂,β(n) and det Tα,β(n) = detAα̌,β(n).

As a matter of fact, Theorem 2.4 gives a connection between 7-matrices and
Toeplitz matrices. For example, we have the following factorizations of Aα,β(2) and
Tα,β(2) as follows:



γ β1 β2

α1 γ + β1 β1 + β2

α2 α1 + γ + β1 γ + 2β1 + β2


 =




1 0 0

1 1 0

1 2 1


 ·




γ β1 β2

−γ + α1 γ β1

γ − 2α1 + α2 −γ + α1 γ


 ,
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γ β1 β2

α1 γ β1

α2 α1 γ


 =




1 0 0

−1 1 0

1 −2 1


 ·




γ β1 β2

γ + α1 γ + β1 β1 + β2

γ + 2α1 + α2 2γ + α1 + β1 γ + 2β1 + β2


 .

Proof of Theorem 2.4. We recall that, the 7-matrix L(n) = (Li,j)0≤i,j≤n is a lower

triangular matrix with

Li,j =

{
0 if i < j,(
i
j

)
if i ≥ j.

For convenience, we put A = Aα,β(n), L = L(n) and T = Tα̂,β(n) = (Ti,j)0≤i,j≤n.

For the proof of the claimed factorization Eq. (2.5), i.e., A = L · T , we compute the

(i, j)-entry of L · T , that is,

(L · T )i,j =
i∑

k=0

Li,kTk,j .

In fact, so as to prove the theorem, we should establish

R0(L · T ) = R0(A) = (β0, β1, . . . , βn),

C0(L · T ) = C0(A) = (α0, α1, . . . , αn)t,

and

(L · T )i,j = (L · T )i−1,j−1 + (L · T )i−1,j , for 1 ≤ i, j ≤ n.(2.7)

Let us do the required calculations. First, suppose that i = 0. Then

(L · T )0,j =

0∑

k=0

L0,kTk,j = L0,0T0,j = βj ,

and so R0(L · T ) = R0(A) = (β0, β1, . . . , βn).

Next, we suppose that j = 0, and we obtain

(L · T )i,0 =
∑i

k=0 Li,kTk,0 =
∑i

k=0

(
i
k

){ ∑k

s=0(−1)s+k
(
k
s

)
αs

}

=
∑i

r=0 αr

{∑i−r

s=0(−1)s
(

i
r+s

)(
r+s

r

)}

= αi, (by Lemma 2.2)
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which implies that C0(L · T ) = C0(A) = (α0, α1, . . . , αn)t.

Finally, we must establish Eq. (2.7). At the moment, let us assume that 1 ≤
i, j ≤ n. Note that the entries of L satisfy in the following recurrence

Li,j = Li−1,j−1 + Li−1,j , 1 ≤ i, j ≤ n.(2.8)

Now, we obtain that

(L · T )i,j =
∑i

k=0 Li,kTk,j

= Li,0T0,j +
∑i

k=1 Li,kTk,j

= Li,0T0,j +
∑i

k=1(Li−1,k−1 + Li−1,k)Tk,j (by Eq. (2.8))

= Li,0T0,j +
∑i

k=1 Li−1,k−1Tk,j +
∑i

k=1 Li−1,kTk,j

= Li,0T0,j +
∑i

k=1 Li−1,k−1Tk−1,j−1 +
∑i

k=0 Li−1,kTk,j − Li−1,0T0,j

(Notice that Tk,j = Tk−1,j−1)

= (Li,0 − Li−1,0)T0,j +
∑i

k=0 Li−1,kTk,j−1 +
∑i

k=0 Li−1,kTk,j

(It should be noticed that Li−1,i = 0)

= (L · T )i−1,j−1 + (L · T )i−1,j , (note that Li,0 = Li−1,0 = 1)

which is Eq. (2.7).

To prove of Eq. (2.6), we observe that

L(n)−1 · Aα̌,β(n) = L(n)−1 · L(n) · T ˆ̌α,β(n) (by Eq. (2.5))

= Tα,β(n). (by Lemma 2.3)

Our proof is thus complete.

As a consequence, we have the following result.

Corollary 2.5. Let α and β be two sequences starting with a common first

term. Then, there holds

det Aα̌,β(n) = detAβ̌,α(n).

Proof. By Theorem 2.4, we have

det Aα̌,β(n) = detTα,β(n) and detAβ̌,α(n) = detTβ,α(n).

Now, the conclusion follows immediately from Eq. (2.4).

We can summarize the above results in the following corollary.
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Corollary 2.6. Let α and β be two sequences starting with a common first

term. Then, the following matrices

Tα,β(∞), Tβ,α(∞), Pα̌,β̌(∞), Pβ̌,α̌(∞), Aα̌,β(∞) and Aβ̌,α(∞),

are equimodular.

We conclude this section with the following simple observation to be used in the

next section.

Lemma 2.7. Let α be an arbitrary sequence. Then, it holds that

n−1∑

i=0

α̌i =

n−1∑

j=0

(
n

j + 1

)
αj .

Proof. Easy computations show that

n−1∑

i=0

α̌i =

n−1∑

i=0

i∑

k=0

(
i

k

)
αk =

n−1∑

j=0

( n−1∑

r=0

(
r

j

))
αj =

n−1∑

j=0

(
n

j + 1

)
αj ,

as desired.

3. Main results. As we mentioned in the Introduction, we are going to obtain

some integer matrices whose leading principal minors form the Fibonacci, Lucas, Pell

and Jacobsthal sequences. We start with the following definition.

Definition 3.1. A sequence φ = (φi)i≥0 satisfies a homogeneous linear re-

currence relation of order s (with constant coefficients), if there exist constants

C1, C2, . . . , Cs, with Cs 6= 0, such that

φi =

s∑

r=1

Crφi−r, for all i ≥ s.

Such a sequence is called s-recurrent.

We recall that, generally, the binomial transforms preserve the vector space of

sequences satisfying linear recurrence relations and also they preserve the set of such

sequences satisfying linear recurrence relations of given degree. We illustrate this with

the following lemma.

Lemma 3.2. Let α = (αi)i≥0 be a sequence satisfying a homogeneous linear

recurrence relation of order 2:

αi = C1αi−1 + C2αi−2 for all i ≥ 2.(3.1)
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Then, we have

(a) The sequence α̌ = (α̌i)i≥0 satisfies a homogeneous linear recurrence relation

with α̌0 = α0, α̌1 = α0 + α1, and

α̌i = (C1 + 2)α̌i−1 + (C2 − C1 − 1)α̌i−2 for all i ≥ 2.(3.2)

(b) The sequence α̂ = (α̂i)i≥0 satisfies a homogeneous linear recurrence relation

with α̂0 = α0, α̂1 = −α0 + α1, and

α̂i = (C1 − 2)α̂i−1 + (C2 + C1 − 1)α̂i−2 for all i ≥ 2.

Proof. (a) Evidently α̌0 = α0 and α̌1 = α0 + α1. To prove Eq. (3.2), we use

strong induction on i. It is easy to verify the result if i = 2. Suppose that the result

is true for all i < n. We put S := (C1 + 2)α̌n−1 + (C2 − C1 − 1)α̌n−2. We have to

prove that S = α̌n. To do this, we notice that

S = (C1 + 2)α̌n−1 + (C2 − C1 − 1)α̌n−2

α̌n−1 = (C1 + 2)α̌n−2 + (C2 − C1 − 1)α̌n−3

α̌n−2 = (C1 + 2)α̌n−3 + (C2 − C1 − 1)α̌n−4

α̌n−3 = (C1 + 2)α̌n−4 + (C2 − C1 − 1)α̌n−5

...

α̌2 = (C1 + 2)α̌1 + (C2 − C1 − 1)α̌0.

Adding both sides and simplifying, we obtain

S +

n−1∑

i=2

α̌i = (C1 + 2)α̌n−1 + (C2 + 1)

n−2∑

i=1

α̌i + (C2 − C1 − 1)α̌0,

or equivalently

S + α̌n−1 = (C1 + 2)α̌n−1 + C2

n−2∑

i=1

α̌i + α̌1 + (C2 − C1 − 1)α̌0.
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After more simplification this leads to

S = α̌n−1 + C1α̌n−1 + C2

( n−2∑
i=0

α̌i − α̌0

)
+ α1 + (C2 − C1)α̌0

= α̌n−1 +
n−1∑
i=0

(
n−1

i

)
C1αi + C2

( n−2∑
i=0

(
n−1
i+1

)
αi − α0

)
+ α1 + (C2 − C1)α̌0

(by definition of α̌n−1 and Lemma 2.7)

= α̌n−1 +
n−1∑
i=1

(
n−1

i

)
(αi+1 − C2αi−1) + C2

n−2∑
i=0

(
n−1
i+1

)
αi + α1 (by Eq. (3.1))

= α̌n−1 +
n−1∑
i=0

(
n−1

i

)
αi+1

=
n−1∑
i=0

(
n−1

i

)
αi +

n∑
i=1

(
n−1
i−1

)
αi

= α0 +
n−1∑
i=1

[
(
n−1

i

)
+

(
n−1
i−1

)
]αi + αn

= α0 +
n−1∑
i=1

(
n
i

)
αi + αn (by Pascal’s rule)

=
n∑

i=0

(
n
i

)
αi = α̌n,

which completes the proof of (a).

(b) The proof of this part is similar to that of part (a) and, therefore, omitted.

Let us consider Toeplitz matrices in which the first row and column are linear

recursion sequences of order 2. Indeed, for Toeplitz matrices associated with two

linear recursion sequences of order 2, we will prove that the sequence of their leading

principal minors satisfies such a recurrence of order 2 as well. More precisely, let

α = (αi)i≥0 and β = (βi)i≥0 be two sequences satisfying α0 = β0 = γ and linear

recursion

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2,

of order 2. We set dn = detTα,β(n), for n ≥ 0, and introduce the following constants:

D1 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,

and

D2 = −(α1 − A1γ − A2β1)(β1 − B2α1 − B1γ).

Then, we have the following result.
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Theorem 3.3. The sequence dn, n ≥ 0, defined as above, satisfies the following

equalities

d0 = γ,

d1 = γ2 − α1β1,

dn = D1dn−1 + D2dn−2 for all n ≥ 2.

Proof. The assertions concerning d0 and d1 are obvious. Hence, we may assume

that n ≥ 2. Now, we introduce the lower and upper triangular square matrices

TA(n) =




1 0 0

−A1 1 0

−A2 0 1


 ⊕ In−2 and TB(n) =




1 −B1 −B2

0 1 0

0 0 1


 ⊕ In−2,

where Im is the identity matrix of order m, and we set

T̃ (n) = TB(n) · Tα,β(n) · TA(n).

One has

T̃ (n) =




T̃0,0 T̃0,1 0 0 0 . . . 0

T̃1,0 γ β1 β2 β3 . . . βn−1

0 α1 γ β1 β2
. . .

...

0 α2 α1 γ β1
. . . β3

0 α3 α2 α1 γ
. . . β2

...
...

. . .
. . .

. . .
. . . β1

0 αn−1 . . . α3 α2 α1 γ




,

where

T̃0,0 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,

T̃1,0 = α1 − A1γ − A2β1,

T̃0,1 = β1 − B2α1 − B1γ.

Developing the determinant dn = det T̃ (n) along the first column of T̃ (n) one obtains

dn = D1dn−1 + D2dn−2,

as required.

As consequences of Theorem 3.3, we have the following corollaries.
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Corollary 3.4. Let A1, A2, B1 and B2 be integers with A2, B2 6= 0. Let

α = (αi)i≥0 and β = (βi)i≥0 be two integer sequences satisfying α0 = β0 = γ and

linear recurrences

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2,

of order 2. Then it holds

(a) For any nonnegative integer n, we have det Tα,β(n) = Fn+1 if and only if

γ, α1, β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a

constant.

γ α1 β1 A1 A2 B1 B2

(F.1) 1 0 c + 1 −c 1 c c

(F.2) 1 0 c − 1 c −1 c − 2 c

(F.3) 1 0 c − 1 −c 1 c −c

(F.4) 1 0 1 − c −c −1 2 − c c

(F.5) 1 c + 1 0 c c −c 1

(F.6) 1 c − 1 0 c − 2 c c −1

(F.7) 1 c − 1 0 c −c −c 1

(F.8) 1 1 − c 0 2 − c c −c −1

(b) For any nonnegative integer n, we have det Aα,β(n) = Fn+1 if and only if

γ, α1, β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a

constant.

γ α1 β1 A1 A2 B1 B2

(F.1′) 1 1 c + 1 2 − c c c c

(F.2′) 1 1 c − 1 c + 2 −(c + 2) c − 2 c

(F.3′) 1 1 c − 1 2 − c c c −c

(F.4′) 1 1 1 − c 2 − c c − 2 2 − c c

(F.5′) 1 c + 2 0 2 + c −1 −c 1

(F.6′) 1 c 0 c 1 c −1

(F.7′) 1 c 0 c + 2 −(2c + 1) −c 1

(F.8′) 1 2 − c 0 4 − c 2c − 3 −c −1

(c) For any nonnegative integer n, we have det Pα,β(n) = Fn+1, if and only if

γ, α1, β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a

constant.
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γ α1 β1 A1 A2 B1 B2

(F.1′′) 1 1 c + 2 2 − c c 2 + c −1

(F.2′′) 1 1 c c + 2 −(c + 2) c 1

(F.3′′) 1 1 c 2 − c c c + 2 −(2c + 1)

(F.4′′) 1 1 2 − c 2 − c c − 2 4 − c 2c − 3

(F.5′′) 1 c + 2 1 2 + c −1 2 − c c

(F.6′′) 1 c 1 c 1 c + 2 −(c + 2)

(F.7′′) 1 c 1 c + 2 −(2c + 1) 2 − c c

(F.8′′) 1 2 − c 1 4 − c 2c − 3 2 − c c − 2

Remark 3.5. Although we have restricted ourselves to integral values in Corol-

lary 3.4, the necessary part holds for arbitrary values of c. It is worth mentioning

that the Toeplitz matrix constructed by condition (F.1) (resp., (F.2), (F.3) and (F.4))

is the transpose of the Toeplitz matrix constructed by condition (F.5) (resp., (F.6),

(F.7) and (F.8)). In addition, by Corollary 3.4, there exist some new infinite fam-

ilies of Toeplitz matrices, 7-matrices and generalized Pascal triangles whose leading

principal minors form the Fibonacci sequence.

Proof of Corollary 3.4. (a) The sufficiency is clear. To prove the necessity, suppose

that

dn = detTα,β(n) = Fn+1.

By Theorem 3.3, it follows that d0 = γ, d1 = γ2 − α1β1, and for all n ≥ 2,

dn = D1dn−1 + D2dn−2,

where

D1 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,(3.3)

and

D2 = −(α1 − A1γ − A2β1)(β1 − B2α1 − B1γ).(3.4)

Note that, by our assumption we have D1 = D2 = 1. Since d0 = F1, we conclude

that γ = 1. Moreover, from d1 = F2, it follows that γ2 − α1β1 = 1, and since γ = 1,
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we deduce that α1β1 = 0, which implies that α1 = 0 or β1 = 0. Since the proofs of

both cases are similar, only the proof for α1 = 0 is presented.

We assume that α1 = 0. If this is substituted in Eqs. (3.3) and (3.4), then we

obtain

A1B1 − A2B2 − β1A1 = 0,(3.5)

and

(A1 + A2β1)(β1 − B1) = 1.(3.6)

Solving Eq. (3.6) in Z, we obtain that

(A1 + A2β1, β1 − B1) ∈
{
(1, 1), (−1,−1)

}
.

We now consider two cases separately.

Case 1. A1 + A2β1 = 1 and β1 − B1 = 1.

In this case, we have β1 = B1 + 1. After having substituted this in Eq. (3.5), we

conclude that A1 = −A2B2. Now, if we substitute −A2B2 with A1 in A1 +A2β1 = 1,

we obtain A2(β1 − B2) = 1. This yields that (A2, β1 − B2) = (1, 1) or (A2, β1 −
B2) = (−1,−1). If (A2, β1 − B2) = (1, 1), then B1 = B2 = −A1(:= c say), and if

(A2, β1 − B2) = (−1,−1), then B1 − 2 = B2 = A1(:= c say).

Case 2. A1 + A2β1 = −1 and β1 − B1 = −1.

The proof is quite similar to the proof in Case 1, so we avoid here full explanation

of all details. In fact, we obtain A2 = 1 and B1 = −B2 = −A1(:= c say) or A2 = −1

and 2 − B1 = B2 = −A1(:= c say).

(b) This follows directly from part (a), Theorem 2.4, and Lemma 3.2 (a).

(c) This follows from part (a), Lemma 3.2 (a) and Eq. (2.3).

As a special case of Corollary 3.4, we see that Fibonacci numbers provide the

following exotic example:

Example 3.6. We have

det A(F1,F2,F3,...), (F2,F3,F4,...)(n) = Fn+1.

In fact, this example follows from Corollary 3.4 (b), part (F.1′), if we substitute 1

with c.

Corollary 3.7. Let A1, A2, B1 and B2 be integers. Let α = (αi)i≥0 and

β = (βi)i≥0 be two integer sequences satisfy α0 = β0 = γ and linear recurrences

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2.
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Then it holds

(a) For any nonnegative integer n, det Tα,β(n) = Ln if and only if γ, α1, β1, A1,
A2, B1 and B2 satisfy one of the following conditions.

γ α1 β1 A1 A2 B1 B2 γ α1 β1 A1 A2 B1 B2

(L.1) 2 3 1 0 2 −5 4 (L.17) 2 1 3 −5 4 0 2

(L.2) 2 3 1 4 −4 −9 6 (L.18) 2 1 3 −9 6 4 −4

(L.3) 2 3 1 −1 4 10 −6 (L.19) 2 1 3 10 −6 −1 4

(L.4) 2 3 1 3 −2 6 −4 (L.20) 2 1 3 6 −4 3 −2

(L.5) 2 3 1 6 −8 −3 2 (L.21) 2 1 3 −3 2 6 −8

(L.6) 2 3 1 2 −2 1 0 (L.22) 2 1 3 1 0 2 −2

(L.7) 2 3 1 −3 8 4 −2 (L.23) 2 1 3 4 −2 −3 8

(L.8) 2 3 1 1 2 0 0 (L.24) 2 1 3 0 0 1 2

(L.9) 2 −3 −1 −2 −2 −1 0 (L.25) 2 −1 −3 −1 0 −2 −2

(L.10) 2 −3 −1 −6 −8 3 2 (L.26) 2 −1 −3 3 2 −6 −8

(L.11) 2 −3 −1 0 2 5 4 (L.27) 2 −1 −3 5 4 0 2

(L.12) 2 −3 −1 −4 −4 9 6 (L.28) 2 −1 −3 9 6 −4 −4

(L.13) 2 −3 −1 1 4 −10 −6 (L.29) 2 −1 −3 −10 −6 1 4

(L.14) 2 −3 −1 −3 −2 −6 −4 (L.30) 2 −1 −3 −6 −4 −3 −2

(L.15) 2 −3 −1 3 8 −4 −2 (L.31) 2 −1 −3 −4 −2 3 8

(L.16) 2 −3 −1 −1 2 0 0 (L.32) 2 −1 −3 0 0 −1 2

(b) For any nonnegative integer n, det Aα,β(n) = Ln if and only if γ, α1, β1, A1,
A2, B1 and B2 satisfy one of the following conditions.

γ α1 β1 A1 A2 B1 B2 γ α1 β1 A1 A2 B1 B2

(L.1′) 2 5 1 2 1 −5 4 (L.17′) 2 3 3 −3 8 0 2

(L.2′) 2 5 1 6 −9 −9 6 (L.18′) 2 3 3 −7 14 4 −4

(L.3′) 2 5 1 1 4 10 −6 (L.19′) 2 3 3 12 −17 −1 4

(L.4′) 2 5 1 5 −6 6 −4 (L.20′) 2 3 3 8 −11 3 −2

(L.5′) 2 5 1 8 −15 −3 2 (L.21′) 2 3 3 −1 4 6 −8

(L.6′) 2 5 1 4 −5 1 0 (L.22′) 2 3 3 3 −2 2 −2

(L.7′) 2 5 1 −1 10 4 −2 (L.23′) 2 3 3 6 −7 −3 8

(L.8′) 2 5 1 3 0 0 0 (L.24′) 2 3 3 2 −1 1 2

(L.9′) 2 −1 −1 0 −1 −1 0 (L.25′) 2 1 −3 1 0 −2 −2

(L.10′) 2 −1 −1 −4 −3 3 2 (L.26′) 2 1 −3 5 −2 −6 −8

(L.11′) 2 −1 −1 2 1 5 4 (L.27′) 2 1 −3 7 −2 0 2

(L.12′) 2 −1 −1 −2 −1 9 6 (L.28′) 2 1 −3 11 −4 −4 −4

(L.13′) 2 −1 −1 3 2 −10 −6 (L.29′) 2 1 −3 −8 3 1 4

(L.14′) 2 −1 −1 −1 0 −6 −4 (L.30′) 2 1 −3 −4 1 −3 −2

(L.15′) 2 −1 −1 5 4 −4 −2 (L.31′) 2 1 −3 −2 1 3 8

(L.16′) 2 −1 −1 1 2 0 0 (L.32′) 2 1 −3 2 −1 −1 2
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(c) For any nonnegative integer n, det Pα,β(n) = Ln if and only if γ, α1, β1, A1,

A2, B1 and B2 satisfy one of the following conditions.

γ α1 β1 A1 A2 B1 B2 γ α1 β1 A1 A2 B1 B2

(L.1′′) 2 5 3 2 1 −3 8 (L.17′′) 2 3 5 −3 8 2 1

(L.2′′) 2 5 3 6 −9 −7 14 (L.18′′) 2 3 5 −7 14 6 −9

(L.3′′) 2 5 3 1 4 12 −17 (L.19′′) 2 3 5 12 −17 1 4

(L.4′′) 2 5 3 5 −6 8 −11 (L.20′′) 2 3 5 8 −11 5 −6

(L.5′′) 2 5 3 8 −15 −1 4 (L.21′′) 2 3 5 −1 4 8 −15

(L.6′′) 2 5 3 4 −5 3 −2 (L.22′′) 2 3 5 3 −2 4 −5

(L.7′′) 2 5 3 −1 10 6 −7 (L.23′′) 2 3 5 6 −7 −1 10

(L.8′′) 2 5 3 3 0 2 −1 (L.24′′) 2 3 5 2 −1 3 0

(L.9′′) 2 −1 1 0 −1 1 0 (L.25′′) 2 1 −1 1 0 0 −1

(L.10′′) 2 −1 1 −4 −3 5 −2 (L.26′′) 2 1 −1 5 −2 −4 −3

(L.11′′) 2 −1 1 2 1 7 −2 (L.27′′) 2 1 −1 7 −2 2 1

(L.12′′) 2 −1 1 −2 −1 11 −4 (L.28′′) 2 1 −1 11 −4 −2 −1

(L.13′′) 2 −1 1 3 2 −8 3 (L.29′′) 2 1 −1 −8 3 3 2

(L.14′′) 2 −1 1 −1 0 −4 1 (L.30′′) 2 1 −1 −4 1 −1 0

(L.15′′) 2 −1 1 5 4 −2 1 (L.31′′) 2 1 −1 −2 1 5 4

(L.16′′) 2 −1 1 1 2 2 −1 (L.32′′) 2 1 −1 2 −1 1 2

It is worth mentioning that the Toeplitz matrices constructed by conditions

(L.1) − (L.16) are the transpose of the Toeplitz matrices constructed by conditions

(L.17) − (L.32), respectively.

Proof of Corollary 3.7. We need only prove the necessity. Suppose that dn =

det Tα,β(n) = Ln. By Theorem 3.3, it follows that d0 = γ, d1 = γ2 − α1β1, and

for all n ≥ 2, dn = D1dn−1 + D2dn−2, where

D1 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,

and

D2 = −(α1 − A1γ − A2β1)(β1 − B2α1 − B1γ).(3.7)

Note that, by our assumption we have D1 = D2 = 1. Since d0 = L0, we conclude

that γ = 2. Moreover, from d1 = L1, it follows that γ2−α1β1 = 1, and since γ = 2, we

deduce that α1β1 = 3, which implies that (α1, β1) ∈ {(3, 1), (1, 3), (−3,−1), (−1,−3)}.

Suppose first that α1 = 3 and β1 = 1. In this case, we observe that α2 = 3A1+2A2

and β2 = B1 + 2B2.
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But then, the equality 3 = d2 = detTα,β(3) implies that β2 = (7−α2)/(9− 2α2),

which must be an integer. On the other hand, since 9−2α2 = 2(7−α2)−5, it follows

that 9 − 2α2 divides 5. So we obtain 9 − 2α2 ∈ {±1,±5}, or equivalently

α2 = 3A1 + 2A2 ∈ {3 ± 1, 6 ± 1} and β2 = B1 + 2B2 ∈ {2 ± 1,−1 ± 1}.(3.8)

Finally, if the values of α1 and β1 are substituted in Eq. (3.7), then we get

(2A1 + A2 − 3)(1 − 3B2 − 2B1) = 1.(3.9)

Solving the Eq. (3.9) in Z, we obtain that

(2A1 + A2, 3B2 + 2B1) ∈
{
(4, 0), (2, 2)

}
.(3.10)

Thus, combining Eqs. (3.8) and (3.10), the following results are obtained:

α2 β2 2A1 + A2 2B1 + 3B2 A1 A2 B1 B2

4 3 2 2 =⇒ 0 2 −5 4

4 3 4 0 =⇒ 4 −4 −9 6

5 −2 2 2 =⇒ −1 4 10 −6

5 −2 4 0 =⇒ 3 −2 6 −4

2 1 4 0 =⇒ 6 −8 −3 2

2 1 2 2 =⇒ 2 −2 1 0

7 0 2 2 =⇒ −3 8 4 −2

7 0 4 0 =⇒ 1 2 0 0

The remaining proofs for the cases (α1, β1) ∈ {(1, 3), (−3,−1), (−1,−3)} are ex-

actly as in the previous case. This concludes the part (a).

(b) This follows directly from part (a), Theorem 2.4, and Lemma 3.2 (a).

(c) This follows from part (a), Lemma 3.2 (a) and Eq. (2.3).

Corollary 3.8. Let A1, A2, B1, B2 and r be integers with r ≥ 1. Let α = (αi)i≥0

and β = (βi)i≥0 be two integer sequences satisfy α0 = β0 = γ and linear recurrences

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2.

Then, it holds that
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(a) For any nonnegative integer n, det Tα,β(n) = G
(0,1,r,1)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(FP.1) 0 1 −1 c + r 0 c 0

(FP.2) 0 1 −1 c + r −2 c −2

(FP.3) 0 −1 1 c 0 c + r 0

(FP.4) 0 −1 1 c −2 c + r −2

(b) For any nonnegative integer n, det Aα,β(n) = G
(0,1,r,1)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(FP.1′) 0 1 −1 c + r + 2 −c − r − 1 c 0

(FP.2′) 0 1 −1 c + r + 2 −c − r − 3 c −2

(FP.3′) 0 −1 1 c + 2 −c − 1 c + r 0

(FP.4′) 0 −1 1 c + 2 −c − 3 c + r −2

(c) For any nonnegative integer n, det Pα,β(n) = G
(0,1,r,1)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(FP.1′′) 0 1 −1 c + r + 2 −c − r − 1 c + 2 −c − 1

(FP.2′′) 0 1 −1 c + r + 2 −c − r − 3 c + 2 −c − 3

(FP.3′′) 0 −1 1 c + 2 −c − 1 c + r + 2 −c − r − 1

(FP.4′′) 0 −1 1 c + 2 −c − 3 c + r + 2 −c − r − 3

Proof. (a) The sufficiency is clear. To prove the necessity, suppose that dn =

det Tα,β(n) = G
(0,1,r,1)
n . By Theorem 3.3, it follows that d0 = γ, d1 = γ2 − α1β1, and

for all n ≥ 2, dn = D1dn−1 + D2dn−2, where

D1 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,

and

D2 = −(α1 − A1γ − A2β1)(β1 − B2α1 − B1γ).

Note that, by our assumption we must have D1 = r and D2 = 1. Since d0 =

G
(0,1,r,1)
0 = 0, we conclude that γ = 0. Moreover, from d1 = G

(0,1,r,1)
1 = 1, it
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follows that γ2 − α1β1 = 1, and since γ = 0, we deduce that α1β1 = −1, which

implies that (α1, β1) ∈ {(1,−1), (−1, 1)}. In both cases, from D2 = 1, it follows

that (A2 + 1)(B2 + 1) = 1, and solving this equation in Z, one gets (A2, B2) ∈
{(0, 0), (−2,−2)}. Moreover, from D1 = r, it follows that A1 − r = B1(:= c), if

(α1, β1) = (1,−1) and A1 + r = B1(:= c), if (α1, β1) = (−1, 1).

(b) This follows directly from part (a), Theorem 2.4, and Lemma 3.2 (a).

(c) This follows from part (a), Lemma 3.2 (a) and Eq. (2.3).

Corollary 3.9. Let A1, A2, B1 and B2 be integers and let s be a prime number.

Let α = (αi)i≥0 and β = (βi)i≥0 be two integer sequences satisfy α0 = β0 = γ and

linear recurrences

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2.

Then it holds that

(a) For any nonnegative integer n, det Tα,β(n) = G
(0,1,1,s)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(J.1) 0 1 −1 c + 1 0 c s − 1

(J.2) 0 1 −1 c + 1 −2 c −s − 1

(J.3) 0 1 −1 c + 1 s − 1 c 0

(J.4) 0 1 −1 c + 1 −s − 1 c −2

(J.5) 0 −1 1 c s − 1 c + 1 0

(J.6) 0 −1 1 c −s − 1 c + 1 −2

(J.7) 0 −1 1 c 0 c + 1 s − 1

(J.8) 0 −1 1 c −2 c + 1 −s − 1

(b) For any nonnegative integer n, det Aα,β(n) = G
(0,1,1,s)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(J.1′) 0 1 −1 c + 3 −c − 2 c s − 1

(J.2′) 0 1 −1 c + 3 −c − 4 c −s − 1

(J.3′) 0 1 −1 c + 3 s − c − 3 c 0

(J.4′) 0 1 −1 c + 3 −s − c − 3 c −2

(J.5′) 0 −1 1 c + 2 s − c − 2 c + 1 0

(J.6′) 0 −1 1 c + 2 −s − c − 2 c + 1 −2

(J.7′) 0 −1 1 c + 2 −c − 1 c + 1 s − 1

(J.8′) 0 −1 1 c + 2 −c − 3 c + 1 −s − 1
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(c) For any nonnegative integer n, det Pα,β(n) = G
(0,1,1,s)
n if and only if γ, α1,

β1, A1, A2, B1 and B2 satisfy one of the following conditions, where c is a constant.

γ α1 β1 A1 A2 B1 B2

(J.1′′) 0 1 −1 c + 3 −c − 2 c + 2 s − c − 2

(J.2′′) 0 1 −1 c + 3 −c − 4 c + 2 −s − c − 2

(J.3′′) 0 1 −1 c + 3 s − c − 3 c + 2 −c − 1

(J.4′′) 0 1 −1 c + 3 −s − c − 3 c + 2 −c − 3

(J.5′′) 0 −1 1 c + 2 s − c − 2 c + 3 −c − 2

(J.6′′) 0 −1 1 c + 2 −s − c − 2 c + 3 −c − 4

(J.7′′) 0 −1 1 c + 2 −c − 1 c + 3 s − c − 3

(J.8′′) 0 −1 1 c + 2 −c − 3 c + 3 −s − c − 3

Proof. (a) The sufficiency is clear. To prove the necessity, suppose that dn =

det Tα,β(n) = G
(0,1,1,s)
n . By Theorem 3.3, it follows that d0 = γ, d1 = γ2 − α1β1, and

for all n ≥ 2, dn = D1dn−1 + D2dn−2, where

D1 = γ(1 + A1B1 − A2B2) − α1B1 − β1A1,

and

D2 = −(α1 − A1γ − A2β1)(β1 − B2α1 − B1γ).

Note that, by our assumption we must have D1 = 1 and D2 = s. Since d0 =

G
(0,1,1,s)
0 = 0, we conclude that γ = 0. Moreover, from d1 = G

(0,1,1,s)
1 = 1, it follows

that γ2 − α1β1 = 1, and since γ = 0, we deduce that α1β1 = −1, which implies that

(α1, β1) ∈ {(1,−1), (−1, 1)}. In both cases, we have D2 = (A2 + 1)(B2 + 1) = s, and

since s is a prime number, we obtain

(A2 + 1, B2 + 1) ∈ {(1, s), (−1,−s), (s, 1), (−s,−1)},

or equivalently

(A2, B2) ∈ {(0, s − 1), (−2,−s − 1), (s − 1, 0), (−s − 1,−2)}.

Furthermore, in the case that (α1, β1) = (1,−1), from D1 = 1 we conclude that

A1 − 1 = B1(:= c), and if (α1, β1) = (−1, 1), we get A1 + 1 = B1(:= c). The proof of

part (a) is now complete.

(b) This follows directly from part (a), Theorem 2.4, and Lemma 3.2 (a).
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(c) This follows from part (a), Lemma 3.2 (a) and Eq. (2.3).

Remark 3.10. Although in Corollaries 3.8 and 3.9, we have restricted ourselves

to integer values, we should mention that the necessary part still holds for all values

of c (not necessarily an integer) in the above conditions. Also, note that some of

the matrices constructed by the above conditions are the transpose of each other.

In addition, by Corollaries 3.8 and 3.9, there exist some infinite families of integer

matrices whose leading principal minors form the Fibonacci, Pell and Jacobsthal

sequences (for r = 1, 2 in Theorem 3.8 and s = 2 in Theorem 3.9, respectively).

At last, we assume that dn = detPα,β(n), where α and β are r-recurrent and

s-recurrent, respectively, starting with a common first term. In [1], Bacher proved

that if both α and β are 2-recurrent then so (dn)n≥0 (see Theorem 3.1 in [1]). In

the same article, he conjectured that the sequence (dn)n≥0 is a
(
r+s−2

r−1

)
-recurrent, in

general. This conjecture was later proved by Petkovšek and Zakraǰsek in [15]. Here,

we provide another proof of Theorem 3.1 in [1].

Theorem 3.11. Let α, β be 2-recurrents starting with a common first term and

dn = detPα,β(n). Then the sequence (dn)n≥0 is also a 2-recurrent.

Proof. From Eq. (2.1), we have Pα,β(n) = L(n)·T
α̂,β̂

(n)·U(n), which implies that

dn = detT
α̂,β̂

(n). Using Theorem 3.3 and Lemma 3.2 (b), the assertion immediately

follows.
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