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Abstract. In this literature, the symmetric inverse generalized eigenvalue problem with subma-

trix constraints and its corresponding optimal approximation problem are studied. A necessary and

sufficient condition for solvability is derived, and when solvable, the general solutions are presented.
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1. Introduction. Let R
m×n denote the set of all m × n real matrices, SR

n×n

the set of all n×n real symmetric matrices, and C
n the n-dimensional complex vector

space. The dynamic analysis of a mechanical or civil structure by the finite element

technique can be modelled by a generalized eigenvalue problem

Kax = λMax,(1.1)

where Ka,Ma ∈ SR
n×n are the analytical stiffness matrix and mass matrix, respec-

tively, and λ ∈ C and x ∈ C
n are the generalized eigenvalue and corresponding gen-

eralized eigenvector. It’s well known that the natural frequencies and mode shapes

of such a finite element model and ones experimentally measured by a vibration test

do not match very well ([4], [20]). The finite element model updating problem is to

determine how to update the model to closely match the experimental model data

that gives an incomplete set of eigenpairs.

Let x1, . . . , xp ∈ C
n be the measured modal vectors and λ1, . . . , λp ∈ C be the
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measured natural frequencies, where p ≤ n. The measured mode shapes and frequen-

cies are assumed to be correct, and the mass matrix M ∈ SR
n×n and stiffness matrix

K ∈ SR
n×n to be constructed have to satisfy the dynamic equation

Kxi = Mxiλi, i = 1, . . . , p(1.2)

(see e.g. [1], [2], [6]–[8], [11], [12], [16], [17], [22]). Since we are only interested in

real matrices, the prescribed eigenpairs must be closed under complex conjugation.

Without causing ambiguity, the p prescribed eigenpairs are represented by the matrix

form (X,Λ), where each block of Λ ∈ R
p×p is either a 1-by-1 matrix or a 2-by-2

matrix whose eigenvalues are a complex conjugate pair, and X ∈ R
n×p represents

the “eigenvector matrix” in the sense that each pair of column vectors associated

with a 2-by-2 block in Λ retains the real and the imaginary part, respectively, of the

original complex eigenvector. Then (1.2) is equivalent to KX = MXΛ. As model

errors can be localized by sensitivity analysis ([10], [19]), residual force approach ([9]),

least-squares approach ([13]) and assigned eigenstructure ([5]), it is a usual practice to

adjust partial elements of the analytical mass and stiffness matrices. Mathematically,

such a partially updating problem can be described as the following two problems:

Problem 1.1. Given p eigenpairs (X,Λ), where X ∈ R
n×p and Λ ∈ R

p×p are

described as the above and K0, M0 ∈ SR
r×r, 1 ≤ p, r ≤ n, p + r ≤ n, find real

matrices K, M ∈ SR
n×n such that

KX = MXΛ, K([1, r]) = K0, M([1, r]) = M0,(1.3)

where K([1, r]) and M([1, r]) are the r×r leading principal submatrices of K and M ,

respectively.

Problem 1.2. Given Ka,Ma ∈ SR
n×n with Ka([1, r]) = K0,Ma([1, r]) = M0,

find K̂, M̂ ∈ SE such that

||(Ka,Ma) − (K,M)|| = inf
(K̂,M̂)∈SE

||(Ka,Ma) − (K̂, M̂)||,(1.4)

where SE is the solution set of Problem 1.1. Here || · || denotes the Frobenius norm.

The second problem is to find the best approximation for a given symmetric

matrix pencil under a given spectral constraint and a symmetric submatrix pencil

constraint. Such a problem always arises in structural dynamic model updating.

Y. Yuan and H. Dai [21] solved the above two problems, where Ka, K0, K,

Ma, M0, and M are free from the symmetry constraint conditions. In this paper, we

consider the symmetric cases in the dynamic analysis of a mechanical or civil structure

by the finite element technique. Only by using the Moore-Penrose generalized inverse

and the singular value decomposition, we present the solvability condition and the
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expression for the solutions of Problems 1.1 and 1.2. For a special case, we derive

a formula of the general solution which is inexpensive to compute and can be used

routinely in practice.

Throughout this paper O(n) stands for the set of all n × n orthogonal matrices;

AT the transpose of a real matrix A; A† the Moore-Penrose generalized inverse of A;

PA = AA†, P⊥
A = I − PA; tr(A) the trace of the matrix A ∈ R

n×n; and rank(A) the

rank of A. For A,B ∈ R
m×n, (A,B) = tr(BT A) denotes an inner product in R

m×n.

2. General solutions of Problems 1.1 and 1.2. To facilitate the following

discussion, we first make some notations. Let X ∈ R
n×p, K, M ∈ SR

n×n have the

following partitions:

X =

(
X1

X2

)
, K =

(
K0 K1

KT
1 K2

)
, M =

(
M0 M1

MT
1 M2

)
,(2.1)

where X1 and X2 have r and n − r rows respectively, K0,M0 ∈ R
r×r, K1,M1 ∈

R
r×(n−r), and K2,M2 ∈ SR

(n−r)×(n−r). Then KX = MXΛ can be rewritten as

(
K0 K1

KT
1 K2

)(
X1

X2

)
=

(
M0 M1

MT
1 M2

)(
X1

X2

)
Λ.(2.2)

That implies that (1.3) is equivalent to

K1X2 = M0X1Λ − K0X1 + M1X2Λ,(2.3)

KT
1 X1 = MT

1 X1Λ − K2X2 + M2X2Λ.(2.4)

Problem 1.1 can be solved by computing the solutions K1, M1, K2 and M2 of (2.3)

and (2.4).

Suppose that the singular value decomposition of X2 has been computed

X2 = U

(
Σ 0

0 0

)
V T ,(2.5)

where U = [U1, U2] ∈ O(n − r), V = [V1, V2] ∈ O(p), Σ = diag(σ1, . . . , σs), σi > 0,

i = 1, . . . , s, s = rank(X2), U1 ∈ R
(n−r)×s, V1 ∈ R

p×s. Similarly, suppose that the

following singular value decompositions have been computed

X2ΛV2 = [P1, P2]

(
Ω 0

0 0

)
[Q1, Q2]

T ,(2.6)

X1V2Q2 = [P̃1, P̃2]

(
Ω̃ 0

0 0

)
[Q̃1, Q̃2]

T ,(2.7)

(X2ΛX
†
2)T = [Û1, Û2]

(
Σ̂ 0

0 0

)
[V̂1, V̂2]

T .(2.8)
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Now we recall some known results, which will be used repeatedly in this paper.

Lemma 2.1. [14] Let Y,B ∈ R
m×k,m ≥ k, be given. Then AY = B has a

symmetric solution A ∈ SR
m×m if and only if BPY T = B and (PY BY †)T = PY BY †.

Moreover, the solution set is

S = {BY † + (BY †)T P⊥
Y + P⊥

Y HP⊥
Y : H ∈ SR

m×m},

and the minimal solution under the Frobenius norm is

Aopt = BY † + (BY †)T P⊥
Y .

Lemma 2.2. [3] If E ∈ R
m×n, F ∈ R

p×q and G ∈ R
m×q,

EXF = G(2.9)

has a solution X ∈ R
p×q if and only if

EE†GF †F = G,

in which case, the general solution of (2.9) can be expressed as

X = E†GF † + Y − E†EY FF †,

where Y ∈ R
n×p is an arbitrary matrix.

The next lemma is extracted from the proof of Theorem 1 in [21].

Lemma 2.3. [21] Equation K0X1 + K1X2 = M0X1Λ + M1X2Λ with respect to

matrices K1 and M1 is solvable if and only if

K0X1V2Q2 = M0X1ΛV2Q2,(2.10)

in which case, we have

K1 = K10 + LPT
2 X2ΛX

†
2 + WUT

2 ,(2.11)

M1 = M10 + LPT
2 ,(2.12)

where

M10 = (K0X1V2 − M0X1ΛV2)(X2ΛV2)
†,

K10 = [M0X1Λ − K0X1 + M10X2Λ]X†
2 ,

and L ∈ R
r×(n−r−t), W ∈ R

r×(n−r−s) are arbitrary matrices.
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As we discussed above, the general solution of Problem 1.1 can be derived by

solving (2.3) and (2.4). Lemma 2.3 has presented the solvability condition and the

general solution (if exists) of (2.3). Now we study (2.4). Define L̃ = P2L
T , W̃ =

U2W
T , and

Ψ = MT
10X1Λ − KT

10X1 + L̃X1Λ − (X2ΛX
†
2)T L̃X1.

Substitute (2.11) and (2.12) into (2.4), to get

K2X2 = Ψ − W̃X1 + M2X2Λ(2.13)

with respect to unknown real symmetric matrices K2 and M2. Repeatedly applying

Lemma 2.1 and equations (2.5)–(2.8), and (2.13) has a symmetric solution K2 if and

only if

M2X2ΛV2 = [−Ψ + W̃X1]V2,(2.14)

U1U
T
1 [Ψ + M2X2Λ]X†

2 ∈ SR
(n−r)×(n−r).(2.15)

Equation (2.14) has a symmetric solution M2 if and only if

(X2ΛX
†
2)T L̃X1V2Q2 = −(KT

10 + W̃ )X1V2Q2,(2.16)

P1P
T
1 [−Ψ + W̃X1]V2(X1ΛV2)

† ∈ SR
r×r.(2.17)

Now we prove that (2.16) always holds. Lemma 2.2 will be repeatedly used

without being mentioned in the following analysis. Equation (2.16) has a solution L̃

if and only if

[I − (X2ΛX
†
2)T ((X2ΛX

†
2)T )†](KT

10 + W̃ )X1V2Q2 = 0.(2.18)

Recalling the SVD of (X2ΛX
†
2)T as in (2.8), (2.18) can be rewritten as

ÛT
2 W̃X1V2Q2 = −ÛT

2 KT
10X1V2Q2.(2.19)

We can see that (2.19) is always solvable and the expression of its general solution is

W̃ = −Û2Û
T
2 KT

10(X1V2Q2)(X1V2Q2)
† + Ŷ − Û2Û

T
2 Ŷ (X1V2Q2)(X1V2Q2)

†,(2.20)

where Ŷ ∈ R
(n−r)×r is arbitrary. That means (2.18) always holds and consequently

there must exist a matrix L̃ satisfying (2.16). Now substitute (2.20) into (2.16), to

get

(X2ΛX
†
2)T L̃X1V2Q2 = −Û1Û

T
1 (KT

10 − Ŷ )X1V2Q2.(2.21)
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The general solution of (2.21) has the form

L̃ = −((X2ΛX
†
2)T )†(KT

10 − Ŷ )(P̃1P̃
T
1 ) + Ỹ − V̂1V̂

T
1 Ỹ (P̃1P̃

T
1 ),(2.22)

where Ỹ is arbitrary. So that (2.16) is always solvable and its general solution can be

expressed as in (2.22).

By Lemma 2.1, we can conclude that (2.14) is solvable when (2.16) and (2.17)

hold, and its general solution is

M2 = BM2
(X2ΛV2)

† + (BM2
(X2ΛV2)

†)T P⊥
(X2ΛV2)

+ P⊥
(X2ΛV2)

HM2
P⊥

(X2ΛV2)
(2.23)

in which BM2
= [−Ψ + (X2ΛX

†
2)T L̃X1 + W̃X1]V2 and HM2

∈ SR
(n−r)×(n−r) is

arbitrary. Similarly, if (2.14) and (2.15) hold, then (2.13) has a symmetric solution

K2 = BK2
X

†
2 + (BK2

X
†
2)T P⊥

X2
+ P⊥

X2
HK2

P⊥
X2

,(2.24)

where BK2
= Ψ − (X2ΛX

†
2)T L̃X1 − W̃X1 + M2X2Λ and HK2

∈ SR
(n−r)×(n−r) is

arbitrary.

Now we suppose that there exist Ŷ , Ỹ and HM2
such that the symmetric condi-

tions (2.15) and (2.17) hold after substituting (2.20), (2.22), and (2.23) into them.

Then we can conclude that Problem 1.1 is solvable from the above analysis.

Theorem 2.4. Problem 1.1 is solvable if and only if (2.10), (2.15) and (2.17)

hold. In this case, the general solution is

(K,M) =

(
K0 K1 M0 M1

KT
1 K2 MT

1 M2

)
,

where K1, M1, M2, K2 are given by (2.11), (2.12), (2.23), and (2.24) in which Ŷ ,

Ỹ , and HM2
satisfy (2.15) and (2.17).

Now we study Problem 1.2 under the condition that the solution set SE of Prob-

lem 1.1 is not empty. Firstly, recall an useful result in [15].

Lemma 2.5. [15] Suppose that A ∈ R
q×m,∆ ∈ R

q×q, and Γ ∈ R
m×m, where

∆2 = ∆ = ∆T and Γ2 = Γ = ΓT . Then

||A − ∆DΓ|| = min
E∈Rq×m

||A − ∆EΓ||

if and only if ∆(A − D)Γ = 0, in which case,

||A − ∆DΓ|| = ||A − ∆AΓ||.
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For given matrices Ka ∈ R
n×n and Ma ∈ R

n×n in Problem 1.2, define

Ka =

(
K0 K

(a)
1

(K
(a)
1 )T K

(a)
2

)
, Ma =

(
M0 M

(a)
1

(M
(a)
1 )T M

(a)
2

)
,(2.25)

where K
(a)
1 ,M

(a)
1 ∈ R

r×(n−r), and K
(a)
2 ,M

(a)
2 ∈ SR

(n−r)×(n−r). Given two matrices

C, D and a matrix set S, the notation ||C − A||2 + ||D − B||2 = min means that

||C − A||2 + ||D − B||2 is minimized by (A,B) ∈ S; i.e.,

||C − A||2 + ||D − B||2 = min
(Â,B̂)∈S

(||C − Â||2 + ||D − B̂||2).

Theorem 2.6. Under the conditions of Theorem 2.4 and assuming that Ŷ , Ỹ and

HM2
are unique solutions of (2.15) and (2.17), Problem 1.2 has a unique solution

(K,M) =

(
K0 K1 M0 M1

KT
1 K2 MT

1 M2

)
,

where K1, M1, M2, K2 are given by (2.11), (2.12), (2.23), and (2.24), and HK2

and HM2
satisfy P⊥

X2
(K

(a)
2 − HK2

)P⊥
X2

= 0 and P⊥
(X2ΛV2)

(M
(a)
2 − HM2

)P⊥
(X2ΛV2)

= 0,

respectively.

Proof. Equation (1.4) is equivalent to

||Ka − K||2 + ||Ma − M ||2 = min .(2.26)

With the partitions (2.1) and (2.25) in mind, we have

||Ka − K||2 + ||Ma − M ||2 = 2||K
(a)
1 − K1||

2 + ||K
(a)
2 − K2||

2 + 2||M
(a)
1

−M1||
2 + ||M

(a)
2 − M2||

2.

Then (2.26) holds if and only if

||K
(a)
2 − K2||

2 + ||M
(a)
2 − M2||

2 = min .(2.27)

By Lemma 2.5, (2.27) holds if and only if

U2U
T
2 (K

(a)
2 − HK2

)U2U
T
2 = 0, P2P

T
2 (M

(a)
2 − HM2

)P2P
T
2 = 0.

Remark 2.7. We have solved Problem 1.1 and Problem 1.2 under the assumption

that (2.15) and (2.17) hold for some Ŷ , Ỹ , and HM2
. In general to find such Ŷ , Ỹ , and

HM2
, we have to solve two matrix equations with three unknowns after substituting

(2.20), (2.22), and (2.23) into (2.15) and (2.17).
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To end this section, we consider a sufficient condition that

K0X1 = M0X1Λ, K1 = 0, M1 = 0,(2.28)

under which (2.2) is reduced to

(
K0 0

0 K2

)(
X1

X2

)
=

(
M0 0

0 M2

)(
X1

X2

)
Λ;

i.e.,

K2X2 = M2X2Λ.(2.29)

To solve (2.29) for symmetric matrices K2 and M2 is the symmetric inverse eigenvalue

problem without constraints. Dai [7] studied this problem and gave an efficient algo-

rithm for it by using QR-like decomposition with column pivoting and least squares

techniques. Here we present the expression of the general symmetric solution only by

generalized inverse and SVD.

Theorem 2.8. Suppose X2 and Λ are known and the singular value decomposi-

tion of X2 is (2.5). Then (2.29) has a symmetric solution and

(K2, M2) = U

(
M

(2)
11 ΣΛ

(2)
11 Σ−1 (M

(2)
21 ΣΛ

(2)
11 Σ−1)T M

(2)
11 (M

(2)
21 )T

M
(2)
21 ΣΛ

(2)
11 Σ−1 K

(2)
22 M

(2)
21 M

(2)
22

)
diag(U, U)T ,

where M
(2)
11 = P⊥

Y HP⊥
Y with H being a symmetric matrix such that P⊥

Y HP⊥
Y ΣΛ

(2)
11 Σ−1

is symmetric, Y = ΣΛ
(2)
12 , M

(2)
21 = FP⊥

Y with F being arbitrary, K
(2)
22 ,M

(2)
22 are two

arbitrary symmetric matrices, Λ
(2)
11 = V T

1 ΛV1, Λ
(2)
12 = V T

1 ΛV2.

Proof. Substitute (2.5) into (2.29).

Before we consider Problem 1.2 under the condition (2.28), we give some notation.

(
K

(a)
11 (K

(a)
21 )T M

(a)
11 (M

(a)
21 )T

K
(a)
21 K

(a)
22 M

(a)
21 M

(a)
22

)
= UT

(
K

(a)
2 M

(a)
2

)
diag(U,U),

Λ̃11 =
(

ΣΛ
(2)
11 Σ−1 I

)
, K̃M11 =

(
K

(a)
11 M

(a)
11

)
, K̃M21 =

(
K

(a)
21 M

(a)
21

)
.

Theorem 2.9. If K0X1 = M0X1Λ and K1 = 0, M1 = 0, Problem 1.2 has a
solution and

(K2, M2) = U

(
M

(2)
11 ΣΛ

(2)
11 Σ−1 (M

(2)
21 ΣΛ

(2)
11 Σ−1)T M

(2)
11 (FP⊥

Y
)T

M
(2)
21 ΣΛ

(2)
11 Σ−1 K

(a)
22 FP⊥

Y
M

(a)
22

)
diag(U, U)T ,
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in which M
(2)
11 = P⊥

Y HP⊥
Y with H being a symmetric solution of ||P⊥

Y HP⊥
Y Λ̃11 −

K̃M11||= min; P⊥
Y HP⊥

Y ΣΛ
(2)
11 Σ−1 = Σ−1(Λ

(2)
11 )T ΣP⊥

Y HP⊥
Y ; and F = K̃M21(P

⊥
Y Λ̃11)

†

+WP⊥

P⊥

Y
Λ̃11

with W being arbitrary.

Proof. It is clear that ||K − Ka||
2 + ||M − Ma||

2 = min if and only if

||K2 − K
(a)
2 ||2F + ||M2 − M

(a)
2 ||2F = min .(2.30)

Equation (2.30) holds if and only if

||M
(2)
11 Λ̃11 − K̃M11||

2 = min, ||M
(2)
21 Λ̃11 − K̃M21||

2 = min,

||K
(2)
22 − K

(a)
22 ||2F = min, ||M

(2)
22 − M

(a)
22 ||2F = min .

Remark 2.10. For details about solving min
H∈SRn×n

||P⊥
Y HP⊥

Y Λ̃11 − K̃M11||, see

Theorem 3.3.2 in [18].

3. A special case. In this section, we consider one simple but not easy case of

Problem 1.1 and Problem 1.2.

Problem 3.1. Given p eigenpairs by (X,Λ), where X ∈ R
n×p and Λ ∈ R

p×p

is a block diagonal matrix with 2-by-2 blocks or single real eigenvalues on its main

diagonal, and K0 ∈ SR
r×r. Find a real matrix K ∈ SR

n×n such that

KX = XΛ, K([1, r]) = K0,(3.1)

where K([1, r]) is the r × r leading principal submatrix of K.

Problem 3.2. Given Ka ∈ SR
n×n with Ka([1, r]) = K0, find K̂ ∈ SE such that

||Ka − K̂|| = inf
K∈SE

||Ka − K||,

where SE is the solution set of Problem 3.1.

Let X ∈ R
n×p and K ∈ SR

n×n have the partitions as in (2.1) and the singular

value decomposition of X2 be given as in (2.5).

Theorem 3.3. Suppose that K0 ∈ SR
r×r, X ∈ R

n×p, and Λ ∈ R
p×p are given

as in Problem 3.1. Then Problem 3.1 is solvable if and only if

(K0X1 − X1Λ)P⊥
XT

2

= 0, P⊥
XT

2

(ΛT XT
2 − XT

1 (X1Λ − K0X1)X
†
2) = 0,(3.2)

and

XT XΛ = ΛT XT X(3.3)

hold.
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If (3.2) and (3.3) hold, then the general solution of Problem 3.1 is

K =




K0 (X1Λ − K0X1)X
†
2 + P⊥

(X1P⊥

XT
2

)
LP⊥

X2

KT
1 BX

†
2 + (BX

†
2)T P⊥

X2
+ P⊥

X2
HP⊥

X2


 ,(3.4)

where B = X2Λ− (X†
2)T (X1Λ−K0X1)

T X1−P⊥
X2

LT P⊥
(X1P⊥

XT
2

)
X1, both L ∈ R

r×(n−r)

and H ∈ SR
(n−r)×(n−r) are arbitrary.

Proof. Applying (2.1), (3.1) is equivalent to the following two equations

K1X2 = X1Λ − K0X1,(3.5)

KT
1 X1 = X2Λ − K2X2.(3.6)

By Lemma 2.2, (3.5) has a solution K1 if and only if

(X1Λ − K0X1)P
⊥
XT

2

= 0,

in which case,

K1 = (X1Λ − K0X1)X
†
2 + Y P⊥

X2
,(3.7)

where Y ∈ R
r×(n−r) is arbitrary. Substitute (3.7) into (3.6),

K2X2 = X2Λ − KT
1 X1 = X2Λ − (X†

2)T (X1Λ − K0X1)
T X1 − P⊥

X2
Y T X1.(3.8)

By Lemma 2.1, there exists a symmetric matrix K2 satisfying (3.8) if and only if

(X2Λ − KT
1 X1)P

⊥
XT

2

= 0,(3.9)

PX2
(X2Λ − KT

1 X1)X
†
2 ∈ SR

q×(n−r).(3.10)

Let G = P⊥
XT

2

(ΛT XT
2 − XT

1 (X1Λ − K0X1)X
†
2). Since P⊥

XT
2

(PXT
2

XT
1 )(PXT

2

XT
1 )† = 0,

PXT
2

XT
1 (PXT

2

XT
1 )†G(P⊥

X2
)†P⊥

X2
≡ 0.(3.11)

Substitute (3.7) into (3.9), to get

P⊥
XT

2

XT
1 Y P⊥

X2
= G.(3.12)

By (3.11) and Lemma 2.2, (3.12) holds if and only if G = 0, which is exactly the

second equation in (3.2), and in this case

Y = L − (P⊥
XT

2

XT
1 )†(P⊥

XT
2

XT
1 )LP⊥

X2
,(3.13)

where L ∈ R
r×(n−r) is arbitrary. Substituting (3.13) into (3.7), we have

K1 = (X1Λ − K0X1)X
†
2 + P⊥

(X1P⊥

XT
2

)LP⊥
X2

.(3.14)
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Now we substitute (3.14) into (3.10), to get

PX2
(X2Λ − KT

1 X1)X
†
2 = (X2Λ − X2X

†
2KT

1 X1)X
†
2

= X2ΛX
†
2 − (X†

2)T ΛT XT
1 X1X

†
2 + (X1X

†
2)T KT

0 X1X
†
2

= (X†
2)T (XT

2 X2Λ − ΛT XT
1 X1)X

†
2 + (X1X

†
2)T K0X1X

†
2 .

So we can see that the condition (3.10) is equivalent to (3.3). At this point, we have

found the necessary and sufficient condition for the solvability of Problem 3.1. Next

we prove that (3.4) is the general solution of Problem 3.1 if (3.2) and (3.3) hold. If

(3.2) and (3.3) hold, we have proved that K1 has the expression as in (3.14); what is

left to prove is K2 = BX
†
2 +(BX

†
2)T P⊥

X2
+P⊥

X2
HP⊥

X2
. Indeed, if (3.2) and (3.3) hold,

then (3.9) and (3.10) are satisfied. Applying Lemma 2.1 and substituting (3.13) into

(3.8), (3.8) has a symmetric solution K2 = BX
†
2 + (BX

†
2)T P⊥

X2
+ P⊥

X2
HP⊥

X2
.

If X2 is square and nonsingular, then P⊥
X2

= 0 and P⊥
XT

2

= 0 and B = X2Λ −

(X−1
2 )T (X1Λ − K0X1)

T X1. So we have

Corollary 3.4. Suppose that K0 ∈ SR
r×r, X ∈ R

n×p, and Λ ∈ R
p×p is a block

diagonal matrix. If X2 is square and nonsingular, then Problem 3.1 has a unique

solution

K =

(
K0 (X1Λ − K0X1)X

−1
2

KT
1 X2ΛX−1

2 − (X−1
2 )T (X1Λ − K0X1)

T X1X
−1
2

)

if and only if XT XΛ = ΛXT X.

Now we present a general solution of Problem 3.2 assuming Problem 3.1 is solv-

able.

Theorem 3.5. For given matrices Ka ∈ R
n×n with Ka([1, r]) = K0 as in (2.25).

If (3.2) and (3.3) hold, then Problem 3.2 has a unique solution

K̂ =

(
K0 (X1Λ − K0X1)X

†
2 + L̃

KT
1 BX

†
2 + (BX

†
2)T P⊥

X2
+ P⊥

X2
K

(a)
2 P⊥

X2

)
,

where B = X2ΛX
†
2 − (X†

2)T (X1Λ − K0X1)
T X1X

†
2 − L̃T X1X

†
2 , L̃ satisfies

vec(L̃) = [(X1X
†
2)T ⊗ (X1X

†
2)Q + 2I ⊗ (I + (X1X

†
2)(X1X

†
2)T )]−1

vec(2K̃1 − (X1X
†
2)(K̃2 + K̃2

T
)),(3.15)

Q is a permutation matrix such that vec(L̃T ) = Qvec(L̃) and K̃1 = K
(a)
1 − (X1Λ −

K0X1)X
†
2 .

Proof. Let L̃ = P⊥
(X1P⊥

XT
2

)
LP⊥

X2
. From Theorem 3.3,

||K(a) − K||2 = 2||K
(a)
1 − K1||

2 + ||K
(a)
2 − K2||

2
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= 2||K
(a)
1 − (X1Λ − K0X1)X

†
2 − L̃||2

+||K
(a)
2 − X2ΛX

†
2 + (X†

2)T (X1Λ − K0X1)
T X1X

†
2

+L̃T X1X
†
2 + (X1X

†
2)T L̃ − P⊥

X2
HP⊥

X2
||2.

By Lemma 2.5,

min
H=HT

||K(a) − K||2 = 2||K
(a)
1 − (X1Λ − K0X1)X

†
2 − L̃||2

+||K
(a)
2 − X2ΛX

†
2 + (X†

2)T (X1Λ − K0X1)
T X1X

†
2

+L̃T X1X
†
2 + (X1X

†
2)T L̃ − P⊥

X2
K

(a)
2 P⊥

X2
||2,

and the minimum is attained if and only if P⊥
X2

(H −K
(a)
2 )P⊥

X2
= 0. Let K̃1 = K

(a)
1 −

(X1Λ−K0X1)X
†
2 , K̃2 = K

(a)
2 −P⊥

X2
K

(a)
2 P⊥

X2
−X2ΛX

†
2 +(X†

2)T (X1Λ−K0X1)
T X1X

†
2 ,

and

f(L̃) = 2||K̃1 − L̃||2 + ||K̃2 + L̃T X1X
†
2 + (X1X

†
2)T L̃||2.

Then

f(L̃) = 2tr(K̃1
T
K̃1) + 2tr(L̃T L̃) + tr(K̃2

T
K̃2) + 2tr(K̃2

T
(X1X

†
2)T L̃)

+2tr(K̃2(X1X
†
2)T L̃) + 2tr(X1X

†
2(X1X

†
2)T L̃L̃T )

+2tr((X1X
†
2)T L̃(X1X

†
2)T L̃) − 4tr(K̃1

T
L̃).

Consequently, to get the minimal value of f(L̃), we should find its minimal point. As

∂f(L̃)

∂L̃
= 2(X1X

†
2)L̃T (X1X

†
2) + 4(I + (X1X

†
2)(X1X

†
2)T )L̃ − 4K̃1 + 2(X1X

†
2)(K̃2 + K̃2

T
),

∂f(L̃)

∂L̃
= 0 is equivalent to

Φvec(L̃) = vec(2K̃1 − (X1X
†
2)(K̃2 + K̃2

T
)),(3.16)

where Φ = (X1X
†
2)T ⊗(X1X

†
2)Q+2I⊗(I+(X1X

†
2)(X1X

†
2)T ), and Q is a permutation

matrix such that vec(L̃T ) = Qvec(L̃). Since Φ is nonsingular, (3.16) has an unique

solution (3.15) and f(L̃) has an unique minimal value point L̃.

4. Conclusions. Motivated by Y. Yuan and H. Dai [21], this paper is concerned

with the symmetric inverse generalized eigenvalue problem and the problem of the

optimal approximation for a given symmetric matrix pencil under a given spectral con-

straint and a symmetric submatrix pencil constraint. By using the Moore-Penrose

generalized inverse and the singular value decomposition, we first present the solv-

ability condition and the expression for the solution of these two problems. For the
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case that the mass matrix is unit, there is a formula of the general solution which is

inexpensive to compute and can be used routinely in practice.
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