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THE A-LIKE MATRICES FOR A HYPERCUBE∗

ŠTEFKO MIKLAVIČ† AND PAUL TERWILLIGER‡

Abstract. Let D denote a positive integer and let QD denote the graph of the D-dimensional

hypercube. Let X denote the vertex set of QD and let A ∈ MatX(R) denote the adjacency matrix

of QD. A matrix B ∈ MatX(R) is called A-like whenever both (i) BA = AB; (ii) for all x, y ∈ X

that are not equal or adjacent, the (x, y)-entry of B is zero. Let L denote the subspace of MatX(R)

consisting of the A-like elements. The subspace L is decomposed into the direct sum of its symmetric

part and antisymmetric part. A basis for each part is given. The dimensions of the symmetric part

and antisymmetric part are D + 1 and
(

D

2

)

, respectively.
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1. Introduction. This paper is about the A-like matrices for a hypercube. The

concept of an A-like matrix originated in the study of tridiagonal pairs of linear trans-

formations [4]. In order to explain the concept, let us briefly review the notion of a

tridiagonal pair. Let V denote a vector space with finite positive dimension. Roughly

speaking, a tridiagonal pair on V is a pair of diagonalizable linear transformations

A : V → V and A∗ : V → V that each act in a block-tridiagonal fashion on the

eigenspaces of the other one [4, Definition 1.1]. For a tridiagonal pair A,A∗ on V , we

seek an attractive basis for V consisting of eigenvectors for A. In this search, the fol-

lowing type of linear transformation plays a role. A linear transformation B : V → V

is called A-like whenever it commutes with A and acts on the eigenspaces of A∗ in

the above block-tridiagonal fashion. The simultaneous diagonalization of a large col-

lection of mutually commuting A-like linear transformations is expected to yield the

desired basis. The study of A-like linear transformations has just begun and our re-

sults so far are tentative. In order to gain more insight on these transformations, in

the present paper we consider the following related problem.

Let Γ denote a finite undirected graph with vertex set X. Let A ∈ MatX(R)

denote the adjacency matrix of Γ. For B ∈ MatX(R), we define B to be A-like
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whenever both

(i) BA = AB;

(ii) for all x, y ∈ X that are not equal or adjacent, the (x, y)-entry of B is zero.

Let L denote the subspace of MatX(R) consisting of the A-like elements for Γ. We

will discuss L after a few comments.

For B ∈ MatX(R), let Bt denote the transpose of B. Recall that B is symmetric

(resp., antisymmetric) whenever Bt = B (resp., Bt = −B). For a subspace H ⊆
MatX(R), the set of symmetric (resp., antisymmetric) matrices in H is a subspace of

H called the symmetric part (resp., antisymmetric part) of H. Note that the following

are equivalent: (i) H is the direct sum of its symmetric and antisymmetric part; (ii)

H is closed under the transpose map.

Let Lsym (resp., Lasym) denote the symmetric (resp., antisymmetric) part of L.

Note that L is closed under the transpose map, so the sum L = Lsym + Lasym is

direct.

For a positive integer D, let QD denote the graph of the D-dimensional hypercube

(see Section 4 for formal definitions). For Γ = QD, we find a basis for Lsym and Lasym.

In particular, we show that the dimensions of Lsym and Lasym are D + 1 and
(

D
2

)

,

respectively.

2. Preliminaries. Let X denote a nonempty finite set. Let MatX(R) denote

the R-algebra consisting of the matrices with entries in R, and rows and columns

indexed by X. Let V = R
X denote the vector space over R consisting of the column

vectors with entries in R and rows indexed by X. Observe that MatX(R) acts on

V by left multiplication. We refer to V as the standard module of MatX(R). For

v ∈ V , let vt denote the transpose of v. We endow V with the bilinear form 〈u, v〉 =

utv (u, v ∈ V ). The vector space V together with 〈 , 〉 is a Euclidean space. For

x ∈ X, let x̂ denote the vector in V that has x-coordinate 1 and all other coordinates

0. Observe that {x̂|x ∈ X} is an orthonormal basis for V . For B ∈ MatX(R), we have

〈Bu, v〉 = 〈u,Btv〉 for all u, v ∈ V . Therefore, B is symmetric (resp., antisymmetric)

if and only if 〈Bu, v〉 = 〈u,Bv〉 (resp., 〈Bu, v〉 = −〈u,Bv〉) for all u, v ∈ V .

Given a subspace U ⊆ V , let End(U) denote the R-algebra consisting of the linear

transformations from U to U . We identify End(V ) with MatX(R).

Lemma 2.1. For a subspace U ⊆ V and B ∈ End(U), there exists a unique

B† ∈ End(U) such that 〈Bu, v〉 = 〈u,B†v〉 for all u, v ∈ U . We call B† the adjoint

of B relative to 〈 , 〉.

Proof. By the Fischer-Riesz theorem [5, Theorem 9.18], for all v ∈ U , there exists
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a unique zv ∈ U such that 〈Bu, v〉 = 〈u, zv〉 for all u ∈ U . Observe that the map

U → U , v 7→ zv is an element of End(U) which we denote by B†. By construction

〈Bu, v〉 = 〈u,B†v〉 for all u, v ∈ U . We have shown that B† exists. The uniqueness

of B† follows from the uniqueness of the vector zv in our preliminary remarks.

Example 2.2. Referring to Lemma 2.1, assume U = V . Then B† = Bt.

The lemma and corollaries below follow from Lemma 2.1.

Lemma 2.3. Let U denote a subspace of V and fix an orthonormal basis for U .

Pick B ∈ End(U) and consider the matrices representing B and B† with respect to

this basis. Then these matrices are transposes of each other.

Corollary 2.4. For a subspace U ⊆ V and B ∈ End(U), the following (i)–(iv)

are equivalent.

(i) There exists an orthonormal basis for U with respect to which the matrix

representing B is symmetric.

(ii) With respect to any orthonormal basis for U the matrix representing B is

symmetric.

(iii) 〈Bu, v〉 = 〈u,Bv〉 for all u, v ∈ U .

(iv) B = B†.

Corollary 2.5. For a subspace U ⊆ V and B ∈ End(U), the following (i)–(iv)

are equivalent.

(i) There exists an orthonormal basis for U with respect to which the matrix

representing B is antisymmetric.

(ii) With respect to any orthonormal basis for U the matrix representing B is

antisymmetric.

(iii) 〈Bu, v〉 = −〈u,Bv〉 for all u, v ∈ U .

(iv) B = −B†.

Motivated by Corollaries 2.4 and 2.5 we make a definition.

Definition 2.6. For a subspace U ⊆ V and B ∈ End(U), we call B symmetric

(resp., antisymmetric) whenever the equivalent conditions (i)–(iv) hold in Corollary

2.4 (resp., Corollary 2.5).

Definition 2.7. Pick a subspace U ⊆ V and a subspace H ⊆ End(U). By

the symmetric part of H we mean the subspace of H consisting of its symmetric

elements. By the antisymmetric part of H we mean the subspace of H consisting of

its antisymmetric elements.

We make two observations.
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Lemma 2.8. For a subspace U ⊆ V and a subspace H ⊆ End(U), the following

(i), (ii) are equivalent.

(i) H is the direct sum of its symmetric and antisymmetric part.

(ii) H is closed under the adjoint map.

Lemma 2.9. Let B ∈ MatX(R) and assume B is symmetric (resp., antisym-

metric). Then for any B-invariant subspace U ⊆ V , the restriction of B to U is

symmetric (resp., antisymmetric) in the sense of Definition 2.6.

Let Γ = (X,R) denote a finite, undirected, connected graph, without loops or

multiple edges, with vertex set X, edge set R, path-length distance function ∂, and

diameter D := max{∂(x, y)| x, y ∈ X}. For a vertex x ∈ X and an integer i ≥ 0,

let Γi(x) = {y ∈ X | ∂(x, y) = i}. We abbreviate Γ(x) = Γ1(x). For an integer

k ≥ 0, we say Γ is regular with valency k whenever |Γ(x)| = k for all x ∈ X. We

say Γ is distance-regular whenever for all integers 0 ≤ h, i, j ≤ D and all x, y ∈ X

with ∂(x, y) = h, the number ph
ij := |Γi(x) ∩ Γj(y)| is independent of x, y. The

constants ph
ij are known as the intersection numbers of Γ. From now on assume Γ is

distance-regular with D ≥ 1. Observe that Γ is regular with valency k = p0
11.

We now recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D, let Ai denote the

matrix in MatX(R) with entries

(Ai)xy =

{

1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i
(x, y ∈ X).

We abbreviate A = A1 and call this the adjacency matrix of Γ. Let M denote the

subalgebra of MatX(R) generated by A. By [3, Theorem 11.2.2] the matrices {Ai}D
i=0

form a basis for M . We call M the Bose-Mesner algebra of Γ. Observe that M is

commutative and semi-simple. By [3, Theorem 12.2.1] there exists a basis {Ei}D
i=0

for M such that (i) E0 = |X|−1J , (ii) I =
∑D

i=0 Ei, (iii) Et
i = Ei (0 ≤ i ≤ D), (iv)

EiEj = δijEi (0 ≤ i, j ≤ D), where I and J denote the identity and the all-ones

matrix of MatX(R), respectively. The matrices {Ei}D
i=0 are known as the primitive

idempotents of Γ, and E0 is called the trivial idempotent. We recall the eigenvalues

of Γ. Since {Ei}D
i=0 is a basis for M , there exist real scalars {θi}D

i=0 such that

A =
D

∑

i=0

θiEi.

Combining this with (iv) above we obtain AEi = EiA = θiEi for 0 ≤ i ≤ D. Using

(i) above we find θ0 = k. For 0 ≤ i ≤ D, we call θi the eigenvalue of Γ associated

with Ei. The eigenvalues {θi}D
i=0 are mutually distinct since A generates M . For

0 ≤ i ≤ D, let mi denote the rank of Ei. We call mi the multiplicity of θi.
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By (ii)–(iv) above,

V = E0V + E1V + · · · + EDV (orthogonal direct sum).(2.1)

For 0 ≤ i ≤ D, the space EiV is the eigenspace of A associated with θi.

3. The tensor product. In this section, we recall the tensor product of vectors

and matrices.

For v ∈ R
X and v′ ∈ R

X′

, let v ⊗ v′ denote the vector in R
X×X′

with a (x, x′)-

entry equal to the x-entry of v times the x′-entry of v′. We call v ⊗ v′ the tensor

product of v and v′.

For B ∈ MatX(R) and B′ ∈ MatX′(R), let B ⊗ B′ denote the matrix in

MatX×X′(R) with a ((x, x′), (y, y′))-entry equal to the (x, y)-entry of B times the

(x′, y′)-entry of B′. We call B ⊗ B′ the tensor product of B and B′. Pick B1, B2 ∈
MatX(R) and B′

1, B
′
2 ∈ MatX′(R). Then by [2, p. 107],

(B1 ⊗ B′
1)(B2 ⊗ B′

2) = (B1B2) ⊗ (B′
1B

′
2).(3.1)

Similarly, for v1, v2 ∈ R
X and v′

1, v
′
2 ∈ R

X′

, we have

〈v1 ⊗ v′
1, v2 ⊗ v′

2〉 = 〈v1, v2〉〈v′
1, v

′
2〉,(3.2)

(B1 ⊗ B′
1)(v1 ⊗ v′

1) = (B1v1) ⊗ (B′
1v

′
1).(3.3)

4. The hypercubes and the matrices αi. In this section, we recall the hy-

percube graph and some of its basic properties. Fix a positive integer D. Let X

denote the Cartesian product {0, 1} × {0, 1} × · · · × {0, 1} (D copies). Thus, X is

the set of sequences (x1, x2, . . . , xD) such that xi ∈ {0, 1} for 1 ≤ i ≤ D. For x ∈ X

and 1 ≤ i ≤ D, let xi denote the i-th coordinate of x. We interpret MatX(R) and

the standard module V = R
X as follows. We abbreviate Mat2(R) = Mat{0,1}(R)

and identify MatX(R) = (Mat2(R))⊗D. We abbreviate R
2 = R

{0,1} and identify

V = (R2)⊗D. Let QD denote the graph with vertex set X, and where two vertices are

adjacent if and only if they differ in exactly one coordinate. We call QD the D-cube

or the D-dimensional hypercube. The graph QD is connected, and for x, y ∈ X, the

distance ∂(x, y) is the number of coordinates at which x and y differ. The diameter of

QD equals D. The graph QD is bipartite with bipartition X = X+ ∪X−, where X+

(resp., X−) is the set of vertices of QD with an even (resp., odd) number of positive

coordinates. By [1, p. 261] QD is distance-regular.

Let θ0 > · · · > θD denote the eigenvalues of QD. By [1, p. 261] these eigenvalues

and their multiplicities are given by

θi = D − 2i, mi =

(

D

i

)

(0 ≤ i ≤ D).
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Definition 4.1. For 1 ≤ i ≤ D, vertices x, y ∈ X are said to be i-adjacent

whenever they differ in the i-th coordinate and are equal in all other coordinates.

Define αi ∈ MatX(R) by

(αi)xy =

{

1 if x, y are i-adjacent,

0 otherwise
(x, y ∈ X).

From Definition 4.1 we routinely obtain the following result.

Lemma 4.2. With reference to Definition 4.1 the following (i)–(iii) hold.

(i) αiαj = αjαi (1 ≤ i, j ≤ D);

(ii) α2
i = I (1 ≤ i ≤ D);

(iii) A =
∑D

i=1 αi.

We now describe the {αi}D
i=1 from another point of view.

Definition 4.3. Define α ∈ Mat2(R) by

α =

(

0 1

1 0

)

.

Observe that α2 = , where  denotes the identity in Mat2(R).

Lemma 4.4. For 1 ≤ i ≤ D, the matrix αi from Definition 4.1 satisfies

αi = ⊗(i−1) ⊗ α ⊗ ⊗(D−i).(4.1)

Proof. Using the definition of tensor product in Section 3, along with Definition

4.1 and Definition 4.3, we find that for x, y ∈ X, the (x, y)-entry of the left-hand side

of (4.1) equals the (x, y)-entry of the right-hand side of (4.1).

5. The matrices α∗
i . We continue to discuss the hypercube QD from Section 4.

In Section 4 we defined the matrices {αi}D
i=1. We now define some matrices {α∗

i }D
i=1.

Definition 5.1. For 1 ≤ i ≤ D let α∗
i ∈ MatX(R), denote the diagonal matrix

with (x, x)-entry

(α∗
i )xx =

{

1 if xi = 0,

−1 if xi = 1
(x ∈ X).

From Definition 5.1 we routinely obtain the following result.

Lemma 5.2. With reference to Definition 5.1 the following (i), (ii) hold.

(i) α∗
i α

∗
j = α∗

jα
∗
i (1 ≤ i, j ≤ D);
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(ii) (α∗
i )

2 = I (1 ≤ i ≤ D).

We now show that the matrices {α∗
i }D

i=1 satisfy an analog of Lemma 4.4.

Definition 5.3. Define α∗ ∈ Mat2(R) by

α∗ =

(

1 0

0 −1

)

.

Observe that (α∗)2 =  and αα∗ = −α∗α.

Lemma 5.4. For 1 ≤ i ≤ D, the matrix α∗
i from Definition 5.1 satisfies

α∗
i = ⊗(i−1) ⊗ α∗ ⊗ ⊗(D−i).(5.1)

Proof. Using the definition of tensor product in Section 3, along with Definition

5.1 and Definition 5.3, we find that for x, y ∈ X, the (x, y)-entry of the left-hand side

of (5.1) equals the (x, y)-entry of the right-hand side of (5.1).

Lemma 5.5. With reference to Definitions 4.1 and 5.1 the following (i), (ii) hold.

(i) αiα
∗
j = α∗

jαi if i 6= j (1 ≤ i, j ≤ D);

(ii) αiα
∗
i = −α∗

i αi (1 ≤ i ≤ D).

Proof. Straightforward from Lemma 4.4 and Lemma 5.4, using (3.1) and αα∗ =

−α∗α.

6. An orthonormal A-eigenbasis for V . We continue to discuss the hyper-

cube QD from Section 4. In this section, we display an orthonormal basis for the

standard module V that consists of eigenvectors for A.

Definition 6.1. Define u, v ∈ R
2 by

u =
1√
2

(

1

1

)

, v =
1√
2

(

1

−1

)

.

Observe that u, v form an orthonormal basis for R
2.

We have a comment.

Lemma 6.2. The vectors u, v from Definition 6.1 satisfy

αu = u, αv = −v, α∗u = v, α∗v = u,

where α is from Definition 4.3 and α∗ is from Definition 5.3.

Definition 6.3. For a subset S ⊆ {1, 2, . . . ,D}, define wS ∈ V by

wS = w1 ⊗ w2 ⊗ · · · ⊗ wD,
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where

wi =

{

u if i 6∈ S,

v if i ∈ S
(1 ≤ i ≤ D).

Lemma 6.4. The vectors

wS , S ⊆ {1, 2, . . . ,D}(6.1)

form an orthonormal basis for V .

Proof. The number of vectors in (6.1) is 2D, and this number is the dimension

of V . Therefore, it suffices to show that the vectors (6.1) have square norm 1 and

are mutually orthogonal. But this is the case by (3.2) and the observation below

Definition 6.1.

We now consider the actions of {αi}D
i=1, {α∗

i }D
i=1 on the basis (6.1).

Proposition 6.5. For 1 ≤ i ≤ D and S ⊆ {1, 2, . . . ,D}, the action of αi and

α∗
i on wS is given by

αiwS =

{

wS if i 6∈ S,

−wS if i ∈ S,
α∗

i wS =

{

wS∪i if i 6∈ S,

wS\i if i ∈ S.

Proof. To compute αiwS use (3.3), Lemma 4.4, Lemma 6.2 and Definition 6.3.

To compute α∗
i wS use (3.3), Lemma 5.4, Lemma 6.2 and Definition 6.3.

Corollary 6.6. For 0 ≤ i ≤ D, the vectors

wS , S ⊆ {1, 2, . . . ,D}, |S| = i(6.2)

form a basis for EiV .

Proof. In view of (2.1) and Lemma 6.4 it suffices to show that each vector wS from

(6.2) is contained in EiV . Recall that EiV is the eigenspace of A for the eigenvalue

θi = D − 2i. Using Lemma 4.2(iii) and Proposition 6.5,

AwS = (D − |S|)wS − |S|wS = (D − 2i)wS .

Therefore, wS ∈ EiV and the result follows.

7. A characterization of L. We continue to discuss the hypercube QD from

Section 4. For this graph, we now give a characterization of L.

Lemma 7.1. Pick distinct integers i, j (1 ≤ i, j ≤ D) and B ∈ MatX(R).

Consider the following expression:

α∗
i α

∗
jB − α∗

i Bα∗
j − α∗

jBα∗
i + Bα∗

i α
∗
j .(7.1)
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Then for x, y ∈ X, the following (i), (ii) hold.

(i) The (x, y)-entry of (7.1) is equal to

((α∗
i )xx − (α∗

i )yy)((α∗
j )xx − (α∗

j )yy)Bxy.(7.2)

(ii) The (x, y)-entry of (7.1) is 0 whenever x = y or x, y are adjacent.

Proof. (i) Use matrix multiplication, together with the fact that the matrices α∗
i

and α∗
j are diagonal.

(ii) First assume x = y. Then the first two factors in (7.2) are zero, so (7.2) is zero.

Next assume that x, y are adjacent. Then there exists a unique integer r (1 ≤ r ≤ D)

such that x, y are r-adjacent. By assumption i 6= j, so r 6= i or r 6= j. If r 6= i then

the first factor in (7.2) is zero. If r 6= j then the second factor in (7.2) is zero. In any

case (7.2) is zero.

Lemma 7.2. For B ∈ MatX(R), the following (i), (ii) are equivalent.

(i) For all x, y ∈ X that are not equal or adjacent, the (x, y)-entry of B is zero.

(ii) For 1 ≤ i < j ≤ D,

α∗
i α

∗
jB − α∗

i Bα∗
j − α∗

jBα∗
i + Bα∗

i α
∗
j = 0.

Proof. (i) → (ii): Immediate from Lemma 7.1.

(ii) → (i): Write r = ∂(x, y) and note that r ≥ 2. By construction x, y differ in

exactly r coordinates. So there exist two distinct coordinates i, j (i < j) at which x, y

differ. For these values of i, j, we apply Lemma 7.1. By assumption (7.1) is zero so

(7.2) is zero. But in (7.2) the first two factors are nonzero so the last factor Bxy is

zero.

Proposition 7.3. For B ∈ MatX(R), the following (i), (ii) are equivalent.

(i) B is A-like;

(ii) B commutes with A and

α∗
i α

∗
jB − α∗

i Bα∗
j − α∗

jBα∗
i + Bα∗

i α
∗
j = 0 (1 ≤ i < j ≤ D).

Proof. By Lemma 7.2 and the definition of an A-like matrix.

8. The symmetric A-like matrices for QD. We continue to discuss the hy-

percube QD from Section 4. For this graph, we now describe the vector space Lsym.

We will give a basis for Lsym and show that the dimension is D + 1.

Lemma 8.1. The following (i)–(iii) hold.

(i) I ∈ Lsym;
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(ii) αi ∈ Lsym for 1 ≤ i ≤ D;

(iii) The matrices I, α1, α2, . . . , αD are linearly independent.

Proof. (i) This is clear.

(ii) The matrix αi is symmetric by Definition 4.1, so it suffices to show that

αi ∈ L. By Lemma 4.2(i),(iii) we have αiA = Aαi. For all x, y ∈ X that are not

equal or adjacent, x and y are not i-adjacent so the (x, y)-entry of αi is zero. We have

shown αi ∈ L and the result follows.

(iii) For each matrix in this list, define the support to be the set of ordered pairs

(x, y) of vertices such that the (x, y)-entry is nonzero. These supports are nonempty

and mutually disjoint. Therefore, the matrices are linearly independent.

Lemma 8.2. The following (i), (ii) hold for B ∈ Lsym.

(i) Bxx = Byy for all x, y ∈ X.

(ii) Pick x, z ∈ X such that ∂(x, z) = 2, and let y, w denote the two vertices in

Γ(x) ∩ Γ(z). Then Bxy = Bzw and Byz = Bwx.

Proof. (i) Since QD is connected we may assume without loss that x, y are adja-

cent. We have BA = AB so (BA)xy = (AB)xy. By matrix multiplication,

(BA)xy =
∑

v∈X

BxvAvy =
∑

v∈Γ(y)

Bxv.

By construction x ∈ Γ(y). For all v ∈ Γ(y)\x, we have ∂(x, v) = 2, so Bxv = 0.

Therefore, (BA)xy = Bxx. By a similar argument (AB)xy = Byy. The result follows.

(ii) Recall BA = AB so (BA)xz = (AB)xz. In this equation, we expand each side

using matrix multiplication and simplify the result using the fact that B is in Lsym.

This yields Bxy +Bwx = Byz +Bzw. In the above argument we replace (x, y, z, w) by

(y, z, w, x) to obtain Byz + Bxy = Bzw + Bwx. Combining the above two equations

we obtain Bxy = Bzw and Byz = Bwx.

Lemma 8.3. Fix x ∈ X. Let B denote a matrix in Lsym such that Bxy = 0 for

all y ∈ X. Then B = 0.

Proof. For z ∈ X, we have Bzz = 0 by Lemma 8.2(i) and since Bxx = 0. We

now show that Bzw = 0 for all edges zw. We proceed as follows. For the moment

pick an edge zw. Since QD is bipartite, the distances ∂(x, z) and ∂(x,w) differ by 1.

We claim that for all integers m (1 ≤ m ≤ D), Bzw = 0 for all edges zw such that

z ∈ Γm−1(x) and w ∈ Γm(x). To prove the claim we use induction on m. First assume

m = 1. Then the claim holds by the assumptions of the lemma. Next assume m ≥ 2.

Pick v ∈ Γm−2(x) ∩ Γ(z). Note that ∂(v, w) = 2; let u denote the unique vertex in

Γ(v) ∩ Γ(w) other than z. Applying Lemma 8.2(ii) to v, z, w, u we find Bzw = Bvu.
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In this equation, the right-hand side is zero by induction on m, so the left-hand side

is zero, as desired. The claim is proved and the result follows.

Corollary 8.4. The matrices

I, α1, α2, . . . , αD(8.1)

form a basis for Lsym. Moreover, the dimension of Lsym is D + 1.

Proof. By Lemma 8.1 the matrices (8.1) are linearly independent and contained

in Lsym. It remains to show that the matrices (8.1) span Lsym. Pick B ∈ Lsym. We

show that B is in the span of (8.1). Fix x ∈ X and define real scalars ε0, ε1, . . . , εD

as follows. Define ε0 = Bxx. For 1 ≤ i ≤ D, define εi = Bxy, where y = yi is the

unique vertex in X that is i-adjacent to x. We show

B = ε0I +

D
∑

i=1

εiαi.(8.2)

Let C denote the left-hand side of (8.2) minus the right-hand side of (8.2), and note

that C ∈ Lsym. By construction Cxy = 0 for all y ∈ X, so C = 0 in view of Lemma

8.3. We have shown (8.2). Therefore, the matrices (8.1) span Lsym and the result

follows.

9. The antisymmetric A-like matrices for QD. We continue to discuss the

hypercube QD from Section 4. For this graph, we now describe the vector space

Lasym. We will give a basis for Lasym and show that the dimension is
(

D
2

)

. We start

with a comment. For B ∈ L and 0 ≤ i ≤ D, the space EiV is B-invariant since B

commutes with A.

Lemma 9.1. For all B ∈ Lasym, we have BE0V = 0.

Proof. Note that BE0V ⊆ E0V . Since E0V has dimension 1, there exists λ ∈ R

such that (B − λI)E0V = 0. We show that λ = 0. Pick a nonzero v ∈ E0V and note

that 〈v, v〉 6= 0. Since B is antisymmetric, we get

λ〈v, v〉 = 〈Bv, v〉 = −〈v,Bv〉 = −λ〈v, v〉.

Therefore, λ = 0 and the result follows.

To motivate our next result, pick B ∈ Lasym. Note that E1V is B-invariant.

Consider the restriction B|E1V . By Lemma 2.9 this restriction is contained in the an-

tisymmetric part of End(E1V ). Denote this part by End(E1V )asym and consider the

restriction map Lasym → End(E1V )asym, B 7→ B|E1V . We show that this restriction

map is an injection.
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Lemma 9.2. The restriction map

Lasym → End(E1V )asym

B 7→ B|E1V

is an injection.

Proof. Pick B ∈ Lasym such that BE1V = 0. We show that B = 0. We will

do this in steps as follows. We claim that BEℓV = 0 for 0 ≤ ℓ ≤ D. Our proof is

by induction on ℓ. For ℓ = 0, the claim follows from Lemma 9.1, and for ℓ = 1, the

claim follows from our assumptions. Next assume ℓ ≥ 2. To show BEℓV = 0, by

Corollary 6.6 it suffices to show BwS = 0 for all subsets S ⊆ {1, 2, . . . ,D} such that

|S| = ℓ. Let S be given and pick distinct i, j ∈ S with i < j. Define P = S \ {i, j},
Q = S\i, R = S\j. Note that |P | = ℓ−2, so wP ∈ Eℓ−2V by Corollary 6.6. Similarly

wQ ∈ Eℓ−1V and wR ∈ Eℓ−1V . By these comments and the induction hypothesis,

B vanishes on each of wP , wQ, wR. By Proposition 6.5 we have wS = α∗
i α

∗
jwP ,

wQ = α∗
jwP , wR = α∗

i wP . By Proposition 7.3,

α∗
i α

∗
jB − α∗

i Bα∗
j − α∗

jBα∗
i + Bα∗

i α
∗
j = 0.

In this equation, we apply each side to wP and evaluate the result using the above

comments to get BwS = 0. We have shown BEℓV = 0 and the claim is proved. It

follows that B = 0.

We now show that α∗
i Aα∗

j − α∗
jAα∗

i (1 ≤ i < j ≤ D) form a basis for Lasym.

We start with a few comments about these expressions. To simplify the notation we

abbreviate

Bij = α∗
i Aα∗

j − α∗
jAα∗

i (1 ≤ i < j ≤ D).(9.1)

Lemma 9.3. For 1 ≤ i < j ≤ D,

Bij = 2α∗
i α

∗
j (αi − αj).

Proof. Routine using Lemma 4.2(iii), Lemma 5.2 and Lemma 5.5.

Lemma 9.4. The following (i), (ii) hold for 1 ≤ i < j ≤ D and 1 ≤ ℓ ≤ D.

(i) Assume ℓ = i or ℓ = j. Then Bijαℓ = −αℓBij.

(ii) Assume ℓ 6= i and ℓ 6= j. Then Bijαℓ = αℓBij.

Proof. Use Lemma 4.2(i), Lemma 5.5, and Lemma 9.3.

Lemma 9.5. For 1 ≤ i < j ≤ D, we have Bij ∈ Lasym.
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Proof. The matrix Bij is antisymmetric by (9.1) and since each of A, α∗
i α∗

j is

symmetric. We show Bij commutes with A. Using Lemma 4.2(iii), Lemma 9.3 and

Lemma 9.4 we find

BijA − ABij = 2Bij(αi + αj) = 4α∗
i α

∗
j (α

2
i − α2

j ) = 0,

with the last equality holding since α2
i = α2

j = I. Therefore, Bij commutes with A.

Pick x, y ∈ X that are not equal or adjacent. We show that the (x, y)-entry of

Bij is zero. By (9.1) and since α∗
i , α∗

j are diagonal,

(Bij)xy = (α∗
i )xxAxy(α∗

j )yy − (α∗
j )xxAxy(α∗

i )yy.

But Axy = 0 since x, y are not adjacent, so (Bij)xy = 0. The result follows.

For 1 ≤ i < j ≤ D, we now give the action of Bij on the basis (6.1).

Lemma 9.6. For 1 ≤ i < j ≤ D and S ⊆ {1, 2, . . . ,D},

BijwS =







−4w(S∪j)\i if i ∈ S and j 6∈ S,

4w(S∪i)\j if i 6∈ S and j ∈ S,

0 otherwise.

Proof. Use Proposition 6.5 and Lemma 9.3.

Theorem 9.7. The matrices

α∗
i Aα∗

j − α∗
jAα∗

i , 1 ≤ i < j ≤ D(9.2)

form a basis for Lasym. Moreover, the dimension of Lasym is
(

D
2

)

.

Proof. The number of elements in (9.2) is equal to
(

D
2

)

. The elements in (9.2) are

contained in Lasym by Lemma 9.5. The elements in (9.2) are linearly independent;

this can be verified using Lemma 9.6 with |S| = 1. Therefore, the dimension of Lasym

is at least
(

D
2

)

. To finish the proof it suffices to show that the dimension of Lasym

is at most
(

D
2

)

. By Lemma 9.2 the dimension of Lasym is at most the dimension of

End(E1V )asym. The dimension of End(E1V )asym is
(

D
2

)

since the dimension of E1V

is D. Therefore, the dimension of Lasym is at most
(

D
2

)

. The result follows.

Corollary 9.8. The following is a basis for L:

{I, α1, α2, . . . , αD} ∪ {α∗
i Aα∗

j − α∗
jAα∗

i | 1 ≤ i < j ≤ D}.

Moreover, the dimension of L is 1 + D +
(

D
2

)

.

Proof. Recall that L is a direct sum of Lsym and Lasym. The result now follows

from Corollary 8.4 and Theorem 9.7.
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The following result might be of independent interest.

Proposition 9.9. The restriction map

Lasym → End(E1V )asym

B 7→ B|E1V

is a bijection.

Proof. By Lemma 9.2 and since the dimensions of Lasym and End(E1V )asym are

equal.
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