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THE MINIMUM ALGEBRAIC CONNECTIVITY OF

CATERPILLAR UNICYCLIC GRAPHS
∗

WAI CHEE SHIU† , JI-MING GUO‡ , AND JIANXI LI†§

Abstract. A caterpillar unicyclic graph is a unicyclic graph in which the removal of all pendant

vertices makes it a cycle. In this paper, the unique caterpillar unicyclic graph with minimum algebraic

connectivity among all caterpillar unicyclic graphs is determined.
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1. Introduction. Let G = (V,E) be a simple graph with vertex set V =

{v1, v2, . . . , vn} and edge set E. Let d(vi) be the degree of the vertex vi ∈ V (G)

(i = 1, 2, . . . , n), and D = D(G) = diag(d(v1), d(v2), . . . , d(vn)) be the diagonal ma-

trix of vertex degrees. The Laplacian matrix L(G) = D(G) − A(G) is the difference

between D(G) and the adjacency matrix A(G). It is easy to see that L(G) is a positive

semidefinite symmetric matrix with the smallest eigenvalue 0 and the corresponding

eigenvector is the all ones column vector, which is denoted by e. Denote its eigenvalues

by

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0,

which are always enumerated in non-increasing order and repeated according to their

multiplicity. Fiedler [4] showed that the second smallest eigenvalue of L(G) is 0 if and

only if G is disconnected. Thus, the second smallest eigenvalue of L(G) is popularly

known as the algebraic connectivity of G and is usually denoted by α(G). Let Pn and

Cn be the path and the cycle on n vertices, respectively. It is a known fact that

α(Pn) = 4 sin2 π
2n

and α(Cn) = 4 sin2 π
n
.
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Let Y ∈ R
n be a column vector. It will be convenient to assume that the entry yi

of Y is corresponding to the vertex vi of G. Such a Y is sometimes called a valuation

of the graph G (see, [11]). In the following, yi will be written as Y (vi) for convenient.

If X is a unit eigenvector of G corresponding to α(G), we commonly call it a Fiedler

vector of G. It is obvious that XT e = 0 and

α(G) = XT L(G)X =
∑

vivj∈E

(X(vi) − X(vj))
2 = min

Y ∈Rn\{0}

Y T e=0

Y T L(G)Y

Y T Y
.

Furthermore, from L(G)X = α(G)X, we also have the set of equations below,

known as eigenvalue equations of G:

(d(v) − α(G))X(v) =
∑

u∈N(v)

X(u) for v ∈ V (G),

where NG(v) (or N(v) for short) denotes the set of vertices which are adjacent to v

in G.

A caterpillar unicyclic graph is a unicyclic graph in which the removal of all

pendant vertices makes it a cycle. Let Cg = v1v2 · · · vgv1 be a cycle with length g,

where vivi+1 ∈ E(Cg) for i = 1, 2, . . . , g − 1 and vgv1 ∈ E(Cg), and let C
n1,n2,...,nk

g;i1,i2,...,ik

be the caterpillar unicyclic graph obtained from Cg by attaching nj pendant edges at

vij
(1 ≤ i1 < · · · < ik ≤ g), respectively. By symmetry, we may always assume that

i1 = 1. For example, C
n1,n2

g;1,⌊ g

2 ⌋+1
and C

n1,n2,n2

g;1,⌊ g

2 ⌋+1,⌊ g

2 ⌋+2
(see Fig. 1.1) are two caterpillar

unicyclic graphs which will be used in the next section. If C
n1,n2,...,nk

g;i1,i2,...,ik
has n vertices,

then it is easy to see that n1 + n2 + · · · + nk = n − g.
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Fig. 1.1. Two caterpillar unicyclic graphs C
n1,n2

g;1,⌊ g
2
⌋+1

and C
n1,n2,n2

g;1,⌊ g
2
⌋+1,⌊ g

2
⌋+2

.

In [1], Fallat and Kirkland proved that for some choice of the parameters n1,

n2, . . . , ng, the graph C
n1,n2,...,ng

g;1,2,...,g maximizes the algebraic connectivity over the
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class of unicyclic graphs with girth g. In particular, they proved that among all

unicyclic graphs on n vertices with girth 3, the graph Cn−3
3;1 has the maximum algebraic

connectivity. In [2], Fallat, Kirkland and Pati proved that the graph Cn−4
4;1 has the

maximum algebraic connectivity among all unicyclic graphs on n vertices with girth

4. Furthermore, they proved that there is an N such that for each n > N , the

graph C
n−g
g;1 has the maximum algebraic connectivity among all unicyclic graphs on

n vertices with girth g. On the other hand, when g is large relative to n, they showed

that this graph does not maximize the algebraic connectivity. For the minimum

algebraic connectivity, Guo [7] proved that the graph Cn,g has the minimum algebraic

connectivity among all connected graphs with girth g, where Cn,g is called the lollipop

graph, which is obtained by appending a g-cycle Cg to a pendant vertex of a path

on n − g vertices. This confirmes the conjecture proposed by Fallat and Kirkland

(see [1], [3]).

In this paper, we prove that the graph C
⌈n−g

2 ⌉,⌊n−g

2 ⌋

g;1,⌊ g

2 ⌋+1
has the minimum algebraic

connectivity among all caterpillar unicyclic graphs on n vertices with girth g.

Throughout this paper, we shall denote by Φ(B) = Φ(B;x) = det(xI − B) the

characteristic polynomial of the square matrix B. In particular, if B = L(G), we write

Φ(L(G)) by Φ(G;x) or simply by Φ(G) and call Φ(G) the Laplacian characteristic

polynomial of G.

2. Lemmas and results. Let G be a graph and let G′ = G + e be the graph

obtained from G by inserting a new edge e into G. The following lemma follows from

Courant-Weyl inequalities (see [9]).

Lemma 2.1. The Laplacian eigenvalues of G and G′ interlace, that is,

µ1(G
′) ≥ µ1(G) ≥ µ2(G

′) ≥ µ2(G) ≥ · · · ≥ µn(G′) = µn(G) = 0.

By Lemma 2.1, we immediately have the following:

Corollary 2.2. Let G be a connected graph and v be a pendant vertex of G.

Then α(G) ≤ α(G − v).

The following inequalities are known as Cauchy’s inequalities and the whole the-

orem is also known as interlacing theorem [9].

Lemma 2.3. Let A be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

and B be a principal sub-matrix of A. Let B has eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρm

(m ≤ n). Then the inequalities λn−m+i ≤ ρi ≤ λi hold for i = 1, 2, . . . ,m.

Lemma 2.4. [5] Let G1 = (V,E1) be a graph on n vertices and G2 = (V,E2) be
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a graph obtained from G1 by removing an edge and adding a new edge that was not

there before. Then

µi(G1) ≥ µi+1(G2) and µi(G2) ≥ µi+1(G1) for 1 ≤ i ≤ n − 1.

Lemma 2.5. [8] Suppose that g ≥ 4. Then α(Cn,g) > α(Cn,g−1).

For U ⊆ V (G), let LU (G) be the principal sub-matrix of L(G) formed by deleting

the rows and columns corresponding to all vertices in U . If U = {v}, then we simple

write LU (G) as Lv(G). Let Hn be the matrix of order n obtained from L(Pn+2) by

deleting the rows and columns corresponding to two end vertices of Pn+2.

Lemma 2.6. [7] Set Φ(P0) = 0,Φ(H0) = 1. Then we have

(1) Φ(Pn) = xΦ(Hn−1), (n ≥ 1);

(2) Φ(Pm)Φ(Pn) − Φ(Pm−1)Φ(Pn+1) = Φ(Pm−1)Φ(Pn−1) − Φ(Pm−2)Φ(Pn), (m ≥

2, n ≥ 1).

Corollary 2.7. For m ≥ k + 1, n ≥ 1,

Φ(Pm)Φ(Pn) − Φ(Pm−k)Φ(Pn+k) = Φ(Pm−1)Φ(Pn−1) − Φ(Pm−k−1)Φ(Pn+k−1).

Proof. From Lemma 2.6, we have

Φ(Pm)Φ(Pn) − Φ(Pm−k)Φ(Pn+k)

= Φ(Pm)Φ(Pn) − Φ(Pm−1)Φ(Pn+1) + Φ(Pm−1)Φ(Pn+1)

− Φ(Pm−2)Φ(Pn+2) + Φ(Pm−2)Φ(Pn+2) − · · · − Φ(Pm−k+1)Φ(Pn+k−1)

+ Φ(Pm−k+1)Φ(Pn+k−1) − Φ(Pm−k)Φ(Pn+k)

= Φ(Pm−1)Φ(Pn−1) − Φ(Pm−2)Φ(Pn) + Φ(Pm−2)Φ(Pn) − Φ(Pm−3)Φ(Pn+1)

+ Φ(Pm−3)Φ(Pn+1) − · · · − Φ(Pm−k)Φ(Pn+k−2)

+ Φ(Pm−k)Φ(Pn+k−2) − Φ(Pm−k−1)Φ(Pn+k−1)

= Φ(Pm−1)Φ(Pn−1) − Φ(Pm−k−1)Φ(Pn+k−1).

Suppose G1 and G2 are two disjoint graphs. u ∈ V (G1) and v ∈ V (G2). Let

G = G1u : vG2 be the graph obtained by joining the vertex u of the graph G1 to the

vertex v of the graph G2 with an edge.

Lemma 2.8. [6] Let G1 and G2 be two disjoint graphs. Then

Φ(G1u : vG2) = Φ(G1)Φ(G2) − Φ(G1)Φ(Lv(G2)) − Φ(Lu(G1))Φ(G2).
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By a similar argument as the proof of Lemma 2.8, which was shown in [6], we

also have the following result.

Corollary 2.9. Let G1 and G2 be two disjoint graphs. Suppose w is a vertex

of G1 which is different from u. Then

Φ(Lw(G1u : vG2)) = Φ(Lw(G1))Φ(G2) − Φ(Lw(G1))Φ(Lv(G2))

− Φ(L{w,u}(G1))Φ(G2).

Let G and H be two disjoint graphs with |V (G)| = s ≥ 2, |V (H)| = t ≥ 2. Let

u ∈ V (G) and r ∈ V (H). Let Gu · rH be the graph obtained from G and H by

identifying the two vertices u and r (suppose that the new vertex is still u). It is easy

to see that Gu · rH has n = s + t − 1 vertices.

Lemma 2.10. Suppose u and v are two distinct vertices of G. Suppose X is a

Fiedler vector of Gu · rH. If (X(v) − X(u))
∑

w∈V (H)
w 6=r

X(w) ≥ 0, then α(Gu · rH) ≥

α(Gv · rH). Moreover, the inequality is strict if X(u) 6= X(v).

Proof. Let Y be a valuation of Gv · rH defined by

Y (w) =

{

X(w) − (t−1)(X(v)−X(u))
n

, w ∈ V (G);

X(w) + s(X(v)−X(u))
n

, w ∈ V (H), w 6= r.

It is easy to see that Y T e = 0, Y T L(Gv · rH)Y = XT L(Gu · rH)X = α(Gu · rH)

and

Y T Y = XT X − 2
∑

w∈V (G)

(t − 1)(X(v) − X(u))

n
X(w) +

s(t − 1)2(X(v) − X(u))2

n2

+ 2
∑

w∈V (H)
w 6=r

s(X(v) − X(u))

n
X(w) +

(t − 1)s2(X(v) − X(u))2

n2

= 1 + 2(X(v) − X(u))
∑

w∈V (H)
w 6=r

X(w) +
s(t − 1)(X(v) − X(u))2

n

≥ 1.

Clearly, the inequality is strict if X(v) 6= X(u).

Thus, we have

α(Gu · rH) = XT L(Gu · rH)X ≥
Y T L(Gv · rH)Y

Y T Y
≥ α(Gv · rH),
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and the inequality is strict if X(v) 6= X(u).

From Lemma 2.10, we immediately have the following.

Corollary 2.11. Let u, v be two vertices of a connected graph G and there exist

s pendant edges uu1, uu2, . . . , uus at u. Suppose X is a Fiedler vector of G. Let

G′ = G − uu1 − uu2 − · · · − uus + vu1 + vu2 + · · · + vus. If X(v) ≥ X(u) ≥ 0, then

α(G) ≥ α(G′). Moreover, the inequality is strict if X(v) 6= X(u).

Lemma 2.12. Let C
n1,n2

g;1,⌊ g

2 ⌋+1
be the caterpillar unicyclic graph defined in Section

1. Then for n ≥ g + 1,

α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) < α(Pg−⌊ g

2 ⌋
).

Proof. From Corollary 2.2 and Lemma 2.5, we have

α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) ≤ α(Cg+1,g) < α(Cg+1) = 4 sin2 π

g + 1

≤ 4 sin2 π

2(g − ⌊ g
2⌋)

= α(Pg−⌊ g

2 ⌋
).

Remark 1. Since α(Pn) is a decreasing function on n, α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) < α(Pj) for

j ≤ g − ⌊ g
2⌋.

Lemma 2.13. [10] Let G be a connected graph with a cut vertex v. Then α(G) ≤ 1,

the equality holds if and only if v is adjacent to every vertex of G.

Lemma 2.14. Let C
n1,n2

g;1,⌊ g

2 ⌋+1
and C

n1,n2

g;1,i (2 ≤ i ≤ ⌊ g
2⌋) be the caterpillar unicyclic

graphs defined in Section 1. Then for n1, n2 ≥ 1,

α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) ≤ µn−2(C

n1,n2

g;1,i ).

Proof. If µn−2(C
n1,n2

g;1,i ) ≥ 1, then the result follows from Lemma 2.13. Thus, in

the following, we assume that µn−2(C
n1,n2

g;1,i ) < 1. From Corollary 2.2 and Lemma 2.3,

we have

α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) ≤ α(Cn1,0

g;1,⌊ g

2 ⌋+1
) = α(Cn1

g;1) ≤ λg+n1−2(Lvi
(Cn1

g;1)) ≤ µn−2(C
n1,n2

g;1,i ),

where λg+n1−2(Lvi
(Cn1

g;1)) denotes the second smallest eigenvalue of Lvi
(Cn1

g;1).

Lemma 2.15. For 2 ≤ i ≤ ⌊ g
2⌋ and n1, n2 ≥ 1, we have

α(Cn1,n2

g;1,i ) > α(Cn1,n2

g;1,⌊ g

2 ⌋+1
).
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Proof. Applying Lemma 2.8 and Corollary 2.9 for n1 times, we have

Φ(Cn1,n2

g;1,i ) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
)

= (x − 1)Φ(Cn1−1,n2

g;1,i ) − x(x − 1)n1−1Φ(Lv1
(C0,n2

g;1,i)) − (x − 1)Φ(Cn1−1,n2

g;1,⌊ g

2 ⌋+1
)

+ x(x − 1)n1−1Φ(Lv1
(C0,n2

g;1,⌊ g

2 ⌋+1
))

...
...

= (x − 1)n1Φ(C0,n2

g;1,i) − n1x(x − 1)n1−1Φ(Lv1
(C0,n2

g;1,i)) − (x − 1)n1Φ(C0,n2

g;1,⌊ g

2 ⌋+1
)

+ n1x(x − 1)n1−1Φ(Lv1
(C0,n2

g;1,⌊ g

2 ⌋+1
)).

Note that C
0,n2

g;1,i = C
0,n2

g;1,⌊ g

2 ⌋+1
= Cn2

g;1. Then from the above equation, we have

Φ(Cn1,n2
g;1,i ) − Φ(Cn1,n2

g;1,⌊ g
2
⌋+1

) = n1x(x − 1)n1−1[Φ(Lv1(C
0,n2

g;1,⌊ g
2
⌋+1

)) − Φ(Lv1(C
0,n2
g;1,i))] (2.1)

Applying Corollary 2.9 again, we have

Φ(Lv1
(C0,n2

g;1,⌊ g

2 ⌋+1
)) − Φ(Lv1

(C0,n2

g;1,i))

= (x − 1)Φ(Lv1
(C0,n2−1

g;1,⌊ g

2 ⌋+1
)) − x(x − 1)n2−1Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

− (x − 1)Φ(Lv1
(C0,n2−1

g;1,i )) + x(x − 1)n2−1Φ(Hi−2)Φ(Hg−i)

...

= (x − 1)n2Φ(Lv1
(C0,0

g;1,⌊ g

2 ⌋+1
)) − n2x(x − 1)n2−1Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

− (x − 1)n2Φ(Lv1
(C0,0

g;1,i)) + n2x(x − 1)n2−1Φ(Hi−2)Φ(Hg−i)

Note that Lv1
(C0,0

g;1,⌊ g

2 ⌋+1
) = Lv1

(C0,0
g;1,i) = Lv1

(Cg) = Φ(Hg−1). Thus, from the above

equation, we have

Φ(Lv1
(C0,n2

g;1,⌊ g

2 ⌋+1
)) − Φ(Lv1

(C0,n2

g;1,i))

= n2x(x − 1)n2−1[Φ(Hi−2)Φ(Hg−i) − Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)]. (2.2)

Substituting (2.2) into (2.1), and from Lemma 2.6 and Corollary 2.7, we have

Φ(Cn1,n2

g;1,i ) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
)

= n1n2x
2(x − 1)n1+n2−2[Φ(Hi−2)Φ(Hg−i) − Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)]

= n1n2(x − 1)n1+n2−2[Φ(Pi−1)Φ(Pg−i+1) − Φ(P⌊ g

2 ⌋
)Φ(Pg−⌊ g

2 ⌋
)]

= − n1n2(x − 1)n1+n2−2Φ(P⌊ g

2 ⌋−i+1)Φ(Pg−⌊ g

2 ⌋−i+1).
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Let α = α(Cn1,n2

g;1,⌊ g

2 ⌋+1
). From Lemma 2.12, we have

(−1)n1+n2+g−1[Φ(Cn1,n2

g;1,i , α) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
, α)]

= (−1)n1+n2+g[n1n2(α − 1)n1+n2−2Φ(P⌊ g

2 ⌋−i+1, α)Φ(Pg−⌊ g

2 ⌋−i+1, α)].

By Remark 1 and the fact 0 < α < 1, the above expression is positive. Note that

n1 + n2 + g = n is the order of the graph C
n1,n2

g;1,i . So (−1)n−1Φ(Cn1,n2

g;1,i , α) > 0. Thus,

from Lemma 2.14, we have α(Cn1,n2

g;1,i ) > α(Cn1,n2

g;1,⌊ g

2 ⌋+1
).

Lemma 2.16. For n1 ≥ n2 + 2, α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) > α(Cn1−1,n2+1

g;1,⌊ g

2 ⌋+1
).

Proof. We separate the proof into two cases.

Case 1. n2 ≥ 1.

Applying Lemma 2.8 and Corollary 2.9 for several times, we have

Φ(Cn1−1,n2+1
g;1,⌊ g

2 ⌋+1
) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
)

= (x − 1)Φ(Cn1−1,n2

g;1,⌊ g

2 ⌋+1
) − x(x − 1)n2Φ(Lv⌊

g
2
⌋+1

(Cn1−1,0
g;1,⌊ g

2 ⌋+1
))

− (x − 1)Φ(Cn1−1,n2

g;1,⌊ g

2 ⌋+1
) + x(x − 1)n1−1Φ(Lv1

(C0,n2

g;1,⌊ g

2 ⌋+1
))

= x(x − 1)n1−1Φ(Lv1
(C0,n2

g;1,⌊ g

2 ⌋+1
)) − x(x − 1)n2Φ(Lv⌊

g
2
⌋+1

(Cn1−1,0
g;1,⌊ g

2 ⌋+1
))

= x(x − 1)n1Φ(Lv1
(C0,n2−1

g;1,⌊ g

2 ⌋+1
)) − x2(x − 1)n1+n2−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

− x(x − 1)n2+1Φ(Lv⌊
g
2
⌋+1

(Cn1−2,0
g;1,⌊ g

2 ⌋+1
))

+ x2(x − 1)n1+n2−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

= x(x − 1)n1Φ(Lv1
(C0,n2−1

g;1,⌊ g

2 ⌋+1
)) − x(x − 1)n2+1Φ(Lv⌊

g
2
⌋+1

(Cn1−2,0
g;1,⌊ g

2 ⌋+1
))

= x(x − 1)n1+n2−1Φ(Lv1
(C0,0

g;1,⌊ g

2 ⌋+1
))

− n2x
2(x − 1)n1+n2−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

− x(x − 1)n1+n2−1Φ(Lv⌊
g
2
⌋+1

(C0,0
g;1,⌊ g

2 ⌋+1
))

+ (n1 − 1)x2(x − 1)n1+n2−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1).

Note that Lv1
(C0,0

g;1,⌊ g

2 ⌋+1
) = Lv⌊

g
2
⌋+1

(C0,0
g;1,⌊ g

2 ⌋+1
) = Lv1

(Cg). Then from

Lemma 2.6 and the above equation we have

Φ(Cn1−1,n2+1
g;1,⌊ g

2 ⌋+1
) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
)

= x2(x − 1)n1+n2−2(n1 − n2 − 1)Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

= (x − 1)n1+n2−2(n1 − n2 − 1)Φ(P⌊ g

2 ⌋
)Φ(Pg−⌊ g

2 ⌋
).

Let α = α(Cn1,n2

g;1,⌊ g

2 ⌋+1
). From Lemma 2.4, we have α ≤ µn−2(C

n1−1,n2+1
g;1,⌊ g

2 ⌋+1
).
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Thus, similar to the proof of Lemma 2.15, we have

(−1)n1+n2+g−1[Φ(Cn1−1,n2+1
g;1,⌊ g

2 ⌋+1
, α) − Φ(Cn1,n2

g;1,⌊ g

2 ⌋+1
, α)]

= (−1)n1+n2+g−1(α − 1)n1+n2−2(n1 − n2 − 1)Φ(P⌊ g

2 ⌋
, α)Φ(Pg−⌊ g

2 ⌋
, α) < 0.

Then, we have α(Cn1,n2

g;1,⌊ g

2 ⌋+1
) > α(Cn1−1,n2+1

g;1,⌊ g

2 ⌋+1
).

Case 2. n2 = 0.

From Lemma 2.8 and Corollary 2.9, we have

Φ(Cn1−1,1
g;1,⌊ g

2 ⌋+1
) − Φ(Cn1

g;1)

= (x − 1)Φ(Cn1−1,0
g;1,⌊ g

2 ⌋+1
) − xΦ(Lv⌊

g
2
⌋+1

(Cn1−1,0
g;1,⌊ g

2 ⌋+1
))

− (x − 1)Φ(Cn1−1
g;1 ) + x(x − 1)n1−1Φ(Lv1

(C0
g;1))

= x(x − 1)n1−1Φ(Lv1
(C0

g;1)) − xΦ(Lv⌊
g
2
⌋+1

(Cn1−1,0
g;1,⌊ g

2 ⌋+1
))

= x(x − 1)n1−1Φ(Lv1
(C0

g;1)) − x(x − 1)n1−1Φ(Lv⌊
g
2
⌋+1

(C0,0
g;1,⌊ g

2 ⌋+1
))

+ (n1 − 1)x2(x − 1)n1−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1)

= (n1 − 1)x2(x − 1)n1−2Φ(H⌊ g

2 ⌋−1)Φ(Hg−⌊ g

2 ⌋−1).

By a similar argument as that of Case 1, the result follows.

Now we give the main result of this paper.

Theorem 2.17. Let G be a caterpillar unicyclic graph on n vertices with girth

g. Then

α(G) ≥ α(C
⌈n−g

2 ⌉,⌊n−g

2 ⌋

g;1,⌊ g

2 ⌋+1
),

and the equality holds if and only if G = C
⌈n−g

2 ⌉,⌊n−g

2 ⌋

g;1,⌊ g

2 ⌋+1
.

Proof. Since G is a caterpillar unicyclic graph on n vertices with girth g, we may

assume that

G = C
n1,n2,...,nk

g; i1,i2,...,ik
, nj ≥ 1 for 1 ≤ j ≤ k ≤ g; 1 ≤ i1 < i2 < · · · < ik ≤ g.

For k = 1, the result follows from Case 2 of the proof of Lemma 2.16. For k = 2, the

result follows from Lemmas 2.15 and 2.16.

For k = 3, let X be a Fiedler vector of G = C
n1,n2,n3

g; i1,i2,i3
. Since −X is also a Fiedler

vector of G, without loss of generality, we may assume that there are at least two of

X(vi1), X(vi2) and X(vi3) being nonnegative. By renumbering, we may assume that

G ∼= C
n1,n2,n3

g; 1,i,j with X(vj) ≥ X(vi) ≥ X(v1) and X(vi) ≥ 0. Suppose X(vj) > X(vi).

Then by Corollary 2.11, α(G) > α(Cn1,n2+n3

g; 1,j ). By renumbering of the vertices, we
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may assume that j ≤ ⌊ g
2⌋ + 1. By Lemmas 2.15 and 2.16 if necessary, we obtain the

result.

So now we assume that X(vj) = X(vi). If the distance between v1 and vi or

the distance between v1 and vj less than ⌊ g
2⌋, then (by renumbering the vertices if

necessary) we may assume that i ≤ ⌊ g
2⌋. Then by Corollary 2.11, Lemmas 2.15 and

2.16, we obtain that α(G) ≥ α(Cn1,n2+n3

g; 1,i ) > α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+1
) ≥ α(C

⌊n−g

2 ⌋,⌈n−g

2 ⌉

g;1,⌊ g

2 ⌋+1
).

Thus, we have to deal with the case that the distance between v1 to both vi and

vj are ⌊ g
2⌋. Note that the necessary condition for the occurrence of this case is g being

odd. So now G ∼= C
n1,n2,n3

g; 1,⌊ g

2 ⌋+1,⌊ g

2 ⌋+2
with X(v⌊ g

2 ⌋+1) = X(v⌊ g

2 ⌋+2). Note that

α(G) = XT L(Cn1,n2,n3

g; 1,⌊ g

2 ⌋+1,⌊ g

2 ⌋+2
)X = XT L(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
)X ≥ α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
).

Suppose that α(G) = α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
). From the above equation we can see that X is

also a Fiedler vector of C
n1,n2+n3

g; 1,⌊ g

2 ⌋+2
. From the eigenvalue equations of G, we have

(

dG(v⌊ g

2 ⌋+1) − α(G)
)

X(v⌊ g

2 ⌋+1)

=
∑

w∈N(v⌊
g
2
⌋+1)

X(w) = X(v⌊ g

2 ⌋+1) + X(v⌊ g

2 ⌋
) +

∑

w∈N(v
⌊

g
2
⌋+1

)

w 6=v
⌊

g
2
⌋

,v
⌊

g
2
⌋+2

X(w).

Note that for w ∈ N(v⌊ g

2 ⌋+1) \ {v⌊ g

2 ⌋
, v⌊ g

2 ⌋+2}, (1 − α(G))X(w) = X(v⌊ g

2 ⌋+1).

Thus, the above equation becomes

X(v⌊ g

2 ⌋
) =

(

dG(v⌊ g

2 ⌋+1) − 1 − α(G) −
dG(v⌊ g

2 ⌋+1) − 2

1 − α(G)

)

X(v⌊ g

2 ⌋+1). (2.3)

Similarly, from the eigenvalue equations of C
n1,n2+n3

g; 1,⌊ g

2 ⌋+2
, we have

(

2 − α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
)
)

X(v⌊ g

2 ⌋+1) = X(v⌊ g

2 ⌋+2) + X(v⌊ g

2 ⌋
).

Then

X(v⌊ g

2 ⌋
) =

(

1 − α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
)
)

X(v⌊ g

2 ⌋+1). (2.4)

Combining (2.3) and (2.4), we have

(

dG(v⌊ g

2 ⌋+1) − 2 −
dG(v⌊ g

2 ⌋+1) − 2

1 − α(G)

)

X(v⌊ g

2 ⌋+1) = 0.

Since n2 ≥ 1, dG(v⌊ g

2 ⌋+1) > 2. Thus, we have X(v⌊ g

2 ⌋+1) = 0. From the eigenvalue

equations of G, it is easy to see that X = 0. It yields a contradiction. So α(G) >

α(Cn1,n2+n3

g; 1,⌊ g

2 ⌋+2
).
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For k ≥ 4, from Corollary 2.11, there exists some caterpillar unicyclic graph, say

C
n1,n2,n3

g; 1,i,j for n1, n2, n3 ≥ 1 and 1 < i < j, such that α(G) ≥ α(Cn1,n2,n3

g; 1,i,j ). This case

is referred to the case when k = 3.

Hence, the proof is completed.

REFERENCES

[1] S. Fallat and S. Kirkland. Extremizing algebraic connectivity subject to graph theoretic con-

straints. Electron. J. Linear Algebra., 3:48–74, 1998.

[2] S. Fallat, S. Kirkland, and S. Pati. Maximizing algebraic connectivity over unicyclic graphs.

Linear Multilinear Algebra, 51:221–241, 2003.

[3] S. Fallat, S. Kirkland, and S. Pati. Minimizing algebraic connectivity over connected graphs

with fixed girth. Discrete Math., 254:115–142, 2002.

[4] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298–305, 1973.

[5] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph. SIAM J. Matrix

Anal. Appl., 11:218–238, 1990.

[6] J-M. Guo. On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl., 404:251–

261, 2005.

[7] J-M. Guo. A conjecture on the algebraic connectivity of connected graphs with fixed girth.

Discrete Math., 308:702–711, 2008.

[8] J-M. Guo, W.C. Shiu, and J. Li. The algebraic connectivity of lollipop graph. Linear Algebra

Appl., 434:2204–2210, 2011.

[9] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.

[10] S. Kirkland, A bound on the algebraic connectivity of a graph in terms of the number of

cutpoints, Linear Multilinear Algebra, 47:93–103, 2000.

[11] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278:221–236, 1998.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 838-848, August 2011

http://math.technion.ac.il/iic/ela


