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Abstract. Under some mild conditions, the general form of bijective transformations of the set

of all positive linear operators on a Hilbert space which preserve a symmetric mean in the sense of

Kubo-Ando theory is described.
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1. Introduction. Let H be a complex Hilbert space and denote by B(H) the

algebra of all bounded linear operators on H. An operator A ∈ B(H) is said to be

positive if 〈Ax, x〉 ≥ 0 holds for every vector x ∈ H. The cone of all positive operators

on H is denoted by B(H)+.

In our recent papers [5, 6], we have described the structure of all bijective maps φ

on B(H)+ (assuming dim H ≥ 2) which preserve either the geometric mean # or the

harmonic mean ! of operators. For example, in the case of the geometric mean, this

means that φ(A#B) = φ(A)#φ(B) holds for any A,B ∈ B(H)+. We have proved

that all those transformations are of the form φ(A) = TAT ∗, A ∈ B(H)+ with an

invertible bounded linear or conjugate-linear operator T : H → H.

However, there is a general abstract theory of operators means due to Kubo and

Ando [2] which has important applications in several areas, from operator theory

to quantum information theory (cf. the theory of monotone metrics due to Petz

[8]). In this paper, we extend our previous investigations and study the structure

of all bijective transformations of B(H)+ which preserve general operator means.

Unfortunately, we do not have a result in the most general sense, i.e., relating to

arbitrary means on B(H)+ and arbitrary bijective transformations on B(H)+ with

the mean-preserving property. In fact, we have to pose a mild condition on the means
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(symmetry) and some mild regularity assumption (e.g. a sort of continuity) on the

transformations. As for the main idea of the proof, it is based on the knowledge of the

structure of the order automorphisms of B(H)+ that was determined in our paper

[3] (alternatively, see Section 2.5 in the book [4]). Some recent applications of that

result to other problems can be found in the paper [7].

Now, let us summarize the basic notions and results of Kubo-Ando theory that

we shall need in our investigations. In what follows, H denotes a complex Hilbert

space with dim H ≥ 2. A binary operation σ on B(H)+ is said to be a connection if

the following requirements are fulfilled (from (i) to (iii) all operators are supposed to

belong to B(H)+).

(i) If A ≤ C and B ≤ D, then AσB ≤ CσD.

(ii) C(AσB)C ≤ (CAC)σ(CBC).

(iii) If An ↓ A and Bn ↓ B strongly, then AnσBn ↓ AσB strongly.

If IσI = I holds too, then the connection σ is called a mean. A mean σ is

called symmetric if AσB = BσA holds for all A,B ∈ B(H)+. Operations like convex

combination and order among connections are defined in a natural way.

By the fundamental result Theorem 3.2 in [2], there is an affine order-isomorphism

from the class of connections σ onto the class of operator monotone functions f :

]0,∞[→ [0,∞[ given by the formula f(t) = IσtI (t > 0). For invertible A,B ∈
B(H)+, we have

(1.1) AσB = A1/2f(A−1/2BA−1/2)A1/2.

By property (iii), we obtain that the formula (1.1) extends to any invertible A ∈
B(H)+ and arbitrary B ∈ B(H)+.

We shall need the following so-called transfer property of connections. By (ii), we

easily deduce that C(AσB)C = (CAC)σ(CBC) holds for all invertible C ∈ B(H)+.

Now, using polar decomposition, the formula (1.1) and the continuity property (iii),

it follows that we have

T (AσB)T ∗ = (TAT ∗)σ(TBT ∗)

for all invertible bounded linear or conjugate-linear operator T on H. This trivially

implies that (tA)σ(tB) = t(AσB) for any t > 0 and A,B ∈ B(H)+.

We shall also use Theorem 3.3 in [2] which says that for every mean σ, we have

AσA = A, A ∈ B(H)+.

Relating to operator monotone functions, it is well-known that they have a certain
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integral representation. Namely, by Lemma 3.1 in [2], the formula

(1.2) f(s) =

∫

[0,∞]

s(1 + t)

s + t
dm(t), s > 0

provides an affine isomorphism from the class of all positive Radon measures m

on [0,∞] onto the set of all operator monotone functions f :]0,∞[→ [0,∞[. Re-

mark that in the above representation, we have f(0)
.
= lims→0 f(s) = m({0}) and

lims→∞ f(s)/s = m({∞}).

Using the formula (1.2), we then obtain an integral representation of any con-

nection σ. In fact, Theorem 3.4 in [2] tells us that for each connection σ on B(H)+,

there exists a unique positive Radon measure on [0,∞] such that with a = m({0})
and b = m({∞}) we have

(1.3) AσB = aA + bB +

∫

]0,∞[

1 + t

t
{(tA : B)}dm(t)

for all A,B ∈ B(H)+ (here and below : stands for the parallel sum of positive opera-

tors which is the half of the harmonic mean). Moreover, the correspondence σ 7→ m

is an affine isomorphism from the class of all connections onto the class of all positive

Radon measures on [0,∞].

Below whenever we write σ, f,m we always mean that σ is a connection, f is its

representing operator monotone function and m is its representing positive Radon

measure.

2. Results and proofs. In what follows, σ denotes a symmetric mean with the

property that Iσ0 = 0σI = 0. This means that in (1.3) we have a = m({0}) = f(0) =

0. Taking into account that symmetry of σ means that f(s) = sf(1/s) holds for all

s > 0 (see Corollary 4.2. in [2]), we obtain that b = m({∞}) = lims→∞ f(s)/s =

lims→0 f(s) = f(0) = 0. Consequently, the integral representation of σ is

(2.1) AσB =

∫

]0,∞[

1 + t

t
{(tA : B)}dm(t), A,B ∈ B(H)+.

There is still another fact that we shall need: for any operator A ∈ B(H)+ we have

IσA = f(A) (see (3.7) in [2]).

Theorem 2.1. Let φ : B(H)+ → B(H)+ be a bijective map that satisfies

(2.2) φ(AσB) = φ(A)σφ(B)

for all A,B ∈ B(H)+. If there exists an invertible operator A ∈ B(H)+ such that

either φ is continuous on the set of scalar multiples tA, t ≥ 0 of A, or it maps any
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scalar multiple tA, t ≥ 0 of A to a scalar multiple of φ(A), then it follows that φ is

of the form

φ(A) = TAT ∗, A ∈ B(H)+

with some invertible bounded linear or conjugate-linear operator T : H → H.

Observe that any transformation φ of the form φ(A) = TAT ∗, A ∈ B(H)+ with

an invertible bounded linear or conjugate-linear operator T : H → H satisfies (2.2)

and also has both of the regularity properties appearing in the theorem above as

assumptions.

For the proof of the theorem, we need some auxiliary results.

Lemma 2.2. For any A ∈ B(H)+, we have that A is a projection if and only if

IσA = A.

Proof. First we point out that Lemma 5.1 in [2] tells us that for f we have

s < f(s) < 1 for 0 < s < 1 and 1 < f(s) < s for 1 < s < ∞. Now, f(A) = A holds if

and only if f(s) = s holds on the spectrum of A. This is equivalent to the spectrum

of A is in {0, 1}, which means exactly that A is a projection.

Theorem 3.7 in [2] tells us that for any projections P,Q on H we have PσQ =

P ∧ Q. It follows that P ≤ Q if and only if PσQ = P .

Lemma 2.3. We have that f is injective.

Proof. In fact, assuming on the contrary that f is non-injective, it follows that

f is constant on some closed interval either before or after the point 1. In the latter

case, there are two more possibilities: the interval can be of finite or infinite length.

Using Lemma 5.1 in [2], the concavity of f(s) and the convexity of sf(s) (Lemma 5.2

in [2]) elementary considerations show that we would arrive at contradictions in all

cases. This gives us the injectivity of f .

Lemma 2.4. Suppose that f is unbounded. Then A ∈ B(H)+ is invertible if and

only if the equation AσX = Y has a solution X ∈ B(H)+ for any given Y ∈ B(H)+.

Proof. Since f is injective and unbounded, we have f−1 : [0,∞[→ [0,∞[. Suppose

that A is invertible. We have learnt from (1.1) that

(2.3) AσX = A1/2f(A−1/2XA−1/2)A1/2

holds for any X ∈ B(H)+. It requires only easy computation to see that for a

given Y , defining X = A1/2f−1(A−1/2Y A−1/2)A1/2, gives a solution of the equation

AσX = Y . Assume now that A is not invertible. In that case, for any invertible

X ∈ B(H)+, we have

AσX = XσA = X1/2f(X−1/2AX−1/2)X1/2.
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Since f(0) = 0, by the spectral mapping theorem we deduce that the right-hand side

of this equality and hence AσX, too, are non-invertible. If X ∈ B(H)+ is arbitrary,

it follows from AσX ≤ Aσ(X + I) that AσX is also not invertible.

Lemma 2.5. Suppose that f is bounded. The operator A ∈ B(H)+ is invertible

if and only if the set of all operators of the form

(. . . ((AσT1)σT2) . . .)σTn, n ∈ N, T1, . . . , Tn ∈ B(H)+

coincides with B(H)+.

Proof. To prove the necessity, assume that A is invertible. By the transfer

property it is easy to see that there is no serious loss of generality in assuming that

A = I. Let lims→∞ f(s) = r. Clearly, we have 1 < r < ∞. Pick an s with 1 < s

and let Y ∈ B(H)+. Pick n ∈ N such that ‖Y ‖/f(s)n < r. Choosing T1 = sI,

T2 = f(s)sI, T3 = f(s)2sI, . . . , Tn = f(s)n−1sI, Tn+1 = f(s)nX, we see that

(. . . ((IσT1)σT2) . . .)σTn+1 = f(s)nf(X).

The equation f(s)nf(X) = Y clearly has solution X = f−1(Y/f(s)n). As for the

sufficiency, if A is non-invertible then we obtain that all (. . . ((AσT1)σT2) . . .)σTn are

non-invertible.

In what follows, we compute AσP for an arbitrary positive operator A ∈ B(H)+

and rank-one projection P on H. To do so, we recall the notion of the strength

of a positive operator along a ray represented by a unit vector. This concept was

introduced by Busch and Gudder in [1]. Let A ∈ B(H)+ be a positive operator,

consider a unit vector ϕ in H and denote by Pϕ the rank-one projection onto the

subspace generated by ϕ. The quantity

λ(A,Pϕ) = sup{λ ∈ R+ : λPϕ ≤ A}

is called the strength of A along the ray represented by ϕ. According to [1, Theorem

4], we have the following formula for the strength:

(2.4) λ(A,Pϕ) =

{

‖A−1/2ϕ‖−2, if ϕ ∈ rng(A1/2);

0, else.

(The symbol rng denotes the range of operators and A−1/2 denotes the inverse of

A1/2 on its range.)

Lemma 2.6. Let A ∈ B(H)+ and P be a rank-one projection on H. We have

AσP = PσA = f(λ(A,P ))P .

Proof. First assume that λ(A,P ) > 0. By (2.1), we have

(2.5) AσP =

∫

]0,∞[

1 + t

t
{(tA : P )}dm(t).
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The parallel sum : is known to be the half of the harmonic mean !. In Lemma 2, [6] we

proved that for an arbitrary positive operator T ∈ B(H)+ and rank-one projection

P on H, we have

2(T : P ) = T !P =
2λ(T, P )

λ(T, P ) + 1
P.

Therefore, denoting s = λ(A,P ), we can continue (2.5) as follows

AσP =

∫

]0,∞[

1 + t

t

λ(tA, P )

λ(tA, P ) + 1
Pdm(t)

=

∫

]0,∞[

1 + t

t

tλ(A,P )

tλ(A,P ) + 1
Pdm(t) =

∫

]0,∞[

1 + t

t

ts

ts + 1
dm(t)P

= s

∫

]0,∞[

(1/s)(t + 1)

(1/s) + t
dm(t)P = sf(1/s)P = f(s)P = f(λ(A,P ))P.

If λ(A,P ) = 0, then in a similar fashion we see AσP = 0 = f(λ(A,P ))P .

Lemma 2.7. For any A,B ∈ B(H)+, we have AσB 6= 0 if and only if rng A1/2 ∩
rng B1/2 6= {0}.

Proof. To see the sufficiency, by the formula (2.4) it follows from rng A1/2 ∩
rng B1/2 6= {0} that there is a rank-one projection P on H and a number t > 0 such

that tP ≤ A,B. This implies 0 6= tP = (tP )σ(tP ) ≤ AσB.

Conversely, assume AσB 6= 0. By (2.1), we deduce that (tA) : B 6= 0 and hence

that (tA)!B 6= 0 holds for some t > 0. It then follows that some positive scalar

multiple of a rank-one projection P is less than or equal to (tA)!B. Since B is less

than or equal to a scalar multiple of the identity, by the monotonicity property (i)

of means this further implies that for some s > 1, we have P ≤ (sA)!(sI) = s(A!I).

Therefore, 2P/(I+P ) = P ≤ 2sA/(I+A). The inverse function of h : t 7→ 2st/(1+t),

t ≥ 0 is k : r 7→ r/(2s − r), 0 ≤ r < 2s, which is easily seen to be operator monotone

on the interval [0, 2s[. It follows that

k(2P/(I + P )) ≤ k(2sA/(I + A)) = A.

One can check that the operator on the left hand side is k(2P/(I+P )) = (1/(2s−1))P .

This gives us that a positive scalar multiple of P is less than or equal to A implying

that the range of P is included in rng A1/2. We obtain in a similar fashion that

rng P ⊂ rng B1/2 holds, too. This completes the proof of the lemma.

After these preliminaries, we are now in a position to present the proof of Theo-

rem 2.1.

Proof of Theorem 2.1. By Lemmas 2.4 and 2.5, we see that our transformation

φ preserves the invertible operators in both directions. This means that for any

A ∈ B(H)+, we have A is invertible if and only if φ(A) is invertible.
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It follows that φ(I) is invertible. By the transfer property, the transformation

φ(I)−1/2φ(.)φ(I)−1/2 is a bijective map on B(H)+ which fulfils (2.2) and sends I

to I. Therefore, we may and do assume that already our original map φ satisfies

φ(I) = I.

By the characterization of projections (Lemma 2.2) and the order among them

(see the sentence before Lemma 2.3), it follows that φ preserves the projections in

both directions as well as the order among them. Consequently, φ(0) = 0.

Now, by Lemma 2.7, we see that for any A,B ∈ B(H)+ we have rng A1/2 ∩
rng B1/2 6= {0} if and only if rng φ(A)1/2 ∩ rng φ(B)1/2 6= {0}. One can easily verify

that it implies

rng A1/2 ⊂ rng B1/2 ⇐⇒ rng φ(A)1/2 ⊂ rng φ(B)1/2.

From this property, we infer that φ preserves the (finite) rank of the elements of

B(H)+.

Let P be a rank-one projection. For every t > 0, the operator φ(tP ) is of rank one.

Since φ(tP )σφ(P ) = φ((tP )σP ) 6= 0, it follows that the range of φ(tP ) has non-trivial

intersection with the range of φ(P ). This gives us that φ(tP ) is a scalar multiple of

φ(P ). Next we deduce that there exists a bijective function gP : [0,∞[→ [0,∞[ such

that

φ(tP ) = gP (t)φ(P )

holds for every t ≥ 0.

Assume now that φ is continuous on the scalar multiples of an invertible operator

A ∈ B(H)+. Considering the transformation

X 7−→ φ(A)−1/2φ(A1/2XA1/2)φ(A)−1/2,

we obtain a bijective map which satisfies (2.2), sends I to I and is continuous on

the set of nonnegative scalar multiples of the identity. Hence, there is no real loss of

generality in assuming that this particular operator A equals I. In what follows, we

do use this assumption.

For any t ≥ 0, we have

φ(tI)σφ(P ) = φ((tI)σP ) = φ(f(t)P ) = gP (f(t))φ(P ).

By the formula (2.3), for an arbitrary B ∈ B(H)+, the transformation C 7→ CσB

is norm continuous on the set of all invertible elements of B(H)+. We deduce that

gP (f(t)) → gP (f(t0)) whenever t0 > 0 and t → t0. Applying (iii), the same follows

for t0 = 0, too. Therefore, we obtain that gp is continuous on the range of f . Since
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gP is a bijection of the nonnegative reals and gP (0) = 0, gP (1) = 1 obviously hold, it

follows that gP is strictly increasing on the range of f .

We show that φ preserves the order of positive operators in both directions. We

compute on one hand

φ(AσP ) = φ(f(λ(A,P ))P ) = gP (f(λ(A,P )))φ(P ),

while on the other hand we have

φ(AσP ) = φ(A)σφ(P ) = λ(φ(A), φ(P ))φ(P ).

We obtain that gP (f(λ(A,P ))) = λ(φ(A), φ(P )) holds for any A ∈ B(H)+ and rank-

one projection P . Now, for given A,B ∈ B(H)+ and arbitrary rank-one projection

P on H, we have

λ(A,P ) ≤ λ(B,P ) ⇔ gP (f(λ(A,P ))) ≤ gP (f(λ(B,P )))

⇔ λ(φ(A), φ(P )) ≤ λ(φ(B), φ(P )).

We learn from [1] that A ≤ B holds if and only if λ(A,P ) ≤ λ(B,P ) holds for

every rank-one projection P on H. Therefore, it follows that we have A ≤ B if and

only if φ(A) ≤ φ(B). This means that φ is an order automorphism of B(H)+. The

structure of such transformations was described in [3]. We proved there that every

such map is implemented by an invertible bounded linear or conjugate-linear operator.

Consequently, it follows that φ is of the form

φ(A) = TAT ∗, A ∈ B(H)+

with an invertible bounded linear or conjugate-linear operator T on H, and this

completes the proof of the theorem in the present case.

Suppose now that φ maps the scalar multiples of an invertible operator A into

scalar multiples of φ(A). Considering the transformation

T 7−→ φ(A)−1/2φ(A1/2TA1/2)φ(A)−1/2

just as above, we see that there is no loss of generality in assuming that this particular

operator A equals the identity. In what follows, we assume that it is really the case.

It means that there is an injective function g : [0,∞[→ [0,∞[ such that φ(tI) = g(t)I,

t ≥ 0.

We compute

φ(f(t)P ) = φ((tI)σP ) = (g(t)I)σφ(P ) = f(g(t))φ(P ).
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Now, for an arbitrary B ∈ B(H)+, we compute BσP = f(λ(B,P ))P implying

φ(BσP ) = φ(f(λ(B,P ))P ) = f(g(λ(B,P )))φ(P ). On the other hand, we have

φ(BσP ) = φ(B)σφ(P ) = f(λ(φ(B), φ(P ))).

Therefore, by the injectivity of f , it follows that

(2.6) g(λ(B,P )) = λ(φ(B), φ(P ))

holds for all B ∈ B(H)+ and rank-one projection P on H. Pick an invertible B ∈
B(H)+ and consider the set of all λ(B,P ) where P runs through the connected set

of all rank-one projections. By the formula (2.4), it is easy to see that this set is an

interval. Taking into account the equality (2.6), it follows that the injective function

g : [0,∞[→ [0,∞[ maps every interval [α, β] with 0 < α < β < ∞ onto an interval.

It apparently yields that the restriction of g onto the open interval ]0,∞[ is strictly

monotone. Assume for a moment that this function is strictly monotone decreasing.

Let A,B ∈ B(H)+ be invertible and P be an arbitrary rank-one projection on H.

Then we infer

λ(A,P ) ≤ λ(B,P ) ⇔ g(λ(B,P )) ≤ g(λ(A,P ))

⇔ λ(φ(B), φ(P )) ≤ λ(φ(A), φ(P )).

This means that φ, when restricted onto the set of invertible elements of B(H)+, is

an order reversing automorphism. Considering the transformation A 7→ φ(A)−1 we

obviously obtain an order automorphism of that set. By a result in [7], the structure

of those transformations is just the same as that of the order automorphisms of the

whole set B(H)+. That is, they are implemented by invertible bounded linear or

conjugate-linear operators on H. Since here we also have that the identity is sent to

the identity, it follows easily that φ is of the form φ(A) = UA−1U∗ with a unitary

or antiunitary operator U on H. It implies that the inverse operation satisfies (2.2),

i.e., we have (AσB)−1 = A−1σB−1 for all invertible A,B ∈ B(H)+. Putting A = I

and B = sI, this immediately gives us that 1/f(s) = f(1/s), s > 0. But the mean

σ is symmetric implying that sf(1/s) = f(s) holds for all s > 0. It follows trivially

that we necessarily have f(s) =
√

s, s > 0, i.e., σ is the geometric mean. But

the bijective maps on B(H)+ preserving the geometric mean have been described in

[5]. The result presented there shows that those maps just coincide with the order

automorphisms of B(H)+. But this contradicts the fact above that φ is an order

reversing automorphism of the set of all invertible elements of B(H)+. It yields that

the case where the restriction of g onto the open interval ]0,∞[ is strictly monotone

decreasing is untenable. It remains that g is strictly monotone increasing on ]0,∞[

and hence also on [0,∞[. Using (2.6), we can see just as before that φ is an order

automorphism of B(H)+ and then complete the proof as in the first case.
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We conclude the paper with a result describing the bijective transformations of

B(H)+ which preserve the norm of means of operators. The theorem below shows

that every such map originates from an isometric linear or conjugate-linear *-algebra

automorphism of B(H).

Theorem 2.8. Let φ : B(H)+ → B(H)+ be a bijective map with the property

that

‖φ(A)σφ(B)‖ = ‖AσB‖

holds for every A,B ∈ B(H)+. Then there exists either a unitary or an antiunitary

operator U on H such that φ is of the form

φ(A) = UAU∗, A ∈ B(H)+.

Proof. First observe that φ(0) = 0. Indeed, it follows from

‖φ(A)‖ = ‖φ(A)σφ(A)‖ = ‖AσA‖ = ‖A‖

meaning that φ is norm-preserving.

The assumptions in the theorem imply that for any A,B ∈ B(H)+, we have

AσB 6= 0 if and only if φ(A)σφ(B) 6= 0. Just as in the proof of Theorem 2.1, we infer

that rng A1/2 ∩ rng B1/2 6= {0} holds if and only if rng φ(A)1/2 ∩ rng φ(B)1/2 6= {0}
which then implies that

rng A1/2 ⊂ rng B1/2 ⇐⇒ rng φ(A)1/2 ⊂ rng φ(B)1/2.

We can proceed showing that φ necessarily preserves the rank-one operators in both

directions. As φ preserves the norm, too, it follows that φ preserves the rank-one

projections in both directions. For any rank-one projection P on H, we have

f(λ(φ(A), φ(P ))) = ‖φ(A)σφ(P )‖ = ‖AσP‖ = f(λ(A,P ))

implying λ(φ(A), φ(P )) = λ(A,P ). Just as in the proof of Theorem 2.1, this gives us

that φ is an order automorphism of B(H)+ and hence it is of the form

φ(A) = TAT ∗, A ∈ B(H)+

with an invertible bounded linear or conjugate-linear operator T on H. Referring

again to the property that φ preserves the norm, one can easily deduce that T is

in fact either a unitary or an antiunitary operator. This completes the proof of the

theorem.
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