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SPECTRUM PRESERVING LOWER TRIANGULAR
COMPLETIONS|THE NONNEGATIVE NILPOTENT CASE�

ABRAHAM BERMANy AND MARK KRUPNIKz

Abstract. Nonnegative nilpotent lower triangular completions of a nonnegative nilpo-
tent matrix are studied. It is shown that for every natural number between the index of
the matrix and its order, there exists a completion that has this number as its index. A
similar result is obtained for the rank. However, unlike the case of complex completions of
complex matrices, it is proved that for every nonincreasing sequence of nonnegative integers
whose sum is n, there exists an n � n nonnegative nilpotent matrix A such that for every
nonnegative nilpotent lower triangular completion, B, of A, B 6= A, ind(B) > ind(A).

AMS(MOS) subject classi�cation. 15A21, 15A48
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1. Introduction. In many problems related to the spectral properties
of a matrix, an important role is played by an additive perturbation of some
part of the matrix, e.g. the main diagonal, the o�-diagonal part, or a strictly
triangular part of the matrix.

The perturbed matrices of a given matrix can be considered as completions
of a partial matrix, i.e., a matrix in which the entries that may be perturbed
are considered as free independent variables. Many completion problems were
solved for matrices over di�erent algebraic structures. Properties of nonnega-
tive additive perturbations of nonnegative partially speci�ed matrices are used,
for example, in the calculation of risk-free interest rates and some derivative
securities of �nancial markets; see, e.g., [12].

In the present paper we are interested in investigating some properties of
nonnegative matrices which preserve nilpotency under strictly lower triangular
perturbations.

Since similar problems were solved for matrices with complex elements,
we will use the term completion instead of perturbation in order to show that
in comparison with the corresponding completion problem for complex matri-
ces (instead of nonnegative matrices) some results still hold, while some are
necessarily more limited.
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A triangular completion of a square matrix A is a matrix B = A + T ,
where T is a strictly lower triangular matrix. Triangular completions were
intensively studied in various directions; see, e.g., [1], [7], [8], [9], [10], [19], [23],
[24]. One of the directions is the study of triangular completions that preserve
the spectrum of a matrix (see, e.g., [14], [15]) and in particular nilpotent
completions; see, e.g., [16], [17], [18].

As it was already mentioned, we are interested here in the nonnegative
case. Observe that a triangular completion of a complex matrix can be viewed
as an additive perturbation with a strictly lower triangular matrix T . For
example, if B is a triangular completion of A, namely, B = A + T , then it is
clear that A = B + (�T ) is a triangular completion of B. In the nonnegative
case the last statement is, of course, not true. Thus nonnegative completions
may be de�ned in two ways:

1. A and T (and of course the completion B = A+ T ) are nonnegative.
2. A and B, but not necessary T , are nonnegative.

Let ~A be an upper triangular matrix which has the same entries as A on
and above the main diagonal. The set of completions of the second type of A,
coincide with the set of completions of the �rst type of the matrix ~A. In the
present paper we only study the case when both A and T are nonnegative,
but using the remark above one may also interpret the results in the context
of 2.

The structure of the paper is as follows. In Section 2 we give the notation
and the necessary preliminaries on matrices and their graphs. In Section 3 we
show that some results on triangular nilpotent completions that are known for
general matrices, hold in the nonnegative case and some can not be reproved
in this case. The paper is concluded with a discussion on the results obtained,
and some open questions.

2. Notation and Preliminaries. Let C
n;n denote the set of all n by n

complex matrices, N n the subset of nilpotent matrices in C
n;n, and N n

+ the
subset of the nonnegative matrices in N n.
For A 2 C

n;n {
The index of A, ind(A), is the smallest integer k, such that rank(Ak) =

rank(Ak+1) (it is equal to zero i� A is nonsingular),
NTC(A) denotes the set of nilpotent triangular completions of A, and
r(A) denotes the minimum of the ranks of all matrices in NTC(A).

For a nonnegative nilpotent matrix A {
NNTC(A) denotes the set of nonnegative nilpotent triangular comple-

tions of A, and
r+(A) denotes the minimum of the ranks of all matrices in NNTC(A).

For a nilpotent matrix A {
J(A) = fJ1; :::; Jsg denotes the Jordan structure of A, i.e. set of sizes of

Jordan blocks of A in nonincreasing order. In this case ind(A) is the size of
the largest block J1.
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Let � = f�1; :::; �pg andM = f�1; :::; �qg be two nonincreasing sequences
of nonnegative integers. We say that � majorizes M if

kX
i=1

�i �
kX

i=1

�i; 1 � k � min(p; q); and
pX

i=1

�i =
qX

i=1

�i:

Let A 2 C
n;n. The digraph D(A) corresponding to A is a directed graph

with vertices f1; : : : ; ng such that there is an arc i! j if and only if ai;j 6= 0.
A path in D(A) is any ordered sequence of (not necessarily disjoint) ver-

tices fi1; : : : ; ikg such that there is an arc from ip to ip+1 (p = 1; : : : ; k � 1);
the number k is called the length of the path fi1; : : : ; ikg. Every one vertex
sequence fig (with or without an arc from i to itself) will be also called a path
(of length one). If there is an arc ik ! i1 in a path fi1; : : : ; ikg, then the path
is called a cycle; a one vertex path fig is called a cycle if there is an arc from
i to itself.

It is well known (see e.g. [3]), that if D(A) has no paths of length p > 1,
then Ap�1 = 0 and if A is nonnegative, then the converse is also true, i.e.
Ap�1 = 0, p > 1 implies that D(A) has no paths of length p. In particular,
if A is nonnegative, nilpotency means that D(A) has no cycles (if cycles exist
one can make paths of any length). In this case the index of A is equal to the
length of the largest path in D(A); see, e.g., [20].

We call vertex v an initial vertex if there are no arcs in D(A) entering v.
It will be called k-initial vertex if the length of the maximal path starting with
this vertex equals k. Note that path of maximal length always starts with an
initial vertex. A vertex w is called �nal vertex if there no arcs exiting from w.

There is an extensive literature on the relation between the Jordan struc-
ture of a matrix and its graph, see, e.g., [6], [11], [21], [22]. In particular,
for nilpotent generic matrices, i.e., matrices whose nonzero entries are alge-
braically independent, the Jordan structure is completely determined by their
digraphs. This can be seen by the following theorem proved in [6], [21].

Theorem 2.1. Let A be a nilpotent generic matrix with digraph D, and
let pk(D) be the maximal number of vertices which can be covered by k disjoint
paths. Then Jk(A) = pk(D)� pk�1(D); 1 � k � s, where s is the number of
Jordan blocks of A.

3. Results. The following result was conjectured in [18] and proved in
[16].

Theorem 3.1. Let J be the Jordan structure of a nilpotent matrix A 2
C
n;n. Then for every nonincreasing sequence K of nonnegative integers, that

majorizes J, there exists a matrix B 2 NTC(A) with Jordan structure K.
Unfortunately, as the following example shows, a result similar to Theorem

3.1 does not hold in the nonnegative case.
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Example 3.2. Let

A =

0
BB@
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1
CCA :

Then J(A) = f2; 1; 1g. The sequence f2; 2g majorizes J and it is not di�cult
to check that there exists no A+T 2 NNTC(A) with J(A+T ) = f2; 2g: This,
of course, does not contradict Theorem 3.1, since for the (not nonnegative)
matrix

S =

0
BB@
0 0 0 0
0 0 0 0
0 �1 0 0
0 1 0 0

1
CCA

J(A+ S) = f2; 2g and A + S 2 NTC(A).
There are, however, two corollaries of Theorem 3.1, which do have ana-

logues in the nonnegative case.
Corollary 3.3. Let A 2 N n. Then for every integer r , such that

r(A) � r � n � 1 there exists a lower triangular completion B 2 NTC(A) of
rank(B) = r.

Corollary 3.4. Let A 2 N n, and let m(A) be the minimum of the
indices of matrices in NTC(A). Then for every integer m , such that m(A) �
m � n there exists a lower triangular completion B 2 NTC(A) of ind(B) =
m.

The analogous results for nonnegative matrices are given in the following
theorem.

Theorem 3.5. Let A 2 N n
+. Then

(a) For every integer m, ind(A) � m � n, there exists B 2 NNTC(A), such
that ind(B) = m.
(b) For every integer r, r+(A) � r � n� 1, there exists C 2 NNTC(A), such
that rank(C) = r.

Proof. (a) First we show that if ind(A) = k < n, then there exists
B 2 NNTC(A), such that ind(B) = k + 1. We use induction on n. If n = 2,
the only matrix A with ind(A) < 2 that satis�es the conditions of the theorem

is the zero matrix and in this case B can be chosen as B =

�
0 0
1 0

�
: Thus let

us assume that the theorem is correct for matrices of order less than n.
Consider the digraph D(A) of A. We want to show that there are pairs of
vertices is ! js; is > js, so that we can add arcs from is to js without
creating cycles, and thus the length of the largest path increases to k + 1.
Let v be the smallest k-initial vertex in D(A). If there exists an initial vertex
w, such that w > v, then we add the arc w ! v. If no such initial vertex
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exists, it means, that v is the only k-initial vertex in D(A). In this case we
consider A1 - the principal submatrix of A, obtained by deleting the (zero)
column and the row, that correspond to v. Being a principal submatrix of A,
the matrix A1 2 N

n�1
+ and since v is the only k-initial vertex in D(A), then

ind(A1) = k � 1. Thus A1 satis�es the conditions of the theorem. By the
induction hypothesis there exists B1 2 NNTC(A1), such that ind(B1) = k.
Let T1 = B1�A1; S = 0�T1 and F = A+S. Observe that F 2 NNTC(A):
Look now at the k-initial vertices in D(B1). If D(B1) has a k- initial vertex
V , such that v ! V is an arc in D(A), then v is a (k + 1)-initial vertex in
D(F ) and ind(F ) = k+1, so taking B = F completes the proof. If there is no
arc from v to a k-initial vertex in D(B1), then D(A) has at least two k-initial
vertices, namely v and u { an initial vertex of a maximal (of length k) path
in the subdigraph D(B1). The completion by an arc max(u; v)! min(u; v)
yields a matrix B 2 NNTC(A) with index k + 1. A repeated use of this
construction completes the proof of (a).
(b) First we increase, if necessary, entries of A to obtain a matrix A0 2
NNTC(A), of rank r+(A). Then we construct, using repeatedly the con-
struction in the proof of (a), a sequence of matrices A0; A1; :::; As, such that
As 2 NNTC(A), ind(As) = n and each Ai is obtained from Ai�1 by replac-
ing a zero entry below the main diagonal with a positive number. To show
that all the matrices in the sequence are nilpotent, we observe that they are
nonnegative and Ai�1 � Ai. By the Perron-Frobenius Theorem (see, e.g.,
Corollary 1.5 in [2]), the spectral radius �(Ai�1) � �(Ai). Since A0 and As

are both nilpotent, �(A0) = �(As) = 0 so this holds for all matrices in the
sequence. We thus obtained a sequence of nonnegative nilpotent matrices, all
in NNTC(A). Each Ai is a one-dimensional perturbation of the previous one,
so their ranks di�er by at most one. The rank of A0 is r+(A) and the rank
of As is n� 1 (ind(B) = n). This implies that every integer r between r+(A)
and n � 1 appears as the rank of one of the matrices A0; :::; As.

Now we return to Example 3.2, and show that the situation in this coun-
terexample is not exceptional.

Theorem 3.6. For every nonincreasing sequence of nonnegative integers
J = fJ1; :::; Jsgwith

Ps
i=1 Ji = n there exists A 2 N n

+ with Jordan structure
J(A) = J, such that for every B 2 NNTC(A); B 6= A; ind(B) > ind(A):

Proof. Denote by M the n� n matrix in the Jordan canonical form with
a Jordan structure J . Observe, that the digraph D(M) consists of simple
disjoint paths of lengths fJ1; :::; Jsg. De�ne an integer-valued function f on
the vertices of D(M) by the following rules:

1. The value assigned to the endpoints of the paths is 1.
2. If there is an arc v ! w in D(M) then f(v) = f(w) + 1.

Now we add arcs toD(M) by connecting all vertices with value s to all vertices
with a smaller value for all 2 � s � ind(M). The digraph D obtained in this
way has the following properties:
(a) The number of vertices of value s does not exceed the number of vertices
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of value s � 1; 2 � s � ind(M).
(b) Every path from v to w is contained in a path

v = v0 ! v1 ! :::! vf(w)�f(v) = w; where f(vi) = f(vi�1)� 1:

Since pk(D) is the maximal number of vertices covered by k disjoint paths in
D, it follows from (a) and (b) that pk =

Pk
i=1 Jk, and so pi(D) = pi(D(M)):

Now we construct an upper triangular matrix A from the digraph D. First,
we renumerate the vertices of the digraph D such that v > w if f(v) > f(w).
Then, we assign algebraically independent numbers to the arcs. By Theorem
2.1, the Jordan structure of A is J . Since A is an upper triangular matrix,
adding arcs to its graph is the only type of completion allowed here. The
proof is completed by observing that adding of an arc v ! w to D(A) either
creates a cycle if f(v) 6= f(w) or increases the length of the maximal path if
f(v) = f(w).

4. Discussion. We conclude the paper with some remarks and open
problems on nonnegative completions.
It is clear that a triangular completion of a matrix A may have a smaller rank
than A does. For this reason it was of interest to characterize the minimum of
ranks of all possible completions. This was done in [24]. A spectrum preserv-
ing triangular completion of a matrix A may also have a smaller rank than
rank(A).

The following example shows that there can be a matrix A 2 N n
+ and a

matrix B 2 NNTC(A) such that rank(B) < rank(A).
Example 4.1. Let

A(k) =

0
BB@
0 1 0 1
0 0 0 0
0 k 0 1
0 0 0 0

1
CCA :

Then for 0 � k < 1; rank(A(1)) < rank(A(k)):
Open Question 4.2. What is the minimal rank of a spectrum preserving

triangular completion of a given nonnegative matrix A? In particular, what is
r+ for A 2 N n

+?
For a discussion of questions concerning minimal ranks of completions of

di�erent types, the reader is referred to [4], [5], [13], [19], [25].
In Theorem 3.5 we showed that the index and the rank of a matrixA 2 N n

+
can be increased by one. It is not claimed (and it is not true in general) that
this can be done by a one-dimensional perturbation.

Example 4.3. Let

A =

0
BB@
0 1 1 1
0 0 0 0
0 0 0 0
0 1 0 0

1
CCA :
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Then the only matrices in NNTC(A) with a greater rank or index are of the
form 0

BB@
0 1 1 1
0 0 0 0
0 + 0 0
0 1 + 0

1
CCA :

It is also not claimed that for any pair (r; i) such that r � r+, i � ind(A),
there exists B 2 NNTC(A) of rank r and index i, even if the necessary
condition r � i� 1 holds. This is shown (for r = 4 and i = 3) by Example 4.5
that relates to the following question.

Open Question 4.4. What are the possible Jordan structures of the
nonnegative nilpotent triangular completions of a given nonnegative nilpotent
matrix A?

It is tempting to hope that for every nonincreasing sequence of nonnegative
integers K, such that K majorizes J(A) and K1 > ind(A), there exists B 2
NNTC(A) with a Jordan structure K. However, the following example shows
this is not the case.

Example 4.5. Let

A =

0
BBBBBB@

0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA
:

Then J(A) = f2; 1; 1; 1; 1; 1g and there is no nonnegative nilpotent completion
with Jordan sequence f3; 3g.
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