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ON NONNEGATIVE OPERATORS AND FULLY CYCLIC

PERIPHERAL SPECTRUM �

K.-H. F�ORSTERy AND B. NAGYz

Dedicated to Hans Schneider on the occasion of his seventieth birthday

Abstract. In this note the properties of the peripheral spectrumof a nonnegative linear operator
A (for which the spectral radius is a pole of its resolvent) in a complex Banach lattice are studied. It
is shown, e.g., that the peripheral spectrum of a natural quotient operator is always fully cyclic. We
describe when the nonnegative eigenvectors corresponding to the spectral radius r span the kernel
N(r � A). Finally, we apply our results to the case of a nonnegative matrix, and show that they
sharpen earlier results by B.-S. Tam [Tamkang J. Math. 21:65{70, 1990] on such matrices and full
cyclicity of the peripheral spectrum.
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1. Introduction. It follows from results of H.H. Schaefer [6, I.2.6 and V.4.6],
that in the �nite dimensional case jCn and in certain Banach function lattices a non-
negative operator A has a fully cyclic peripheral point spectrum i� for all � 2 jC with
j�j = r(A)

x 2 N (� �A) implies jxj 2 N (r(A)� A);

here r(A) denotes the spectral radius of A; see also B.-S. Tam [8, Lemma 2.1].
In this note we consider nonnegative operators A in a Banach lattice for which

the spectral radius r(A) is a pole of its resolvent. We give necessary and su�cient
conditions that for a given � 2 jC with j�j = r(A) the inclusion fjxj : x 2 N (��A)g �
N (r(A) � A) holds; in particular, we give necessary and su�cient conditions that
N (r(A)�A) has a basis of nonnegative eigenvectors, and is a sublattice, respectively.

As examples show (see [8, Example 2.7]), the inclusion above is, even in the
matrix case, not only a property of the spectrum and the associated directed graph of
A. This will be very clear from Theorem 3.5. On the other hand, Theorem 4.2 in the
matrix case and under the assumption that the nonnegative vectors in N (r(A) � A)
span this kernel will show that the property of N (r(A) � A) being a sublattice can
be characterized by properties of the reduced and of the singular graphs of A.

The main method of the investigation is the systematic application of an idea
going back to Lotz and Schaefer (cf. [6]), and successfully developed by Greiner [2],
[4]. The closed lattice ideals I0 and I1, de�ned below in terms of the Laurent expansion
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of the resolvent of A around the spectral radius, their quotient Ih and the restrictions
of (or the induced operator by) A are the most important technical means of the
study, and a number of the results presented here �nd their natural formulation in
this terminology.

In Section 4 we compare the results of Section 3 on nonnegative operators in
Banach lattices with those of B.-S. Tam [8] on nonnegative matrices. One of the main
results here is Theorem 4.2, which shows that for a nonnegative square matrix A the
kernel N (r � A1) for the restriction A1 of A to the lattice ideal I1 is a sublattice i�
there does not exist a (strongly connected equivalence) class of A having access to
two di�erent distinguished basic classes (as expressed in the already standard graph
theoretic terminology). The results of Section 4 sharpen the main results of Tam [8,
Theorems 2.4 and 2.5] on matrices with fully cyclic peripheral spectrum.

2. De�nitions and Preliminaries. In the following A denotes a nonnegative
operator in a complex Banach lattice E. We assume that its spectral radius r = r(A)
is a pole of order p (� 1) of its resolvent R(:; A), i.e., we have for some � > 0 and
operators Qk (k = �p;�p+ 1; : : :) the Laurent expansion

R(�;A) =
1X

k=�p

(�� r)kQk if 0 < j�� rj < �:

Note that Q�p is nonnegative, since A is nonnegative. Following G. Greiner [2], [4,
Chapters B III and C III], we de�ne

I1 = fx 2 E : (Q�pjxj = : : : = Q�3jxj =)Q�2jxj = 0g

(hence I1 = E if p = 1), and

I0 = fx 2 E : Q�1jxj = 0g:

Note that I0 can be trivial. Then we have (see [4, p. 174 and p. 303]) that I1 and I0
are closed ideals of E, and they are invariant under A and Qk (k = �p;�p+ 1; : : :).
If A1 and A0 denote the restrictions of A to I1 and I0, respectively, then

r(A1) = r(A) is a pole of R(�; A1) of order 1;

r(A0) < r(A); here we set r(A0) = �1 if I0 = f0g:

Since I0 �6= I1, the quotient space Ih = I1=I0 is well-de�ned and is a Banach lattice.
Further, A1 induces uniquely a nonnegative operator Ah in Ih such that qhA1 = Ahqh,
where qh denotes the quotient map I1 ! I1=I0. Then (see [4, p. 174 and p. 303])
r(Ah) = r(A1) = r(A) = r, r is a pole of order 1 of R(�; Ah), and the residuum of
R(�; Ah) at r (which is induced by Q�1 in Ih) is strictly positive in the sense that the
zero element is the only nonnegative element in Ih which it maps to the zero element.
Since r is a pole of order 1 of R(�; Ah), the associated residuum is a projection with
kernel R(r�Ah) = range of r�Ah. Therefore R(r�Ah) cannot contain any nonzero
element y of Ih for which either y or �y is nonnegative.
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Let J be the closed ideal of Ih generated by N (r �Ah). J is Ah-invariant, since
N (r�Ah) is Ah-invariant. Let Ai = Ah j J (i.e. the restriction of Ah to J). Further,
let Ij = Ih=J and Aj = Ah=J (i.e. the operator induced by Ah in Ij). We set
r(Aj) = �1 if Ij = f0g.

The important basic connections between di�erent kernels and spectral radii of
the operators de�ned above will be collected in the proposition below. The following
useful lemma, which is not new, will be applied in the proof of the proposition and
several times at other places of this note.

Lemma 2.1. Let T be a linear map in a vector space V and letM be a T -invariant
linear submanifold of V . Let T jM denote the restriction of T to M , let T=M denote
the linear map induced by T in the quotient space V=M , and let qM : V ! V=M
denote the quotient map. Then the following hold.
(I) If T jM is bijective, then qM maps the kernel N (T ) bijectively onto N (T=M ).
(II) If T=M is injective, then N (T ) = N (T jM ).

Proof. (I) Since qMT = (T=M )qM, the quotient map qM maps N (T ) into
N (T=M ). Let z 2 N (T=M ). Take v 2 V such that qM(v) = z, then qM(Tv) =
T=M z = 0, i.e., Tv 2 M . Since T jM is surjective, we have Tv = (T jM )w for some
w 2M � V . Thus u = v �w 2 N (T ) and qM (u) = qM(v) = z. If u 2 N (T ) satis�es
qM(u) = 0, then u 2M and (T jM )u = 0. Since T jM is injective, we obtain u = 0.
(II) Clearly we have N (T jM ) � N (T ). Let u 2 N (T ). Then T=M qM (u) = qM (Tu) =
0, and therefore qM (u) = 0, since T=M is injective. Thus u 2M \N (T ) = N (T jM ).

Proposition 2.2. Let the assumptions and notations preceeding Lemma 2.1
hold. Then the following hold.
(I) r(A) = r(A1) = r(Ah) = r(Ai) > maxfr(Aj); r(A0)g, and r(A) is a pole of order
1 of R(�; A1); R(�; Ah) and R(�; Ai), respectively.
(II) For all � 2 jC with j�j = r(A) = r we have N (��A) � N (��A1); N (��Ah) =
N (��Ai); qh maps N (��A1) bijectively onto N (��Ah), dimN (r�A1) � dimN (��
A1) = dimN (�� Ah) = dimN (�� Ai), and fjzj : z 2 N (� � Ah)g � N (r � Ah). It
follows that N (r �Ah) is a sublattice of Ih.

Proof. (I) As seen above, the residuum Qh;�1 of R(�; Ah) at r is strictly positive.
Then its restriction Qi;�1 to J is also strictly positive (note that f0g 6= N (r�Ah) �
J). This implies the three equalities. Since R(Qh;�1) = N (r � Ah) � J , it follows
that R(�; Aj) is holomorphic at r. Therefore r(Aj) < r(A), since Aj is a nonnegative
operator in the Banach lattice Ij [3, Proposition 4.1.1.i]. Note that we have de�ned
r(Aj) = �1 if Ij = f0g.
(II) The �rst inclusion is evident. For the second statement we apply Lemma 2.1
(II) with V = Ih, M = J and T = � � Ah. Note that T=M = � � Aj is injective,
since r(Aj) < r(A) = j�j. The third statement follows from Lemma 2.1 (I) if we
set V = I1, M = I0 and T = � � A1. Note that T jM = � � A0 is bijective, since
r(A0) < r(A) = j�j. The equality dimN (��A1) = dimN (��Ah) = dimN (��Ai)
is now evident. We shall prove dimN (r�A1) � dimN (r �Ai), which needs a proof
only if m = dimN (r � A1) < 1. By [4, C-III, Lemma 3.13], the ideal J is the
mutually orthogonal sum of m Ai-invariant ideals Jk (k = 1; : : : ;m), the restrictions
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Aik = AijJk are irreducible, and r(Aik) = r(A) is a pole of R(�; Aik) (k = 1; : : : ;m).
The eigenspaces N (r � Aik) are one-dimensional; see [6, V. x 5]. By [6, Corollary
to Theorem V.5.4], dimN (� � Aik) � 1. Ai is the direct sum of the restrictions
Aik. Then N (�� Ai) is the direct sum of the N (�� Aik) (k = 1; : : : ;m). Therefore
dimN (� � Ai) � m = dimN (r � A1). For the proof of the next statement take
z 2 N (�� Ah). Let y = (r �Ah) jzj. Then y � rjzj � jAhzj � j(��Ah)zj = 0. By a
remark preceding Lemma 2.1, then y = 0.

3. Results and Proofs. We shall always assume that A is a nonnegative linear
operator in a Banach lattice E, and its spectral radius is a pole of its resolvent.

We shall freely use the concepts and notations of Section 2. The next lemma is
crucial for the main results of this note.

Lemma 3.1. Let j�j = r(A) = r. For each z 2 N (� � Ah) there exists a unique
nonnegative w in N (r � A1) such that qh(w) = jzj; for the unique u 2 N (� � A1)
satisfying qh(u) = z it follows that qh(w) = qh(juj) and w � juj.

Proof. Let z 2 N (� � Ah). By Proposition 2.2(II), there exists a unique u 2
N (��A1) with qh(u) = z. Proposition 2.2(II) implies jzj 2 N (r�Ah). Since qh is a
lattice homomorphism, we get qh((r�A1)juj) = (r�Ah)qh(juj) = (r�Ah)jzj = 0, i.e.
(r�A1)juj 2 I0. Since (r�A1)juj � j(��A1)uj = 0, there exists a unique nonnegative
u0 in I0 such that (r � A0)u0 = �(r � A1)juj (notice that r(A0) < r(A) = r, thus
r � A0 has a nonnegative inverse). Then w = juj + u0 is a vector we are looking
for. If v 2 I1 satis�es qh(v) = qh(juj), then juj � v 2 I0. If further v 2 N (r � A1),
then juj+ u0 � v 2 I0 \ N (r � A1) = N (r � A0). But r � A0 is injective, therefore
v = juj+ u0 = w, i.e. w is unique as stated.

Proposition 3.2. Under our general assumptions the following hold.
(I) N (r � A) \E+ � N (r �A1).
(II) span (N (r �A) \E+) = N (r � A1).
(III) the nonnegative eigenvectors of A corresponding to r span the eigenspace N (r�A)
i� N (r �A) � I1 i� N (r � A) = N (r � A1).
(IV) if N (r � A1) is �nite dimensional, then N (r � A1) has a basis of nonnegative
eigenvectors of A1 corresponding to r.

Proof. (I) u 2 N (r�A) is equivalent to R(�;A)u = (�� r)�1u if 0 < j�� rj < �
for some � > 0. Therefore u 2 N (r�A)\E+ implies u 2 fx 2 E : Q�2jxj = 0g = I1.
(II) Let u 2 N (r � A1). Then its real and its imaginary parts belong to N (r � A1).
Therefore we assume w.l.o.g. that u is real. Choose w as in Lemma 3.1. Then
u = 1

2
(w + u)� 1

2
(w � u), w � u 2 N (r �A1) and w � u 2 E+.

(III) The �rst part follows from N (r�A1)= N (r�A) \ I1 and (II), the second part
ist clear.
(IV) follows simply from (II).

Remark 3.3. In connection with (III) and (IV) recall that U.G. Rothblum [5]
proved that in the case dim E < 1 the generalized eigenspace N ((r � A)p) (where
p is the order of the pole r) always has a basis of nonnegative vectors. However, [1,
Example 18] shows that in the general case (dim E =1) the corresponding statement
can be false even if p = 2 and dim N ((r �A)2) = 2.

Theorem 3.4. Let the general assumptions hold. The following assertions are
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equivalent.
(I) N (r � A1) is a sublattice of E;
(II) If z1 and z2 are disjoint vectors in N (r � Ah), then the unique nonnegative w1
and w2 with wi 2 N (r � A1) and qh(wi) = jzij for i = 1; 2 (see Lemma 3.1) are
disjoint.

Proof. (I)) (II) Let z1 and z2 be disjoint vectors in N (r�Ah). For i = 1; 2 choose
wi as in Lemma 3.1. Then qh(j�1w1+�2w2j) = jqh(�1w1+�2w2)j = j�1z1+�2z2j =
j�1j jz1j+ j�2j jz2j for all complex �1 and �2, since z1 and z2 are disjoint [3, Theorem
1.1.1.vi], By Lemma 3.1, we get w1 + w2 = j�1w1 + �2w2j for all �1 and �2 with
modulus 1, since w1 + w2 is nonnegative and j�1w1 + �2w2j belongs to N (r � A1);
here we have used that, by (I), N (r � A1) is a sublattice. This is equivalent to the
disjointness of w1 and w2.
(II) ) (I) Let u 2 N (r � A1). Then z = qh(u) 2 N (r � Ah). Since N (r � Ah) is a
sublattice of Ih (see Proposition 2.2(II)), z+ and z� (the positive and the negative
parts of z, respectively) belong to N (r � Ah). Applying Lemma 3.1, we choose
nonnegative w1 and w2 in N (r � A1) such that qh(w1) = z+ and qh(w2) = z�.
Then qh(u) = z = qh(w1�w2). Since u and w1�w2 belong to N (r�A1), we obtain
u = w1�w2, by Proposition 2.2(II). Now z+ and z� are disjoint [3, Theorem 1.1.1.iv],
therefore w1 and w2 are disjoint, by assumption. But then juj = w1+w2 2 N (r�A1).

For the rest of this section we assume that I0 is a projection band in E. Note that
this holds in any Banach lattice with order continuous norm [3, Corollary 2.4.4.xii,
Theorem 2.4.2.ii), and Theorem 1.2.9.], and a fortiori in jC`. Then I0 is also a projec-
tion band in I1, and we can identify Ih with the kernel of the band projection of I1
onto I0, i.e. I1 = Ih � I0, where � means disjoint sum in the lattice sense. Since I0
is A1-invariant, we can represent A1 with respect to this direct sum as a triangular
operator matrix as follows,

A1 =

�
Ah 0
A0h A0

�
:

Theorem 3.5. In addition to the general assumptions we assume that I0 is a
projection band in E. Let u 2 N (� � A1) with j�j = r(A) and u = uh + u0, where
uh 2 Ih and u0 2 I0. The following assertions are equivalent.
(I) juj 2 N (r �A1);
(II) j(�� A0)u0j = (r � A0)ju0j and jA0huhj = A0hjuhj.

Proof. u 2 N (� � A1) is equivalent to (�� Ah)uh = 0 and (� �A0)u0 = A0huh.
The �rst equality implies (r � Ah)juhj = 0, by Proposition 2.2(II). Therefore juj 2
N (r � A1) is equivalent to (r � A0)ju0j = A0hjuhj. We also obtain

A0hjuhj � jA0huhj = j(�� A0)u0j � (r �A0)ju0j:

From this inequality it follows immediately that (I) and (II) are equivalent.
The second equality in (II) means that A0h : Ih ! I0 is a lattice homomorphism

on N (� � Ah). However, even if (I) holds, A0h need not be a lattice homomorphism
of all of Ih, as the following example shows.
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Example 3.6. Let

A = A1 =

2
6664

0 2 2 0
1 0 0 0
1 0 0 0

1 1 0 0

3
7775 =

�
Ah 0
A0h A0

�
:

For xh = [�2; 2; 0]> 2 Ih we get A0hxh = 0 and A0h jxhj = 4.
Since r(A0) < r(A) = r, the �rst equality in (II) implies ju0j = (r � A0)

�1j(� �
A0)u0j � j(r�A0)

�1(��A0)u0j. We cannot expect that we have here equality, even
if statement (I) in Theorem 3.5 holds, as is shown by the following example.

Example 3.7. Let

A = A1 =

2
6664

02 00
20 00

10 01
01 10

3
7775 =

�
Ah O
I A0

�
:

The peripheral eigenvalues of the matrix A are 2 and �2. We have u 2 N (�2 � A)
i� u = [�;��;��; �]>, � 2 jC. Therefore statement (I) of Theorem 3.5 holds for
� = �2. Let u = [u>h ; u

>
0 ]
> 2 N (�2 � A). Then �u0 = uh = (�2 � A0)u0,

(2� A0)�1(�2 �A0)u0 = �1

3
u0, but (2� A0)�1j(�2� A0)u0j = ju0j.

In the next section we will use the following result.
Proposition 3.8. In addition to the general assumptions we assume that I0 is

a projection band in E and that N (r � A1) = N (r � Ah) � f0g. For � 2 jC with
j�j = r(A) = r the following assertions are equivalent.
(I) N (� �A) � I1;
(II) fjuj : u 2 N (�� A)g � N (r � A).

Proof. (I)) (II): From (I) we obtainN (��A) = N (��A1). Let u 2 N (��A) and
for z = qh(u) choose w as in Lemma 3.1. Then w 2 N (r�A1) = N (r�Ah)�f0g � Ih,
and w � juj. This implies u 2 Ih and then juj = w, since qh(juj) = qh(w), where qh
is now (identi�ed with) the band projection of I1 onto Ih.
(II)) (I) follows from Proposition 3.2(I); notice that we use for this implication only
the general assumptions.

4. The matrix case. In the last section of this note we want to compare the
results in Section 3 with those of B.-S. Tam on nonnegative matrices [8, Theorems
2.4 and 2.5]. We shall use the graph theoretic concepts de�ned in [7, x 2], and [8, x 1].

In the complex Banach lattice jC` each ideal is of the form I� = fx 2 jC` :
xi (= i-th component of x) = 0 if i =2 �g for some � � f1; : : : ; `g; see [6, p. 2]. Let �
and � be nonempty subsets of f1; : : : ; `g. For x 2 jC` we denote by x� the subvector
of x with indices from �. For an ` � `-matrix A we denote by A�� the submatrix
of A with row indices from � and column indices from �. We write A� instead of
A��. In the next lemma we collect some facts on the connection between the ideals
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de�ned in Section 2 and the ideals I� for a class � of A (i.e., � is a strongly connected
component in the directed graph associated with A [8, x 1].

Lemma 4.1. Let A be a nonnegative square matrix, and let � be a class of A.
(I) If I is an A-invariant ideal and I� \ I 6= f0g, then I� � I.
(II) If I� � I0 � Ij, then � is nonbasic (i.e. r(A�) < r(A)).
(III) Let � be a basic class. Then � is distinguished i� I� � I1 i� I� � Ih i� I� = Jk
for some k 2 f1; : : : ;mg.
(IV) If � has access to a distinguished basic class of A, then either � is this distin-
guished class of A or I� � I0.

Proof. (I) The ideal I� \ I is A�-invariant. Since A� is an irreducible matrix,
I� \ I 6= f0g implies I� \ I = I�.
(II) We have r(A�) � maxfr(A0); r(Aj)g < r(A).
(III) Let � be a distinguished basic class of A. Then there exists a nonnegative
eigenvector x ofA corresponding to r, such that x� is strictly positive; see [7, Theorem
3.1]. By Proposition 3.2(I), we have that x 2 I1. Therefore I� � I1. If � is a basic
class of A with I� � I1, then I� � J � Ih, by (II). Let � be a basic class of A with
I� � Ih. Then I� � J , since r(Aj) < r(A). Ai is the direct sum of the irreducible
operators Aik = AijJk (k = 1; : : : ;m), so we get A� = Aik for some k 2 f1; : : : ;mg.
Then I� = Jk for this k. If I� = Jk for some k 2 f1; : : : ;mg, then r(A�) = r(A)
and A� is irreducible. Therefore � is a strongly connected set in the directed graph
associated with A. From the triangular structure of A1 with respect to the direct sum
I1 = Ij � J1 � : : :� Jm � I0 it follows that � is a strongly connected component in
this graph.
(IV) Let � have access to a distinguished basic class � of A. Assume � 6= �. Then �
is nonbasic. Furthermore, there exists a nonnegative eigenvector x of A corresponding
to r, such that x� ist strictly positive; see [7, Theorem 3.1]. Proposition 3.2(I)
implies x 2 I1. Therefore x 2 N (r � A1). From Proposition 2.2(II) it follows that
N (r � A1) � J � I0. Therefore I� � J � I0. From the last part of the proof of (III)
we see that I� \ J 6= f0g would imply r(A�) = r(A). Hence we obtain I� � I0, since
� is nonbasic.

B.-S. Tam [8, Lemma 2.1] showed that A has fully cyclic peripheral spectrum (see
[6, De�nition 2.5]), i� for all � 2 jC with j�j = r(A)

fjuj : u 2 N (� �A)g � N (r �A):

Thus, if A has a fully cyclic peripheral spectrum, then N (r�A) is a sublattice of jC`.
By Proposition 3.2, the latter assertion implies statement (a) in [8, Theorems 2.4 and
2.5]. In the matrix case we have the following result as a supplement to Theorem 3.4.

Theorem 4.2. For a nonnegative square matrix the following assertions are
equivalent.
(I) N (r � A1) is a sublattice, where r = r(A),
(II) there does not exist a class of A which has access to two di�erent distinguished
basic classes.

Proof. We prove that the assertion (II) is equivalent to Theorem 3.4(II).
(I) ) (II) Assume there exists a class � of A which has access to two di�erent



ELA

20 K.-H. F�orster and B. Nagy

distinguished basic classes �1 and �2. Then � has to be a nonbasic class, since a
basic class does not have access to a distinguished basic class. By Lemma 4.1(IV) this
implies I� � I0. From [7, 3.1(i)] it follows that there are two nonnegative eigenvectors
w1 and w2 of A corresponding to r with � � supp(wi), �i � supp(wi) and �i =
supp(qh(wi)). By Proposition 3.2(II), wi 2 N (r � A1), i = 1; 2. Since �1 and �2
are disjoint sets, we get that qh(w1) and qh(w2) are disjoint nonnegative vectors in
N (r � Ah). But w1 and w2 are not disjoint, and this contradicts Theorem 3.4(II).
(II) ) (I) If z is in N (r�Ah), then jzj belongs to N (r�Ah); see Proposition 2.2(II).
Then supp(z) = supp(jzj) is the union of some distinguished basic classes. From
[7, 3.1(i) and (ii)] it follows that for the unique nonnegative w 2 N (r � A1) with
qh(w) = jzj its support is the union of all classes which have access to distinguished
basic classes contained in supp(z). Since w is a nonnegative eigenvector of A, the
ideal generated by w is A-invariant; this ideal is I� , where � = supp(w). Now let
z1 and z2 be disjoint vectors in N (r �Ah), and assume that the unique nonnegative
w1 and w2 in N (r � A1) with qh(wi) = jzij for i = 1; 2 are not disjoint. Then there
exists a class � of A with I� \ I�1 \ I�2 6= f0g, where �i = supp(wi) for i = 1; 2.
Since I�i

are A-invariant for i = 1; 2, we have I� � I�1 \ I�2 . Then � has access to a
distinguished basic class �1 in �1 and to one �2 in �2. Now �i � supp(zi). Therefore
I�i

� Ih. By Lemma 4.1(III), the �i are distinguished. Thus � has access to two
di�erent distinguished basic classes of A. This contradicts (II), so w1 and w2 are
disjoint. Thus Theorem 3.4(II) holds.

Theorem 4.2 and Proposition 3.2 show that statements (a) and (b) in [8, Theorem
2.4] together are equivalent to the statement that N (r �A) is a sublattice of jC`.

The next theorem will show, how conditions (c) in Theorems 2.4 and 2.5 of [8]
are related to our results.

Theorem 4.3. Consider for a nonnegative square matrix A and a peripheral
eigenvalue � of A satisfying the following statements.
(I) If � is an eigenvalue of A� for some class � of A, then � is distinguished.
(II) N (� �A) � I1.
(III) If � is an eigenvalue of A� for some class � of A, then all initial classes of the
family

F (�) = f
 : 
 is a class of A; � is an eigenvalue of A
 ; 
 >= �g

are distinguished.
(IV) If � is an eigenvalue of A� for some class � of A, then � is also an eigenvalue
of A� for some distinguished class � of A, which has access to �.
(V) � is an eigenvalue of A� for some distinguished class � of A.
(VI) N (� �A) \ I1 6= f0g.
Then (I) ) (II) ) (III) , (IV) ) (V) , (VI).

Proof. (I) ) (II) Let 0 6= u 2 N (� � A). Then for all classes � of A, which
are �nal in supp(u), � is an eigenvalue of A�; see [8, Lemma 2.3]. Therefore, by
assumption, all (�nal) classes in supp(u) have access to a distinguished basic class of
A. By Lemma 4.1(III) and (IV), we have u 2 I1.
(II) ) (III) Take an initial class � in F (�). Notice that F (�) is nonempty, since �
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belongs to it. Then � is basic, since j�j = r(A). Let ! be the union of all classes of
A, which have access to � and are di�erent from �. Set � = f1; : : : ; `gn(! [ �). Note
that one or both of the sets ! and � can be empty. Then the corresponding matrices
in the decomposition below do not appear. With respect to the decomposition jC` =
I� � I� � I! the matrix A has the block triangular form2

4 A� 0 0
A�� A� 0
A!� A!� A!

3
5 :

By the choice of �, � is not an eigenvalue of A!. Take an eigenvector u� of A� corre-
sponding to �. De�ne u! = (� � A!)�1A!�u� and u = [o>; u>� ; u

>
! ]
>. Then u is an

eigenvector of A corresponding to �. Now u 2 N (� � A) � I1 by assumption. Then
o 6= [o>; u>� ; o

>]> 2 I� \ I1 implies I� \ I1 6= f0g. By Lemma 4.1(I), we have I� � I1.
Since � is basic, we get from Lemma 4.1 (III) that it is distinguished.
(III) ) (IV) is clear.
(IV) ) (III) Take an initial class � of A in F (�). Then � is an eigenvalue of A�. By
assumption, there exists a distinguished basic class � of A with � >= � and � is an
eigenvalue of A�. Then � >= � >= �, thus � 2 F (�). Therefore � = �, since � is
initial in F (�).
(IV) ) (V) is clear, since each eigenvalue of A has to be an eigenvalue of A� for at
least one class � of A.
(V) ) (VI) For a distinguished basic class � let u� be an eigenvector of A� cor-
responding to �. By Lemma 4.1(III), A� = Aik for some k 2 f1; : : : ;mg. Let
uh = [u>1 ; : : : ; u

>

m]
> with uk = u� and ui = 0 if i 6= k. The vector uh is an eigenvector

of Ah corresponding to �, since Ah = Ai1� : : :�Aim. De�ne u0 = (��A0)�1A0huh,
and u1 = [u>h ; u

>

0 ]
>. Then u1 is an eigenvector of A1 corresponding to �. Thus

f0g 6= N (�� A1) = N (�� A) \ I1.
(VI) ) (V) Let u 2 I1 be an eigenvector of A corresponding to �. If � is a �nal
class of A in supp(u), then � is a basic class [8, Lemma 2.3]. Since I� � I1, � is
distinguished (see Lemma 4.1(III).

The following examples will show that the converses of the three one-way impli-
cations in Theorem 4.3 are not true in general.

Example 4.4. Let

A =

2
666666664

0 1 0 0 0
1 0 0 0 0

0 1 1 0 0

a b 0 0 1
c d 0 1 0

3
777777775

with nonnegative numbers a; b; c and d:

Then � = f1; 2g, � = f3g and 
 = f4; 5g are the classes of A. The matrices A�, A


and A have eigenvalues 1 and �1. The matrix A� has the eigenvalue 1. Therefore all
classes ofA are basic. The classes � and 
 are distinguished and � is not distinguished.
Further, here I1 = fx 2 jC5 : x1 = x2 = 0g = I� � I
 and I0 = f0g. Now let
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(1) a = d = 1 and b = c = 0. Then statement (I) is not true for � = �1, but
N (�1�A) = fx 2 jC5 : x1 = x2 = x3 = 0; x4+x5 = 0g � I1. For � = r(A) statement
(I) in Theorem 4.3 is equivalent to: \All basic classes of A are distinguished." This
is equivalent to p = 1, where p is the order of the pole r(A) of the resolvent, cf.
Section 2. The example also shows that even for � = r(A) (II) does not imply (I),
since N (1�A) = fx 2 jC5 : x1 = x2 = 0; x4 � x5 = 0g � I1 and p = 2.

(2) a = b = c = d = 1. Then statement (II) is not true for � = �1, since
N (�1�A) = fx 2 jC5 : x1+ x2 = 0; x2 + 2x3 = 0; x4+ x5 = 0g. But statement (III)
is true for � = �1, since F (�) = f
; �g with 
 >| � and F (
) = f
g.

(3) a = b = c = d = 0. Then statement (IV) is not true for � = �1, since 
 >6= �.
But statement (V) is true, since �1 is an eigenvalue of A
 .

Part (b) of [8, Theorem 2.5], which states that each distinguished basic class of A
is initial (in the family of all classes ofA), is equivalent to N (r�A1) = N (r�Ah)�f0g.
This follows immediately from [7, 3.1(i) and (ii)]. Combining this observation with
Proposition 3.8 we obtain the following result.

Corollary 4.5. Let A be a nonnegative square matrix, such that each distin-
guished class of A is initial (in the family of all classes of A). Then A has a fully
cyclic peripheral spectrum i� N (� �A) � I1 for all peripheral eigenvalues of A.

This corollary is stronger than [8, Theorem 2.5] as Theorem 4.3 (I) ) (II) and
Example 4.4(1) show.
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