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Abstract. In this note the properties of the peripheral spectrum of a nonnegative linear operator
A (for which the spectral radius is a pole of its resolvent) in a complex Banach lattice are studied. It
is shown, e.g., that the peripheral spectrum of a natural quotient operator is always fully cyclic. We
describe when the nonnegative eigenvectors corresponding to the spectral radius r span the kernel
N(r — A). Finally, we apply our results to the case of a nonnegative matrix, and show that they
sharpen earlier results by B.-S. Tam [Tamkang J. Math. 21:65-70, 1990] on such matrices and full
cyclicity of the peripheral spectrum.
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1. Introduction. It follows from results of H.H. Schaefer [6, 1.2.6 and V.4.6],
that in the finite dimensional case C” and in certain Banach function lattices a non-

negative operator A has a fully cyclic peripheral point spectrum iff for all A € C with
Al = r(A)

z € N(A<=A) implies |z] € N(r(A) ©A);

here r(A) denotes the spectral radius of A; see also B.-S. Tam [8, Lemma 2.1].

In this note we consider nonnegative operators A in a Banach lattice for which
the spectral radius 7(A) is a pole of its resolvent. We give necessary and sufficient
conditions that for a given A € C with |A| = r(A) the inclusion {|z|: z € N(A<A4)} C
N(r(A) < A) holds; in particular, we give necessary and sufficient conditions that
N(r(A)<A) has a basis of nonnegative eigenvectors, and is a sublattice, respectively.

As examples show (see [8, Example 2.7]), the inclusion above is, even in the
matrix case, not only a property of the spectrum and the associated directed graph of
A. This will be very clear from Theorem 3.5. On the other hand, Theorem 4.2 in the
matrix case and under the assumption that the nonnegative vectors in N(r(A) <A)
span this kernel will show that the property of N(r(A4) < A) being a sublattice can
be characterized by properties of the reduced and of the singular graphs of A.

The main method of the investigation is the systematic application of an idea
going back to Lotz and Schaefer (cf. [6]), and successfully developed by Greiner [2],
[4]. The closed lattice ideals Iy and Iy, defined below in terms of the Laurent expansion
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of the resolvent of A around the spectral radius, their quotient I and the restrictions
of (or the induced operator by) A are the most important technical means of the
study, and a number of the results presented here find their natural formulation in
this terminology.

In Section 4 we compare the results of Section 3 on nonnegative operators in
Banach lattices with those of B.-S. Tam [8] on nonnegative matrices. One of the main
results here 1s Theorem 4.2, which shows that for a nonnegative square matrix A the
kernel N(r < A;p) for the restriction A; of A to the lattice ideal I; is a sublattice iff
there does not exist a (strongly connected equivalence) class of A having access to
two different distinguished basic classes (as expressed in the already standard graph
theoretic terminology). The results of Section 4 sharpen the main results of Tam [8,
Theorems 2.4 and 2.5] on matrices with fully cyclic peripheral spectrum.

2. Definitions and Preliminaries. In the following A denotes a nonnegative
operator in a complex Banach lattice . We assume that its spectral radius » = r(A)
is a pole of order p (> 1) of its resolvent R(., A), i.e., we have for some é > 0 and
operators Qy (k= <p,<p+ 1,...) the Laurent expansion

ROAA) =D (AenfQr  if 0<ler| <d
k=-—p

Note that ¢)_, is nonnegative, since A is nonnegative. Following G. Greiner [2], [4,
Chapters B III and C III], we define

L ={z € E:(Q_plz|=...=Q_slz| =)Q-2|x| = 0}
(hence I = F'if p=1), and
Io=1{r € F:Qila] = 0).

Note that Iy can be trivial. Then we have (see [4, p. 174 and p. 303]) that I; and I
are closed ideals of F, and they are invariant under A and Q (k = <p,<p+1,...).
If A; and Ay denote the restrictions of A to I} and Iy, respectively, then

r(41) = r(A4) isapoleof R(-,A4;) oforder 1;
r(Ag) < 7(A), here weset r(Adg)=<o0 if Iy={0}.

Since Iy C# Iy, the quotient space I, = I /Iy is well-defined and is a Banach lattice.
Further, A; induces uniquely a nonnegative operator Ay in I such that ¢, A1 = Apqn,
where g5, denotes the quotient map Iy — I/Iy. Then (see [4, p. 174 and p. 303])
r(Ap) = r(A1) = r(A) = r, r is a pole of order 1 of R(-, Ap), and the residuum of
R(-, Ap) at r (which is induced by Q_; in I) is strictly positive in the sense that the
zero element is the only nonnegative element in 7, which it maps to the zero element.
Since r is a pole of order 1 of R(-, A), the associated residuum is a projection with
kernel R(r<>Ap) = range of r <Ay, Therefore R(r<Ap) cannot contain any nonzero
element y of I for which either y or <y is nonnegative.
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Let J be the closed ideal of Ij, generated by N(r < Ap). J is Ap-invariant, since
N(r<Ap) is Ap-invariant. Let A; = Ay | J (i.e. the restriction of Ay to J). Further,
let I; = I/J and A; = Ap/J (i.e. the operator induced by Ap in I;). We set
T(A]') = <o if I]' = {0}

The important basic connections between different kernels and spectral radii of
the operators defined above will be collected in the proposition below. The following
useful lemma, which is not new, will be applied in the proof of the proposition and
several times at other places of this note.

LEMMA 2.1. Let T be a linear map in a vector space V and let M be a T-invariant
linear submanifold of V.. Lelt T|M denote the restriction of T 1o M, let T/M denote
the linear map induced by T in the quotient space V/M, and let qpp © V — V/M
denote the quotient map. Then the following hold.

() If T|M is bijective, then qpr maps the kernel N(T) bijectively onto N(T/M).
(I1) If T/M is injective, then N(T) = N(T | M).

Proof. (1) Since gyT = (T/M)qu, the quotient map ¢pr maps N(T) into
N(T/M). Let z € N(T/M). Take v € V such that qap(v) = z, then ¢p(Tv) =
T/M z=0,1e., Tv € M. Since T|M is surjective, we have Tv = (T|M)w for some
weMCV. Thus u =vow e N(T) and qur(u) = gar(v) = z. If uw € N(T') satisfies
qp(u) = 0, then w € M and (T|M)u = 0. Since T'|M is injective, we obtain u = 0.
(IT) Clearly we have N(T|M) C N(T). Let w € N(T). Then T/M qpr(w) = qpr(Tw) =
0, and therefore qpr(u) = 0, since T/M is injective. Thus u € M N N(T) = N(T|M).
O

PrOPOSITION 2.2. Let the assumptions and notations preceeding Lemma 2.1
hold. Then the following hold.

(I) r(A) = r(A41) = r(An) = r(4;) > max{r(4;),r(Ao)}, and r(A) is a pole of order
1 of R(-, A1), R(-, Ap) and R(-, A;), respectively.

(IT) For all A € C with |A| = r(A) = r we have N(A<A) D N(AcA4y), N(Aed,) =
N(AeA4;), qn maps N(AA1) bijectively onto N(A<Ay), dim N(r<d;) > dim N (A<
A =dimNA oAy =dimNAeA), and {|z| : 2 € N(A<AL)} C NireAy). It
follows that N(r < Ap) is a sublattice of I.

Proof. (I) As seen above, the residuum Q5 —1 of R(-, Ay) at r is strictly positive.
Then its restriction (); _1 to J is also strictly positive (note that {0} # N(r <A,) C
J). This implies the three equalities. Since R(Qn 1) = N(r < A4y) C J, it follows
that R(-, A4;) is holomorphic at ». Therefore #(A4;) < r(A4), since A; is a nonnegative
operator in the Banach lattice I; [3, Proposition 4.1.1.i]. Note that we have defined
T(A]') = <o if I]' = {0}

(IT) The first inclusion is evident. For the second statement we apply Lemma 2.1
(II) with V. = I, M = J and T = A & A4;,. Note that T/M = A < A; is injective,
since r(A4;) < r(A) = |A|. The third statement follows from Lemma 2.1 (I) if we
set V=1, M =1y and T = A < A;. Note that T|M = A < Ay is bijective, since
r(Ag) < r(A) = |A|. The equality dimN(A <A4;) = dimN(A < A,) = dim N(A <A4;)
is now evident. We shall prove dim N(r<A;) > dim N(r < A;), which needs a proof
only if m = dimN(r ©A4;) < oo. By [4, C-1II, Lemma 3.13], the ideal J is the
mutually orthogonal sum of m A;-invariant ideals J; (k = 1,...,m), the restrictions
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Air = Ai|Jr are irreducible, and r(A4;;) = r(A) is a pole of R(-, A;p) (k=1,...,m).
The eigenspaces N(r <> A;i) are one-dimensional; see [6, V. § 5]. By [6, Corollary
to Theorem V.5.4], dimN(A < A;;) < 1. A; is the direct sum of the restrictions
Air. Then N(A < A;) is the direct sum of the N(A < A;) (k= 1,...,m). Therefore
dimN(A <4;) < m = dimN(r < A41). For the proof of the next statement take
zE N(AeAL). Let y= (r<Ap)|z|. Then y < r|z| <|Anz] < [(A<AL)z] = 0. By a
remark preceding Lemma 2.1, then y = 0. O

3. Results and Proofs. We shall always assume that A is a nonnegative linear
operator in a Banach lattice F/, and its spectral radius is a pole of its resolvent.

We shall freely use the concepts and notations of Section 2. The next lemma is
crucial for the main results of this note.

LEMMA 3.1. Let |A| = r(A) = r. For each z € N(A < Ap) there exists a unique
nonnegative w in N(r < Ay) such that qn(w) = |z|; for the unique v € N(A < Ay)
satisfying qn(u) = z it follows that qp(w) = qp(|u]) and w > |u|.

Proof. Let z € N(A < Ap). By Proposition 2.2(IT), there exists a unique u €
N(A<Ay) with qp(u) = z. Proposition 2.2(IT) implies |z| € N(r<Ap). Since ¢ is a
lattice homomorphism, we get ¢ ((r <A1)|u]) = (r<An)an(|u]) = (r<Adn)|z| =0, ie.
(r<Ar)|u| € In. Since (r<ds)|u| < |[(AeAr)u| = 0, there exists a unique nonnegative
ug in Iy such that (r & Ag)ug = <(r < A1)|u| (notice that r(Ay) < r(A4) = r, thus
r <> Ap has a nonnegative inverse). Then w = |u| 4+ ug is a vector we are looking
for. If v € I satisfies qn(v) = ¢n(|ul), then |u| <v € Iy. If further v € N(r < Ay),
then |u| +ug v € LN N(r<A)) = N(r<Ap). But r < Ag is injective, therefore
v = |u|+ uo = w, i.e. w is unique as stated. O

ProrosITION 3.2. Under our general assumptions the following hold.
(I) N(red)NEL C N(reAr).
(IT) span (N(r <A)NEy) = N(r<A;).
(IT1) the nonnegative eigenvectors of A corresponding to r span the eigenspace N(r<A)
if NreAd)ChL iff Nred)=N(red).
(IV) if N(r < A1) is finite dimensional, then N(r < A1) has a basis of nonnegative
eigenvectors of Ay corresponding to r.

Proof. (1) u € N(r<-A) is equivalent to R(A, A)u = (A &r)"tuif 0 < |A&r| < §
for some 8 > 0. Therefore u € N(r<A)NEy impliesu € {z € F: Q_slx| =0} = I1.
(IT) Let u € N(r < A;). Then its real and its imaginary parts belong to N(r < A4;).
Therefore we assume w.l.o.g. that u is real. Choose w as in Lemma 3.1. Then
u=3(w+u)et(weu), wtue N(reid) and wEu € By
(ITT) The first part follows from N(r <A, )= N(r<A) N1 and (IT), the second part
ist clear.

(IV) follows simply from (IT). O

REMARK 3.3. In connection with (IIT) and (TV) recall that U.G. Rothblum [5]
proved that in the case dim B < oo the generalized eigenspace N((r < A)P) (where
p is the order of the pole r) always has a basis of nonnegative vectors. However, [1,
Example 18] shows that in the general case (dim E = oo) the corresponding statement
can be false even if p = 2 and dim N((r ©A4)?) = 2.

THEOREM 3.4. Let the general assumptions hold. The following assertions are
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equivalent.
(I) N(r<Ay) is a sublattice of E;
(I1) If z1 and zy are disjoint vectors in N(r < Ap), then the unique nonnegative wq
and we with w; € N(r < A1) and qp(w;) = |z for i = 1,2 (see Lemma 3.1) are
disjoint.

Proof. (I) = (IT) Let z1 and z2 be disjoint vectors in N(r<Ap). Fori = 1,2 choose

w; as in Lemma 3.1. Then ¢p(|arwy + aows]) = |gp(@1w1 + asws)| = |ayz1 + aszs| =
|ar| |z1] + |exz| |z2| for all complex a; and «, since z; and zy are disjoint [3, Theorem
1.1.1.vi], By Lemma 3.1, we get wy + ws = |ajwy + asws| for all oy and «as with

modulus 1, since wy + wsy is nonnegative and |ajw; + aswa| belongs to N(r < Ap);
here we have used that, by (I), N(r < A1) is a sublattice. This is equivalent to the
disjointness of wy and ws.
(I1) = (I) Let u € N(r<A1). Then z = g(u) € N(r < Ap). Since N(r < Ap) is a
sublattice of I, (see Proposition 2.2(IT)), z* and 2z~ (the positive and the negative
parts of z, respectively) belong to N(r <> Ap). Applying Lemma 3.1, we choose
nonnegative w; and ws in N(r < Ap) such that ¢n(w1) = 2T and gu(w2) = 27.
Then qp(u) = z = qn(w1 Swsz). Since v and wy <wy belong to N(r A7), we obtain
u = wy ws, by Proposition 2.2(IT). Now 2zt and 2z~ are disjoint [3, Theorem 1.1.1.iv],
therefore wy and ws are disjoint, by assumption. But then |u| = wy +ws € N(r<Ay).
0

For the rest of this section we assume that Iy is a projection band in . Note that
this holds in any Banach lattice with order continuous norm [3, Corollary 2.4.4.xii,
Theorem 2.4.2.ii), and Theorem 1.2.9.], and a fortiori in C°. Then Iy is also a projec-
tion band in Iy, and we can identify [, with the kernel of the band projection of I
onto Ip, 1.e. Iy = I ® Iy, where @ means disjoint sum in the lattice sense. Since Iy
is Aj-invariant, we can represent A; with respect to this direct sum as a triangular
operator matrix as follows,

m=lm D)

Aon Ao

THEOREM 3.5. In addition to the general assumptions we assume that Iy is a
projection band in E. Let u € N(A < A1) with |A] = r(A) and u = up + uo, where
up € I, and ug € Iy. The following assertions are equivalent.

(I) |u| € N(r <A4;1);
(II) |(A C}AQ)U0| = (7“ @A0)|U0| and |A0huh| = A0h|uh|.

Proof. uw € N(A<Ay) is equivalent to (A <Ap)up, = 0 and (A < Ag)ug = Agpttn.
The first equality implies (r < Ap)|un| = 0, by Proposition 2.2(IT). Therefore |u| €
N(r<Aj) is equivalent to (r < Ag)|ug| = Aon|un|. We also obtain

A0h|uh| > |A0huh| = |(/\ C}AQ)UQ| > (7“ @A0)|UQ|

From this inequality it follows immediately that (I) and (IT) are equivalent. O

The second equality in (IT) means that Agp : I — Ip is a lattice homomorphism
on N(A < Ap). However, even if (I) holds, A, need not be a lattice homomorphism
of all of Iy, as the following example shows.
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ExXAMPLE 3.6. Let

02 2 0
1 00 0
A=A =1 0 0 o:[jhj].
0h 410
110 0

For z; = [2,2,0]" € I}, we get Agpzp = 0 and Agy x| = 4.

Since r(Ag) < r(A) = r, the first equality in (I1) implies |ug| = (r ©Ag) 7 (A <
Ag)ugl > |(r<Ag)~H(A ©Ag)ug|. We cannot expect that we have here equality, even
if statement (I) in Theorem 3.5 holds, as is shown by the following example.

EXAMPLE 3.7. Let

02 00
20 00 A, O

A:A1: = T A .
10 01 0
01 10

The peripheral eigenvalues of the matrix A are 2 and <2. We have u € N(£2 < A)
iff w = [a,40,4a,a]T, @ € €. Therefore statement (I) of Theorem 3.5 holds for
A= 42, Let u = [uf,uj]" € N(<2 < A4). Then ©upy = up = (<2 < Ag)ug,
(2 C}Ao)_l(C)Q C}Ao)UQ = C}%Uo, but (2 C}Ao)_1|(@2 C}AQ)U0| = |U0|

In the next section we will use the following result.

ProPOSITION 3.8. In addition to the general assumptions we assume that Iy is
a projection band in E and that N(r < A1) = N(r <Ap) ® {0}. For A € C with
|A] = 7(A) = r the following assertions are equivalent.
(I) N(A<=A) C I
(D) {|u|: v € N(A=A)} C N(r<A).

Proof. (I) = (II): From (I) we obtain N(A<A) = N(A<4;). Let u € N(A<A4) and
for z = gp(u) choose w as in Lemma 3.1. Then w € N(r<A;) = N(r<Ay) {0} C I,
and w > |u|. This implies u € I, and then |u| = w, since ¢n(|u|) = ¢n(w), where ¢4
is now (identified with) the band projection of I onto Ip.
(IT) = (I) follows from Proposition 3.2(I); notice that we use for this implication only
the general assumptions. o

4. The matrix case. In the last section of this note we want to compare the
results in Section 3 with those of B.-S. Tam on nonnegative matrices [8, Theorems
2.4 and 2.5]. We shall use the graph theoretic concepts defined in [7, § 2], and [8, § 1].

In the complex Banach lattice C* each ideal is of the form I, = {z € C :
z; (= i-th component of ) = 0 if ¢ ¢ o} for some o C {1,...,{}; see [6, p. 2]. Let &
and 8 be nonempty subsets of {1,...,¢}. For « € C° we denote by z, the subvector
of z with indices from «. For an ¢ x {-matrix A we denote by A,s the submatrix
of A with row indices from « and column indices from . We write A, instead of
Ago. In the next lemma we collect some facts on the connection between the ideals
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defined in Section 2 and the ideals I, for a class o of A (i.e., o is a strongly connected
component in the directed graph associated with A [8, § 1].

LEMMA 4.1. Let A be a nonnegative square matriz, and let « be a class of A.
() If T is an A-invariant ideal and I, NI # {0}, then I, C I.
(I1) If I, C In ® 1;, then « is nonbasic (i.e. r(Ay) < r(A)).
(ITT) Let & be a basic class. Then o is distinguished iff I, C Iy iff In C I iff Io = Ji
for some k € {1,...,m}.
(IV) If o has access to a distinguished basic class of A, then either o is this distin-
guished class of A or I, C Ijy.

Proof. (1) The ideal I, N T is Ag-invariant. Since A, is an irreducible matrix,
IoNT#{0} implies I, NI = I,.
(II) We have r(Ay) < max{r(4o), r(4;)} < r(A).
(ITT) Let « be a distinguished basic class of A. Then there exists a nonnegative
eigenvector z of A corresponding to r, such that z,, is strictly positive; see [7, Theorem
3.1]. By Proposition 3.2(I), we have that # € I;. Therefore I, C I;. If « is a basic
class of A with I, C I, then I, C J C I, by (IT). Let o be a basic class of A with
I, C Iy. Then I, C J, since 7(A4;) < r(A). A; is the direct sum of the irreducible
operators A; = A;|Jp (K =1,...,m), so we get A, = A;j, for some k € {1,...,m}.
Then I, = Jy for this k. If I, = Ji for some k € {1,...,m}, then r(A4,) = r(A)
and A, is irreducible. Therefore « is a strongly connected set in the directed graph
associated with A. From the triangular structure of A; with respect to the direct sum
L=L&Ji®...¢ Jyn O I it follows that « is a strongly connected component in
this graph.
(IV) Let o have access to a distinguished basic class 5 of A. Assume « # 3. Then «
is nonbasic. Furthermore, there exists a nonnegative eigenvector x of A corresponding
to r, such that x, ist strictly positive; see [7, Theorem 3.1]. Proposition 3.2(I)
implies # € I;. Therefore # € N(r < A;1). From Proposition 2.2(I1) it follows that
N(r<A)) C J @ Iy. Therefore I, C J @ Iy. From the last part of the proof of (IIT)
we see that I, N.J # {0} would imply r(A,) = r(A4). Hence we obtain I, C Iy, since
« 1s nonbasic. O

B.-S. Tam [8, Lemma 2.1] showed that A4 has fully cyclic peripheral spectrum (see
[6, Definition 2.5]), iff for all A € C with |A| = r(A)

{lu] ;v € N(A<A)} C N(r<A4).

Thus, if A has a fully cyclic peripheral spectrum, then N(r<<A) is a sublattice of C*.
By Proposition 3.2, the latter assertion implies statement (a) in [8, Theorems 2.4 and
2.5]. In the matrix case we have the following result as a supplement to Theorem 3.4.
THEOREM 4.2. For a nonnegative square matriz the following assertions are
equivalent.
(I) N(r<Ay) is a sublattice, where r = r(A4),
(IT) there does not exist a class of A which has access to two different distinguished
basic classes.
Proof. We prove that the assertion (IT) is equivalent to Theorem 3.4(II).
(I) = (IT) Assume there exists a class « of A which has access to two different
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distinguished basic classes «; and «s. Then « has to be a nonbasic class, since a
basic class does not have access to a distinguished basic class. By Lemma4.1(IV) this
implies I, C Iy. From [7, 3.1(i)] it follows that there are two nonnegative eigenvectors
wy and wy of A corresponding to r with o C supp(w;), «; C supp(w;) and a; =
supp(¢n(w;)). By Proposition 3.2(IT), w; € N(r < A1), ¢ = 1,2. Since o and as
are disjoint sets, we get that ¢n(w1) and g¢p(ws) are disjoint nonnegative vectors in
N(r<Ap). But wy and ws are not disjoint, and this contradicts Theorem 3.4(1T).
(IT) = (I) If z is in N(r<Ap), then |z| belongs to N(r<Ap); see Proposition 2.2(IT).
Then supp(z) = supp(|z|) is the union of some distinguished basic classes. From
[7, 3.1(i) and (ii)] it follows that for the unique nonnegative w € N(r < A;) with
qn(w) = |z| its support is the union of all classes which have access to distinguished
basic classes contained in supp(z). Since w is a nonnegative eigenvector of A, the
ideal generated by w is A-invariant; this ideal is I,, where ¢ = supp(w). Now let
z1 and zg be digjoint vectors in N(r < Ay), and assume that the unique nonnegative
wy and ws in N(r < Ay) with ¢p(w;) = |z for ¢ = 1,2 are not disjoint. Then there
exists a class o of A with I, N I,, N 1I,, # {0}, where ¢; = supp(w;) for i = 1,2.
Since I,, are A-invariant for ¢« = 1,2, we have I, C I,, N I,,. Then « has access to a
distinguished basic class a7 in o1 and to one ag in o3. Now oy C supp(z;). Therefore
Iy, C In. By Lemma 4.1(IIT), the oy are distinguished. Thus « has access to two
different distinguished basic classes of A. This contradicts (IT), so wy and wsy are
disjoint. Thus Theorem 3.4(IT) holds. O

Theorem 4.2 and Proposition 3.2 show that statements (a) and (b) in [8, Theorem
2.4] together are equivalent to the statement that N(r < A) is a sublattice of C*.

The next theorem will show, how conditions (¢) in Theorems 2.4 and 2.5 of [§]
are related to our results.

THEOREM 4.3. Consider for a nonnegative square matriz A and a peripheral
eigenvalue A of A satisfying the following statements.
(I) If X is an eigenvalue of Ay for some class o of A, then « is distinguished.
(IN) N(A<A) C L.
(ITT) If A is an eigenvalue of Ay for some class o of A, then all initial classes of the
family

Fla)={y:vyis aclass of A, X is an eigenvalue of 4., y >= «}

are distinguished.

(IV) If A is an eigenvalue of Ay for some class o of A, then X is also an eigenvalue
of Ag for some distinguished class § of A, which has access to .

(V) X is an eigenvalue of Ag for some distinguished class 3 of A.

(VI) N(A<A)n I #{0}.

Then (I) = (II) = (III) < (IV) = (V) & (VI).

Proof. (I) = (I) Let 0 # u € N(A < A). Then for all classes o of A, which
are final in supp(u), A is an eigenvalue of A,; see [8, Lemma 2.3]. Therefore, by
assumption, all (final) classes in supp(u) have access to a distinguished basic class of
A. By Lemma 4.1(IT) and (IV), we have u € I;.

(IT) = (IIT) Take an initial class 4 in F'(«). Notice that F'(«) is nonempty, since «
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belongs to it. Then 3 is basic, since |A| = r(A). Let w be the union of all classes of
A, which have access to § and are different from 5. Set § = {1,...,£}\(w U 3). Note
that one or both of the sets w and é can be empty. Then the corresponding matrices
in the decomposition below do not appear. With respect to the decomposition C* =
Is @ Ig @ I, the matrix A has the block triangular form

As 0 0
Ags As 0
Awé Awﬁ Aw

By the choice of 3, A is not an eigenvalue of A,. Take an eigenvector ug of Ag corre-
sponding to A. Define u, = (A < A,) A pug and u = o7, ug, u)]". Then u is an
eigenvector of A corresponding to A. Now u € N(A < A) C I by assumption. Then
o#[o", ug, o"]T € IsN I implies I3 N 11 # {0}. By Lemma 4.1(I), we have I3 C 1.
Since (3 is basic, we get from Lemma 4.1 (IIT) that it is distinguished.
(ITT) = (IV) is clear.
(IV) = (IIT) Take an initial class k of A in F'(«). Then A is an eigenvalue of A,. By
assumption, there exists a distinguished basic class 5 of A with § >= « and A is an
eigenvalue of Ag. Then § >= k >= «, thus 7 € F(«). Therefore x = (3, since « is
initial in F'(«).
(IV) = (V) is clear, since each eigenvalue of A has to be an eigenvalue of A, for at
least one class « of A.
(V) = (VI) For a distinguished basic class £ let ug be an eigenvector of Ag cor-
responding to A. By Lemma 4.1(IIT), Ag = Aj; for some k € {1,...,m}. Let
up = [u]—, R u;]T with up = ug and u; = 0if ¢ # k. The vector uy is an eigenvector
of Ap corresponding to A, since Ap = Aj1 & ... D Aim. Define ug = (A @Ao)_lAOhuh,
and u; = [u;,ua—]T. Then wu; 1s an eigenvector of A; corresponding to A. Thus
(VI) = (V) Let w € I; be an eigenvector of A corresponding to A. If § is a final
class of A in supp(u), then § is a basic class [8, Lemma 2.3]. Since Iy C I, 3 is
distinguished (see Lemma 4.1(T1T). O

The following examples will show that the converses of the three one-way impli-
cations in Theorem 4.3 are not true in general.

ExXAMPLE 4.4. Let

01 0 00
10 0 00

A=10 1 1 0 0 with nonnegative numbers a,b, ¢ and d.

a b 0 01
e d 0 10

Then « = {1,2}, § = {3} and v = {4, 5} are the classes of A. The matrices A,, A,
and A have eigenvalues 1 and <. The matrix A has the eigenvalue 1. Therefore all
classes of A are basic. The classes § and v are distinguished and « is not distinguished.
Further, here I} = {x €C° 12y = 2y = 0} = I3 & I, and I = {0}. Now let
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(1) a=d=1and b = ¢ = 0. Then statement (I) is not true for A = <l, but
N(eled) ={x €C® zy=ay=a3=0, x4+a5 = 0} C I. For A = r(A) statement
(I) in Theorem 4.3 is equivalent to: “All basic classes of A are distinguished.” This
is equivalent to p = 1, where p is the order of the pole r(A) of the resolvent, cf.
Section 2. The example also shows that even for A = r(A) (IT) does not imply (I),
since N(1 <4) = {x €C® iz =2,=0, 24 S5 = 0} C I, and p= 2.

(2) a =b=c=d = 1. Then statement (II) is not true for A = <1, since
Nl eAd)={» €EC® x4 a0=0,20+42205=0, 24+ x5 = 0}. But statement (I1I)
is true for A = <1, since F(a) = {y,a} with y >— « and F(y) = {v}.

(3)a =b=c=d=0. Then statement (IV) is not true for A = <1, since y ># a.
But statement (V) is true, since <1 is an eigenvalue of A,.

Part (b) of [8, Theorem 2.5], which states that each distinguished basic class of A
is initial (in the family of all classes of 4), is equivalent to N(r<d;) = N(reAy)®{0}.
This follows immediately from [7, 3.1(i) and (ii)]. Combining this observation with
Proposition 3.8 we obtain the following result.

COROLLARY 4.5. Let A be a nonnegative square matriz, such that each distin-
guished class of A is initial (in the family of all classes of A). Then A has a fully
cyclic peripheral spectrum iff N(A<A) C I for all peripheral eigenvalues of A.

This corollary is stronger than [8, Theorem 2.5] as Theorem 4.3 (I) = (II) and
Example 4.4(1) show.
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