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SIGN-CONSISTENCY AND SOLVABILITY OF
CONSTRAINED LINEAR SYSTEMS�

GWANG-YEON LEEy AND BRYAN L. SHADERz

Abstract. Sign-solvable linear systems were introduced in modelling economic and physical
systems where only qualitative information is known. Often economic and physical constraints
require the entries of a solution to be nonnegative. Yet, to date the assumption of nonnegativity
has been omitted in the study of sign-solvable linear systems. In this paper, the notions of sign-
consistency and sign-solvability of a constrained linear system Ax = b; x �

0
0, are introduced. These

notions give rise to new classes of sign patterns. The structure and the complexity of the recognition
problem for each of these classes are studied. A qualitative analog of Farkas' Lemma is proven, and it
is used to establish necessary and su�cient conditions for the constrained linear systemAx = b; x �0 0

to be sign-consistent. Also, necessary and su�cient conditions for the constrained linear system
Ax = b; x �0 0 to be sign-solvable are determined, and these are used to establish a polynomial-

time recognition algorithm. It is worth noting that the recognition problem for (unconstrained)
sign-solvable linear systems is known to be NP-complete.

Key words. Linear systems, Qualitative Matrix Theory, Sign-solvable.

AMS subject classi�cations. 15A06, 90C08

1. Introduction. Consider the following physics problem.
Problem 1. Is it possible to apply three forces in the plane to
a point at the origin so that the resulting force makes an (counter-
clockwise) angle of 4�=3 with the positive x-axis, if the angle between
the three forces and the positive x-axis are 3�=4, 7�=6 and 11�=6,
respectively?

The answer to the problem is yes if and only if there exists a (entrywise) nonnegative
solution to the linear system

� �p2=2 �p3=2
p
3=2p

2=2 �1=2 �1=2
�24 x1

x2
x3

35 =

� �1=2
�p3=2

�
:(1)

Since the coe�cient matrix of this system has full rank, the linear system has a solu-
tion. This is not enough to guarantee a nonnegative solution. However, (x1; x2; x3)

T =
(0; 2p

3
; 1p

3
)T is a nonnegative solution to the system in (1), and hence the answer to

Problem 1 is yes.
Now consider a related physics problem in which less speci�c information is

known.
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Problem 2. Three directions in the plane, one in each of quadrants
2, 3 and 4, are speci�ed. Is it always possible to assign magnitudes to
forces in these directions, so that the resultant force has a prescribed
direction in the third quadrant?

Here the exact angles of the force vectors are not known. However, we do know that
one vector has negative x component and positive y component, another vector has
negative x component and negative y component, etc. This leads to a \qualitative
linear system" of the form

� � � +
+ � �

�24 x1
x2
x3

35 =

� �
�
�
:(2)

The question now becomes, does each linear system of the form (2) have a nonnegative
solution? Thus, we are led to the topic of this paper: understanding the behavior
of nonnegative solutions to a linear system in which only qualitative information is
known.

In many applications a linear system is used to model a physical system. Often
certain natural constraints make a solution with negative entries meaningless. Thus,
one is only concerned with the behavior of the nonnegative solutions to the linear
system. In this paper we study the question of when is it possible to determine the
qualitative behavior of the (entrywise) nonnegative solutions of Ax = b given only
qualitative information concerning A and b. To make this more precise we introduce
the following de�nitions.

The sign of a real number a is de�ned to be

sign a =

8<:
+1 if a > 0;
0 if a = 0; and

�1 if a < 0:

The sign pattern of a real matrix A is the (0; 1;�1)-matrix obtained from A by
replacing each entry by its sign. The zero pattern of A is the (0; 1)-matrix obtained
from A by replacing each nonzero entry by 1. We write A � 0 if each of A's entries
is nonnegative, and A �0 0 if A � 0 and A 6= 0. We say A is nonnegative if A � 0,

and A is nonpositive if �A � 0. We say A is a positive, respectively negative, matrix
if each of its entries is positive, respectively negative. We call a (0; 1;�1)-matrix a
sign pattern. A sign pattern, B, determines a qualitative class, Q(B), consisting of
all matrices with sign pattern B.

Consider a linear system of m equations in n unknowns given by

Ax = b;

where A is an m by n real matrix, and b is an m by 1 column vector. We call the
system

Ax = b; x �0 0(3)
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a constrained linear system. Thus, a constrained linear system is a system of linear
equations along with the additional inequalities x �0 0. The constrained linear system

(3) is consistent provided there exists a nonzero nonnegative vector z such that
Az = b.

Farkas' Lemma (see Lemma 3.4 on p. 1657 of [9]) asserts that there exists a
nonnegative vector x such that Ax = b if and only if yT b � 0 holds for each vector
y 2 Rm such that yTA � 0. Thus when b 6= 0, the constrained system (3) is consistent
if and only if yT b � 0 holds for each vector y 2 Rm such that yTA � 0.

The constrained linear system (3) is sign-consistent provided the constrained

system eAx = eb; x �0 0 is consistent for all eA 2 Q(A) and eb 2 Q(b). Thus, Problem 2

is equivalent to the question: Is the constrained linear system Ax = b; x �0 0, where

A =

� �1 �1 1
1 �1 �1

�
and b =

� �1
�1

�
;

sign-consistent? The answer is yes. To see this, let y = [y1; y2]T be a 2 by 1 sign
pattern. It is easy to verify that unless y = [0; 0]T or y = b, then some column of�

y1 0
0 y2

�
A

is nonzero and nonpositive. Hence if ~y 2 Q(y), eA 2 Q(A) and ~b 2 Q(b) are such that

~yT eA � 0, then ~y has sign pattern [0; 0]T or b, and thus ~yT~b � 0. Therefore, by Farkas'

Lemma, each system eAx = ~b; x �0 0 is consistent. The constrained linear system

�
1 �1 1
1 1 �1

�
x =

�
0
0

�
(4)

is not sign-consistent, because there is no solution to�
1 �1 2
1 2 �1

�
x =

�
0
0

�
; x �0 0:

In [3, pp. 35{38] sign patterns A and b, where each linear system eAx = eb ( eA 2
Q(A);~b 2 Q(b)) has at least one solution, are studied. We de�ne such a linear system
Ax = b to to be sign-consistent. Thus the notion of sign-consistent, constrained linear
systems generalizes that of sign-consistent (unconstrained) linear systems. In Section
2, we introduce and study two families of sign patterns that arise in the qualitative
theory of sign-consistent, constrained linear systems. In Section 3, we derive necessary
and su�cient conditions for the constrained linear system Ax = b; x �0 0 to be sign-

consistent.

The constrained linear system (3) is sign-solvable provided we can determine
which entries of x are positive knowing only the signs of the entries of A and of b.
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More precisely, (3) is sign-solvable provided Ax = b; x �0 0 is sign-consistent and the

elements of the set

f~x : ~x �0 0 and there exists eA 2 Q(A);~b 2 Q(b) with eA~x = ~bg

have the same zero pattern. For example, the sign-consistent system arising in Prob-
lem 2 is not sign-solvable, since both (0; 1; 0)T and (3; 3; 1)T are solutions to Ax = ~b
for appropriately chosen ~b 2 Q(b). The constrained linear system�

1 �1 1
0 0 �1

�
x =

�
0
0

�
; x �0 0(5)

is clearly sign-solvable, and the zero pattern of the solution is [1; 1; 0]T.
The above notion of sign-solvable constrained linear systems generalizes the no-

tion of sign-solvable linear systems introduced by the economist Samuelson [8]. The
linear system Ax = b is sign-solvable provided it is sign-consistent and the vectors in

f~x : there exists eA 2 Q(A) and ~b 2 Q(b) such that eA~x = ~bg

have the same sign pattern. The (unconstrained) linear system obtained from (5)
by removing the constraint that x �0 0 is not sign-solvable. For a discussion of sign-

solvability see Section 1.2 of [3]. In Section 4, we introduce and study two families of
sign patterns that arise in the qualitative theory of sign-solvable constrained linear
systems. In Section 5, we derive necessary and su�cient conditions for the constrained
system Ax = b; x �0 0 to be sign-solvable.

We conclude this introductory section with some necessary technical de�nitions.
The set of all n by 1 positive vectors is denoted by Rn+. The null space of a matrix
A is the set of all vectors x such that Ax = 0, and is denoted by NS(A). A vector in
NS(A) is a null vector of A. A left null vector of A is a vector y such that yTA = 0.

Let A be an m by n matrix, let � be a subset of f1; 2; : : :;mg, and let � be a
subset of f1; 2; : : :; ng. Then A[�; �] denotes the submatrix of A determined by the
rows whose indices are in � and the columns whose indices are in �. The submatrix,
A[�; �], determined by the rows whose indices are complementary to those of � and
the columns whose indices are complementary to those of � is also denoted by A(�; �).
If A is square and � = �, then we write A[�] instead of A[�; �] and A(�) instead of
A(�; �). If z is an m by 1 column vector then we write z[�] instead of z[�; f1g]. A
signing of order n is a nonzero, n by n diagonal matrix each of whose diagonal entries
is in the set f�1; 0; 1g. A signing in which each diagonal entry is nonzero is a strict
signing. We denote by diag(d1; : : : ; dn) the diagonal matrix of order n whose (i; i)th
entry is di.

2. L+- and sign-central matrices. In this section, we briey describe certain
families of sign patterns that arise in the known characterizations of (unconstrained)
sign-consistent, linear systems. We then introduce and study related families of sign
patterns that arise in the constrained setting.
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As is customary, we use the \requires" and \allows" terminology for sign patterns.
More speci�cally, let P be a property that a matrix can or cannot have. The sign
pattern A requires P if each matrix in Q(A) has property P , and A allows P if there
exists a matrix in Q(A) with property P .

Sign-consistent systems Ax = b are studied in [3, pp. 35{38], where they are
characterized in terms of L-matrices, and matrices that we call balanceable matrices.
A sign pattern is an L-matrix provided it requires linearly independent rows, and
is balanceable if it allows a left null vector with no zero entries. A square L-matrix
is a sign-nonsingular matrix, which we abbreviate to an SNS-matrix. The following
structure result is a paraphrase of Theorem 3.1.4 in [3]. In Proposition 2.2 (and later
in Corollary 3.5, and Proposition 4.1) for each positive integer k we regard a 0 by
k matrix as an (empty) L-matrix which is not balanceable, a k by 0 matrix as an
(empty) balanceable matrix which is not an L-matrix, and a 0 by 0 matrix as both
an L-matrix and a balanceable matrix. But when stating or proving results about
L-matrices or balanceable matrices we implicitly assume that the matrices are not
empty.

Proposition 2.1. Let A be a sign pattern. Then the rows and columns of A can
be permuted so that A has the form�

AB O
� AL

�
;

where AL is an L-matrix, and AB is a balanceable matrix with no zero columns.
Moreover, AL and AB are unique, up to permutation of rows and columns.

Using Proposition 2.1, and the fact that a linear system Ax = b is consistent if
and only if yT b = 0 for each y such that yTA = 0, the following characterization (a
paraphrase of Corollary 3.1.3 in [3]) can be derived.

Proposition 2.2. Let A be a sign pattern. Then the linear system Ax = b is
sign-consistent if and only if each nonzero entry of b lies in a row that intersects AL.

In Section 3, we generalize this result to constrained linear systems. We now
de�ne and study the constrained analogs of L- and balanceable matrices. Let B be
an m by n matrix. We denote by k(B) the cone

fBx : x � 0g;

generated by its columns, and by k�(B) its dual cone fy : yTB � 0g. We de�ne a
sign pattern A to be an L+-matrix if it requires the dual cone to be f0g, that is, A is

an L+-matrix if and only if k�( eA) = f0g for each eA 2 Q(A). For example,
�
1 �1 �

is an L+-matrix, and
�
1 1

�
is not an L+-matrix.

The following characterization of L-matrices follows from standard techniques;
see [3, Chapter 2].

Proposition 2.3. Let A be a sign pattern. Then the following are equivalent.
(a) A is an L-matrix.
(b) For each signing D, some column of DA is nonzero and nonpositive, or nonzero
and nonnegative.
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(c) For all b 6= 0, the linear system Ax = b is sign-consistent.
(d) A requires that its columns span all of Rm.

We now generalize this to L+-matrices.
Theorem 2.4. Let A be an m by n sign pattern. Then the following are equiva-

lent.
(a) A is an L+-matrix.
(b) A requires a positive null vector and A has no zero row.
(c) For each signing, D, some column of DA is nonzero and nonnegative.
(d) For each signing, D, some column of DA is nonzero and nonpositive.
(e) For all b 6= 0, the constrained, linear system Ax = b; x �0 0 is sign-consistent.

(f) A requires that the cone it generates is all of Rm.
Proof. (a) implies (b): By contrapositive. If A has a zero row, then A is not

an L+-matrix. Otherwise, assume that eA has sign pattern A and has no positive null
vector. Thus,

NS( eA) \Rn+ = ;:

By the separation theorem for convex sets (see, for example, Chapter 11, Theorem 5

in [6]), NS( eA)? contains a vector y with y �0 0. But NS( eA)? is the row-space of eA,
and hence there exists a nonzero vector z such that zT eA = y � 0. Thus, k�( eA) 6= f0g,
and A is not an L+-matrix.
(b) implies (c): By contrapositive. Let D be a signing such that each nonzero
column of DA has a negative entry. If DA = O, then A has a zero row. Otherwise,
by emphasizing the negative entries in DA, it is easy to construct a matrix eA 2 Q(A)
such that each column sum of the matrix D eA is nonpositive, and at least one sum is
negative. Thus, eA contains a vector y in its rowspace with the property that �y �0 0.
Since yTx = 0 for each x in the null space of eA, eA does not have a positive null vector.
(c) implies (d): This follows by noting that some column of DA is nonzero and
nonnegative if and only if some column of (�D)A is nonzero and nonpositive.

(d) implies (e): Assume that (d) holds. Suppose that y is a vector and eA is a

matrix in Q(A) such that yT eA � 0. Let D be the diagonal matrix whose ith entry

is the sign of the ith entry of y. If y 6= 0, then, since yT eA � 0, each nonzero column
of DA has a positive entry. This would contradict (d). Hence, y = 0. It now follows
from Farkas' Lemma that (e) holds.
(e) implies (f): This is clear.

(f) implies (a): By Farkas' Lemma, k( eA) = Rm if and only if k�( eA) = f0g, for
each eA 2 Q(A). Hence (f) implies (a).

Note that Proposition 2.3 and Thereom 2.4 imply that an L+-matrix is necessarily
an L-matrix. The matrix

�
1 1

�
is an example of an L-matrix which is not an L+-

matrix. As an L+-matrix requires both a positive null vector and linearly independent
rows, a nonempty L+-matrix has more columns than rows.

It is known [5] that the problem of recognizing if an m by n matrix A is not an L-
matrix is an NP-complete problem. Using (c) of Theorem 2.4, we see that the problem
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of recognizing if a given m by n matrix A is not an L+-matrix is NP. The recognition
problem for L-matrices can be polynomially reduced to that for L+-matrices by noting
that the matrixA is an L-matrix if and only if the matrix

�
A �A �

is an L+-matrix.
Hence, the the problem of recognizing if a matrix is not an L+-matrix is NP-complete.

Now that we have discussed the constrained analog of L-matrices, we turn to the
constrained analog of a balanceable matrix. Recall that a balanceable matrix is a
sign pattern with the property that it allows a left null vector with no zeros. This
is equivalent to the fact that there exists a strict signing D such that each nonzero
column of DA has both a positive and a negative entry. A natural generalization to
the constrained case, which indeed turns out to be exactly what we need, is to sign
patterns whose dual allows a vector having no zero entries. The following lemma gives
a signing characterization of such matrices.

Lemma 2.5. Let A by an m by n sign pattern. Then A allows a vector in the
dual which has no zero entries if and only if there exists a strict signing D such that
each nonzero column of DA has a negative entry.

Proof. First assume that D is a strict signing such that each nonzero column of
DA has a negative entry. By emphasizing the negative entries of DA it is possible to
create a matrix eA 2 Q(A) such that each column sum of D eA is nonpositive. Hence,

each column sum of �D eA is nonnegative, and thus k�( eA) contains a vector with no
zero entries.

Conversely, assume that there exist eA 2 Q(A), and y 2 k�( eA) such that each

entry of y is nonzero. By de�nition, yT eA � 0. Since each entry of y is nonzero, each
nonzero column of DA has a positive entry, where D = diag(y1; : : : ; ym). Hence each
nonzero column of (�D)A has a negative entry.

Sign patterns that do not satisfy the signing condition in Lemma 2.5 have been
previously studied. A matrix B is central, if the origin is in the convex hull of its
columns. Equivalently, B is central if the constrained system Bx = 0; x �0 0 is

consistent. A sign pattern A is sign-central provided A requires the property of being
central. Thus, A is sign-central if and only if Ax = 0; x �0 0 is a sign-consistent,

constrained linear system. Since the coe�cient matrix in (4) is not sign-central, we
again see that (4) is not sign-consistent.

Sign-central matrices have been studied in [1, 4]. In particular, the following char-
acterization of sign-central matrices is contained in [1]. Using this characterization,
it is shown in [1] that the problem of recognizing if a matrix is not sign-central is
NP-complete.

Proposition 2.6. Let A be an m by n sign pattern. Then A is a sign-central
matrix if and only if for each strict signing D, some column of DA is nonnegative.

Hence, Lemma 2.5 and Proposition 2.6 show that the sign patterns which have
no zero column and allow a vector in the dual with no zero entries are precisely the
sign patterns that are not sign-central matrices. If zero columns are allowed, then a
matrix can be sign-central and allow a vector in the dual with no zero entries. The
sign pattern �

1 1 0
�1 �1 0

�
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is one such example. Clearly, Proposition 2.6 implies that a balanceable matrix with
no zero column is not sign-central. The matrix

�
1
�
shows that the converse does

not hold.
We now summarize the relations between the classes of sign patterns discussed

in this section. Two new classes of sign patterns were de�ned, the L+-matrices,
and the matrices that are not sign-central. These classes generalize L-matrices, and
balanceable matrices, respectively. In particular, we have seen that each L+-matrix
is an L-matrix but not conversely, and each matrix which is balanceable and has
no column of zeros is not sign-central but not conversely. By Theorem 2.4 every
L+-matrix is a sign-central matrix. The matrix24 1 1 0 0

�1 �1 0 0
0 0 �1 1

35
shows that sign-central matrix need not be an L+-matrix, the sign pattern�

1
�

shows that an L-matrix need not be sign-central, and the sign pattern�
1 0

�1 0

�
shows that a sign-central matrix need not be an L-matrix.

The main result of Section 3 is a characterization of sign-consistent, constrained
linear systems like that of Proposition 2.2, but with L+- rather than L-matrices and
with not sign-central rather than balanceable matrices.

3. Sign-consistency. The main result of this section is the development of nec-
essary and su�cient conditions for the constrained linear system Ax = b; x �0 0 to be

sign-consistent. We begin with a qualitative version of Farkas' Lemma. Throughout
this section we let A denote an m by n sign pattern, and S denote the set of all
signings D such that each nonzero column of DA has a positive entry.

Lemma 3.1. Let Ax = b; x �0 0 be a constrained linear system. Assume that

b = [b1; : : : ; bm]T 6= 0. Then the system is sign-consistent if and only if dibi � 0 for
each signing D = diag(d1; : : : ; dm) 2 S and i = 1; : : : ;m.

Proof. We argue both implications by contrapositive. First suppose that Ax =
b; x �0 0 is not sign-consistent. Then there exist eA 2 Q(A) and ~b 2 Q(b) such thateAx = ~b; x �0 0 is not consistent. By Farkas' Lemma, there exists a vector y such that

yT eA � 0 and yT~b < 0. Let D = diag(d1; : : : ; dm) be the signing whose ith entry is

the sign of the ith entry of y. Since yT eA � 0, D 2 S, and since yT~b < 0 there exists
an i such that dibi < 0.

Next suppose that there is a signing D = diag(d1; d2; : : : ; dm) in S, and an i
such that dibi < 0. By emphasizing each positive entry of DA one obtains a matrix
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eA 2 Q(A) such that each of the column sums of D eA is nonnegative. By emphasizing
the ith entry of b, one obtains a vector ~b 2 Q(A) such that the column sum of D~b is

negative. It now follows from Farkas' Lemma that eAx = ~b; x �0 0 is not consistent.

Hence Ax = b; x �0 0 is not sign-consistent.

Using the qualitative version of Farkas' Lemma we immediately obtain the fol-
lowing necessary and su�cient conditions for Ax = b; x �0 0 to be sign-consistent. We

de�ne the sets:

A+ = fi : the (i; i)-entry of each D 2 S is nonnegative

and is positive for at least one such Dg
A� = fi : the (i; i)-entry of each D 2 S is nonpositive

and is negative for at least one such Dg
A0 = fi : the (i; i)-entry of each D 2 S is zerog
A� = f1; 2; : : :;mg n (A+ [A� [A0):

Corollary 3.2. Let Ax = b; x �0 0 be a constrained linear system with b 6= 0.

Then the system is sign-consistent if and only if j 2 A+ [A0 whenever bj > 0, and
j 2 A� [A0 whenever bj < 0.

Note in particular that if j 2 A�, and Ax = b; x �0 0 is sign-consistent then bj = 0.

For the constrained system Ax = b; x �0 0 arising in Problem 2, we have

S = fdiag(�1;�1)g; A+ = ;; A� = f1; 2g; A0 = ;; and A� = ;:

Hence, by Corollary 3.2, the system arising in Problem 2 is sign-consistent.
The sets A+, A�, A0, and A� can be described in terms of certain submatrices of

A. First we give a structure theorem for sign patterns that is analogous to Proposition
2.1. In Lemma 3.3 (and later in Theorem 3.4) we must regard an empty matrix as
an L+-matrix if and only if it has no rows, and an empty matrix as not sign-central
if and only if it has no columns.

Lemma 3.3. Let A be an m by n sign pattern. Then the rows and columns of A
can be permuted to obtain a matrix of the form�

AN O
� AL+

�
;

where AL+ is an L+-matrix, and AN is not sign-central. Moreover, up to permutation
of rows and columns, AL+ and AN are unique.

Proof. First we establish the existence. If A is an L+-matrix, then we may
take AL+ to be A, and AN to be the empty 0 by 0 matrix. Otherwise, by Theorem
2.4, there is a signing D such that each nonzero column of DA has a positive entry.
Among all such signings choose D such that it has the largest number of nonzero
entries. Without loss of generality we may assume that D = D0�Om�k, where D0 is
a strict signing of order k. If k = m, we take AL+ to be an empty matrix, and AN to
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be the matrix consisting of the nonzero columns of A. Otherwise, by permuting the
columns of A we may assume that

A =

�
A1 O
A3 A2

�
;

where A1 has k rows, each of its columns is nonzero, and A2 has at least one column.
By the choice of D, for each signing E of order m�k some column of EA2 is nonzero
and nonpositive. Hence, by Theorem 2.4, A2 is an L+-matrix. By Proposition 2.6,
A1 is not sign-central. The existence part of the proof is now completed by letting
AN = A1, and AL+ = A2.

We now argue the uniqueness. Since A1 is not sign-central, there exists an eA1 2
Q(A1) whose null space does not contain a nonzero nonnegative vector. Thus, every
nonnegative vector in the null space of a matrix of the form� eA1 O

� A2

�
has its �rst k nonzero entries equal to 0. Since A2 is an L+-matrix, Theorem 2.4
implies that each eA in Q(A) has a nonnegative, null vector each of whose last n � k
coordinates is nonzero. Thus, it follows that the columns of AN are precisely those
i for which some eA 2 Q(A) has no nonnegative null vector whose ith coordinate is
nonzero. This determines the columns of AN , and hence of AL+ . The rows of AL+
are determined, since they are precisely the nonzero rows in the submatrix whose
columns intersect AL+ .

We now identify the sets A+, A�, A0 and A�, in terms of AL+ and AN . We let
ei denote the vector with a 1 in position i and 0's elsewhere.

Theorem 3.4. Let A be an m by n sign pattern, and assume that A has the form�
AN O
� AL+

�
;

where AL+ is an L+-matrix with k rows, and AN is not sign-central. Then the
following hold.
(a) A0 = fk + 1; : : : ;mg,
(b) A+ = fi : the matrix [AN � ei] is sign-centralg,
(c) A� = fi : the matrix [AN ei] is sign-centralg.

Proof. Let D be signing in S. Since AL+ is an L+-matrix, each of the last
(m � k) diagonal entries of D are 0. Hence fk + 1; : : : ;mg � A0. Since AN is not
sign-central, there exists a strict signing E of order k such that E�Om�k 2 S. Hence
A0 � fk + 1; : : : ;mg. Therefore, (a) holds.

Suppose that i 2 A+. If E is a strict signing of order k such that E�O 2 S, then
the last column of E[AN � ei] is nonpositive. Otherwise, some column of EAN is
nonpositive. Hence, by Proposition 2.2, [AN �ei] is sign-central. Similarly, if i 2 A�,
then [AN ei] is sign-central.

Now suppose that [AN � ei] is sign-central. Since AN is not sign-central, there
exists a strict signing E such that each column of EAN has a positive entry. Since
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[AN �ei] is sign-central, the (i; i)-entry of E is positive. Hence, E�Om�k is a signing
in S whose (i; i)-entry is positive.

Let D be a signing in S. As previously noted, D = E � Om�k for some signing
E of order k. Without loss of generality we may assume that E = F �O`, where F
is a strict signing, and that

AN =

�
A1 O
A3 A2

�
where A2 has ` rows and A1 has no zero columns. Since AN is not sign-central, A2

is not sign central. Hence, by Proposition 2.6, there is a strict signing G such that
each nonzero column of GA2 has a positive entry. Since AN has no zero column,
each column of (F � G)AN has a positive entry. Since [AN � ei] is sign-central,
Proposition 2.6 implies that the (i; i)-entry of F �G is positive. Hence the (i; i)-entry
of D is nonnegative. Therefore, i 2 A+. A similar argument shows that if [AN ei] is
sign-central, then i 2 A�.

As the recognition problems for L+-matrices and sign-central matrices are NP-
complete, Theorem 3.4 shows that the problem of determining if the system Ax =
b; x �0 0 is not sign-consistent is NP-complete.

Let

A =

26666664
1 �1 1 1 0 0 0 0
1 1 �1 1 0 0 0 0
0 0 �1 1 0 0 0 0
0 0 1 �1 0 0 0 0
1 1 �1 1 1 1 �1 �1
1 1 1 1 1 �1 �1 1

37777775 :

It is easy to verify that AN = A[f1; 2; 3; 4g;f1;2;3;4g], and that AL+ =
A[f5; 6g; f5; 6; 7;8g]. The only i such that [AN � ei] is sign-central is i = 2, and
there is no j such that [AN ej ] is sign-central. Hence it follows from Theorem 3.4,
that Ax = b; x �0 0 is sign-consistent if and only if b is a nonzero sign pattern with

b1 = b3 = b4 = 0, and b2 � 0.

We conclude this section by studying systems Ax = b; x �0 0 where A is a square

matrix of order n that allows invertibility and b 6= 0. K�onig's Theorem (see Theorem
1.2.1 in [2]) implies that an n by n matrix A allows invertibility if and only if A does
not contain an r by s zero submatrix for any positive integers with r + s > n.

Suppose that Ax = b; x �0 0 is sign-consistent. Since a nonempty L+-matrix has

more columns than rows, the fact that A allows invertibility and Lemma 3.3, imply
that AL+ is empty, and hence A = AN is not sign-central. By Proposition 2.1, we
may assume that A has the form �

A1 O
A3 A2

�
;
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where A1 is a balanceable matrix with no zero column, and A2 is an L-matrix. We
write b as �

b(1)

b(2)

�
to conform to this partition of A. Since L-matrices have at least as many columns
as rows, the fact that A allows invertibility implies that both A1 and A2 are square
matrices with no zero columns. Let k be the order of A1. Since A1 is balanceable and
has no zero column, there is a strict signing E such that each column of A1 contains
both a positive and a negative entry. Hence both E � On�k and its negative are in
S. Thus by Corollary 3.2, b(1) = 0.

Since A is an SNS-matrix, each matrix in Q(A) is invertible. Hence each systemeAx = ~b, ( eA 2 Q(A), ~b 2 Q(b)) has exactly one solution, namely x = (fA2)�1gb(2).
It follows from Cramer's rule that for j = 1; 2; : : : ; n + 1, the matrix Cj obtained

from [A2 b
(2)] by deleting column j has the property that either detfCj � 0 for allfCj 2 Q(Cj) or detfCj � 0 for all fCj 2 Q(Cj). Thus, for each j each nonzero term

in the standard determinant expansion of Cj has the same sign. Hence, by Theorem
1.2.5 in [3], the determinants of the matrices in Q(Cj) all have the same sign. It

now follows by Cramer's rule, that each vector (fA2)�1gb(2), where fA2 2 Q(A2), andgb(2) 2 Q(b(2)), has the same sign pattern. Hence, the unconstrained system A2x = b(2)

is sign-solvable, and (A2)�1b(2) � 0.
Therefore, we have shown one direction of the following result. The converse

follows immediately from the de�nitions.
Corollary 3.5. Let

A =

�
A1 O
� A2

�
(6)

be a sign pattern where A1 is a square, balanceable matrix with no zero columns, and
A2 is an SNS-matrix. Let

b =

�
b(1)

b(2)

�
be a nonzero vector partitioned to agree with that of A. Then Ax = b; x �0 0 is sign-

consistent if and only if b(1) = 0, the linear system A2x = b(2) is sign-solvable, and
(A2)�1b(2) � 0.

We note that Corollary 3.5 and the polynomial-time recognition algorithm for
SNS-matrices given in [7] imply that there is a polynomial-time algorithm for recog-
nizing if the constrained linear system Ax = b; x �0 0 is sign-consistent, in the case that

A is square and allows invertibility. To see this, assume that A is square and allows
invertibility. Using the polynomial-time recognition algorithm for SNS-matrices in [7],
one can put A into the form in (6), where A2 is an SNS-matrix, and A1 is balanceable,
in polynomial-time. Using Cramer's rule, one sees that A2x = b(2) is sign-solvable
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if and only if each of the matrices Cj de�ned above is an SNS-matrix. Thus, us-
ing the polynomial-time algorithm for recognizing SNS-matrices, we can determine if
A2x = b(2) is sign-solvable in polynomial-time.

4. S-matrices, and matrices that do not allow centrality. In this section
we introduce and study two classes of sign patterns that arise naturally when we
consider sign-solvable, constrained linear systems.

We begin by describing the characterization of sign-solvable linear systems in [5].
This characterization is in terms of L-matrices and S�-matrices. An m by (m + 1)
sign pattern A is an S�-matrix provided each of its m by m submatrices is an SNS-
matrix. Equivalently, (see Corollary 1.2.10 in [3]), the m by m + 1 sign-pattern A is
an S�-matrix provided there exists a sign pattern vector s such that A requires the
property that the null space is spanned by a vector with sign pattern s.

The following paraphrased result of Klee, Ladner and Manber (see also Theorem
1.2.12 in [3]) shows that recognizing sign-solvable linear systems can be reduced to
recognizing L-matrices and S�-matrices.

Proposition 4.1. Let A = [aij] be an m by n matrix, and let b be a nonzero
m by 1 vector. Assume that z = (z1; z2; : : : ; zn)T is a solution to the (unconstrained)
linear system Ax = b. Let

� = fj : zj 6= 0g and � = fi : aij 6= 0 for some j 2 �g:
Then the (unconstrained) system Ax = b is sign-solvable if and only if the matrix

[A[�; �] � b[�]]

is an S�-matrix and the matrix A(�; �)T is an L-matrix.
In Section 5, we generalize this result to constrained linear systems. The classes

of matrices involved are S-matrices, and matrices that do not allow centrality.
An S-matrix is an S�-matrix whose null space is spanned by a positive vector.

By Theorem 2.4 an S-matrix is an L+-matrix and hence a sign-central matrix. S-
matrices have been extensively studied (see Chapter 4 of [3]), and as shown in [5] can
be recognized in polynomial-time.

Since a matrix has linearly independent columns if and only if it has no nonzero
null vector, the condition that A(�; �)T be an L-matrix is equivalent to the condition
that no matrix in Q(A(�; �)T ) has a nonzero null vector. This leads us to consider
matricesM such that no matrix inQ(M ) contains a nonzero, nonnegative null vector.
These are precisely the sign patterns that do not allow centrality. We now give a useful
characterization of matrices which do not allow centrality.

Theorem 4.2. Let A be an m by n matrix. Then the following are equivalent.
(a) There exists a positive integer k and permutation matrices P and Q such that the
�rst k rows of PAQ have the form26664

x1 O � � � O
� x2 � � � O
...

...
. . .

...
� � � xk

37775 ;
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where xj is either a positive or a negative row vector for j = 1; 2; : : : ; k.
(b) The row space of each matrix in the qualitative class of A contains a positive
vector.
(c) A does not allow centrality.
(d) Each submatrix A[f1; 2; : : :;mg; �] of A contains either a nonzero, nonnegative
row or a nonzero, nonpositive row.

Proof. First we assume (a), and prove that for each matrix in the qualitative class
of PAQ there exists a positive vector in the span of its �rst k rows. We prove this by
induction on k. If k = 1, then the �rst row of each matrix in the qualitative class of
A is either positive or negative, and hence (b) holds. Assume k � 2 and proceed by

induction. Let P eAQ be a matrix in Q(PAQ), let ` be the number of columns of x1.

By the inductive hypothesis, there is a linear combination of rows 2, 3,. . . , k of P eAQ
which has positive entries in all but the �rst ` entries. For � su�ciently large, this
linear combination along with either �x1 or ��x1 will be a positive vector. Hence,
(b) holds.

Next we assume (b) and prove that (c) holds. Let eA 2 Q(A). Since the row space

of eA contains a positive vector, eA is not central. Hence, (c) holds.
To prove that (c) implies (d) we prove the contrapositive. Thus, assume that

there exists a � such that each nonzero row of A[f1; 2; : : :;mg; �] contains both a

positive and a negative entry. Then there exists a matrix eA 2 Q(A) such that each

vector in the row space of eA has the sum of its coordinates indexed by � equal to 0.
Hence, A allows centrality.

Finally, we prove that (d) implies (a). Assume that (d) holds. The proof is by
induction on m, the number of rows of A. If m = 1, then the condition implies that
A contains either a positive row or a negative row, and hence (a) holds. Assume that
m � 2, and proceed by induction. The assumptions imply that A contains a nonzero,
nonpositive row or a nonzero, nonnegative row. Without loss of generality we may
assume that the �rst ` > 0 entries are the nonzero entries of the �rst row of A, and
each of these are positive. If ` = n, then we may take k = 1, and x1 to be the �rst row
of A. Otherwise, let B = A[f2; : : : ;mg; f`+ 1; : : : ; ng]. The assumptions on A imply
that each submatrix B[f1; : : : ;m� 1g; �] of B contains either a nonzero nonpositive
row or a nonzero, nonnegative row. Hence, by induction, up to permutation of rows
and columns the �rst k � 1 rows of B have the form26664

x2 O � � � O
� x3 � � � O
...

...
. . .

...
� � � xk

37775 ;
where each xj (j = 2; 3; : : : ; k) is positive or negative. It now follows, using the �rst
k rows of A, that (a) holds. Hence, by induction, (d) implies (a).

The proof is now complete.
We note that the proof of (d) implies (a) provides a polynomial-time algorithm

for determining whether a matrix, A, does not allow centrality. Namely,
1. If A has exactly one row, then A does not allow centrality if and only if A is
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positive or A is negative. Otherwise,
2. If A does not have a nonzero, nonpositive row or a nonzero, nonnegative row, then
A allows centrality. Otherwise,
3. Let j be a nonzero, nonpositive row or a nonzero, nonnegative row. Let B be the
submatrix of A obtained by deleting row j and each column which contains a nonzero
entry in the jth row. Replace A by B and go to step 1.

We now summarize this section. For unconstrained linear systems, understand-
ing sign-solvability reduces to understanding S�-matrices and L-matrices. We've in-
dicated that each S�-matrix is an L+-matrix, and hence a sign-central matrix. The
analog for constrained linear systems, are S-matrices. Clearly, each S-matrix is an
S�-matrix, but not conversely. The correct generalization of L-matrices to the con-
strained, sign-solvable setting is based on the characterization that AT is an L-matrix
if and only if the null space of AT does not allow a nonzero vector. This leads to the
class of sign patterns that do not allow centrality. Clearly, if AT is an L-matrix, then
A does not allow centrality. The matrix [1; 1]T shows that the converse does not hold.

5. Sign-solvability. In this section we give necessary and su�cient conditions
for a constrained linear system to be sign-solvable, and present a polynomial-time
algorithm for recognizing such linear systems. The following result characterizes sign-
solvable constrained homogeneous linear systems. In Theorem 5.1 and Corollary 5.2
we say that an empty matrix does not allow centrality if and only if it has no columns.

Theorem 5.1. Let A = [aij] be an m by n matrix. Assume that z =
(z1; z2; : : : ; zn)T is a solution of the constrained, linear system Ax = 0; x �0 0. Let

� = fj : zj 6= 0g and � = fi : aij 6= 0 for some j 2 �g:

Then Ax = 0; x �0 0 is sign-solvable if and only if the matrix

A[�; �]

is an S-matrix and the matrix A(�; �) does not allow centrality.

Proof. Without loss of generality we assume that � = f1; 2; : : : ; kg and that
� = f1; 2; : : : ; `g for some nonnegative integers k and `. It follows from the de�nitions
of � and � that

A =

�
A1 A3

O A2

�
where A1 is a k by ` matrix with no row of zeros. The linear system Ax = 0 can be
rewritten as

A1x
(1) +A3x

(2) = 0

A2x
(2) = 0:
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Assume that the constrained system Ax = 0; x �0 0 is sign-solvable. Then every

nonzero, nonnegative vector �
~x(1)

~x(2)

�

which solves a system eAx = 0 for some eA 2 Q(A) satis�es ~x(2) = 0. Hence the
constrained system A1x

(1) = 0; x(1) �0 0 is sign-solvable and every solution has no

zero entries. Since A1 has no zero row, Theorem 2.4 implies that A1 is an L+-matrix.
Since a nonempty L+-matrix has more columns than rows, ` � k + 1. If ` > k + 1,
then the null space of A1 has dimension at least 2, and hence there is a nonzero,
nonnegative solution to A1x

(1) = 0 which is not positive. Hence ` = k + 1. Since A1

is an L+-matrix, A1 is an L-matrix. Hence each matrix in Q(A1) has null space of
dimension 1, and it follows that A1 is an S-matrix.

We next show that A2 does not allow centrality. Suppose to the contrary that A2

allows centrality. First consider the case that A2 is empty. Then A2 is 0 by n�k, and
n � k > 0. Let x(2) be any nonnegative, nonzero vector. Since A1 is an L+-matrix,
by Theorem 2.4, there is a vector x(1) such that A1x

(1) = �A3x
(2), and x(1) �0 0. It

follows that �
x(1)

x(2)

�
is a solution to Ax = 0 whose zero pattern is di�erent from that of z. This contradicts
the sign-solvability of Ax = 0; x �0 0.

Next consider the case that A2 is not empty. Then there is a central matrix eA2 2
Q(A2). Let x(2) be a nonnegative, nonzero vector in the null space of eA2. Since A1

is an L+-matrix, by Theorem 2.4, there is a vector x(1) such that A1x
(1) = �A3x

(2),
and x(1) �0 0. It follows that �

x(1)

x(2)

�
is a solution to �

A1 A3

O fA2

�
x = 0

whose zero pattern is di�erent than that of z. This contradicts the sign-solvability of
Ax = 0; x �0 0. Therefore, A2 does not allow centrality.

Conversely, assume that

A[�; �]
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is an S-matrix and the matrix A(�; �) does not allow centrality. Let eA be a matrix
in Q(A). Then

eA =

" eA1
eA3

O eA2

#

where eAi belongs to Q(Ai); (i = 1; 2; 3). The linear system eAx = 0 is of the form

eA1x
(1) + eA3x

(2) = 0

eA2x
(2) = 0:

Since eA2 is not central, and x(2) is constrained to be nonnegative, x(2) must equal
0. Since A1 is an S-matrix, the above equations have a unique nonzero, nonnegative
solution

~z =

�
~z(1)

~z(2)

�
;

where ~z(2) = 0 and ~z(1) is positive. Therefore Ax = 0 is a sign-solvable constrained
linear system.

We now generalize Proposition 4.1 to nonhomogeneous sign-solvable constrained
linear systems.

Corollary 5.2. Let A = [aij] be an m by n matrix, and let b be a nonzero m
by 1 vector. Assume that z = (z1; z2; : : : ; zn)T is a solution of the constrained linear
system Ax = b; x �0 0. Let

� = fj : zj 6= 0g and � = fi : aij 6= 0 for some j 2 �g:
Then the constrained linear system Ax = b; x �0 0 is sign-solvable if and only if

b[�] = 0, the matrix

[A[�; �] � b[�]]

is an S-matrix and the matrix A(�; �) does not allow centrality.
Proof. The corollary follows from Theorem 5.1 by noting that Ax = b; x �0 0 is

sign-solvable if and only if [A �b]y = 0; y �0 0 is sign-solvable, and the last coordinate

of each solution is a nonzero.
As already noted, a polynomial-time algorithm for recognizing whether or not a

matrix is an S-matrix is given in [5]. In Section 4, a polynomial-time algorithm for
recognizing whether a matrix does not allow centrality is given. Thus, Theorem 5.1
and Corollary 5.2 now imply the following polynomial-time algorithm for determining
if the constrained linear system Ax = b; x �0 0 is sign-solvable.

1. If Ax = b; x �0 0 has no solution, then the constrained system is not sign-solvable.

Otherwise,
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2. Let � be the support of a solution to Ax = b; x �0 0, and let � be the indices of

the nonzero rows of A[f1; 2; : : :;mg; �]. If the matrix A(�; �) allows centrality or if
b[�] 6= 0, then the constrained system is not sign-solvable. Otherwise,
3. If b 6= 0 and the matrix [A[�; �] � b[�]] is not an S-matrix, or if b = 0 and the
matrix A[�; �] is not an S-matrix, then the constrained system is not sign-solvable.
Otherwise, the constrained system is sign-solvable.

We note that (see [3] or [5]) the problem of recognizing (unconstrained) sign-
solvable linear systems is NP-complete. This is because the problem of recognizing
L-matrices (as opposed to recognizing matrices which do not allow centrality) is NP-
complete.

We conclude this section with some examples. Let

A =

2664
1 �1 1 �1 0
0 1 �1 1 1
0 0 1 1 0
0 0 0 1 �1

3775 and b =

2664
0
1
0
0

3775 :
Then x = [1; 1; 0; 0; 0]T is a solution to Ax = b; x �0 0. Since the matrix�
A[f1; 2g; f1; 2g �b[f1; 2g] � is an S-matrix and the matrix A[f3; 4g; f3;4; 5g] does

not allow centrality, it follows from Corollary 5.2 that the constrained system Ax =
b; x �0 0 is sign-solvable.

For the constrained linear system Ax = b arising in Problem 2, we see that we
may take � = f2g and � = f1; 2g. Since, A(�; �) is a 0 by 2 matrix, it allows
centrality. Hence by Corollary 5.2, the constrained linear system Ax = b; x �0 0 is not

sign-solvable.
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