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SPACES OF RANK-2 MATRICES OVER GF(2)*

LEROY B. BEASLEY'

Abstract. The possible dimensions of spaces of matrices over GF(2) whose nonzero elements
all have rank 2 are investigated.
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Let My, »(F) denote the vector space of all m x n matrices over the field F. In
the case that m = n we write M,,(F'). A subspace, K, is called a rank-k space if each
nonzero entry in I has rank equal k. We assume throughout that 1 <k <m <n.

The structure of rank-k spaces has been studied lately by not only matrix theorists
but group theorists and algebraic geometers; see [4], [5], [6]. In [3], [7], it was shown
that the dimension of a rank-k space is at most n +m — 2k + 1, and in [1] that
the dimension of a rank-k space is at most max(k + 1,n — k + 1), when the field is
algebraically closed.

In [2] it was shown that, if |[F'| > n+ 1 and n > 2k — 1, then the dimension of
a rank-k space is at most n. Thus, if £k = 2 and F is not the field of two elements,
we know that the dimension of a rank-2 space is at most n. In [2] it was also shown
that if n = gk + r, with 0 < r < k then if F' has an extension of degree k£ and one of
degree k + r, then there is a rank-k space of dimension n. Thus, for k¥ = 2, the only
case left to investigate is when |F| = 2.

In this paper we shall show that if m = n = 3 there is a rank-2 space of dimension
n + 1 over the field of two elements and that if n > 4 the dimension of a rank-2 space
is at most n.

Further, is easily shown that for any field, the dimension of a rank-m space is at
most n. Thus, henceforth, we assume that £ = 2, 3 < m < n and that F = Z,, the
field of two elements.

ExAMPLE 1. Consider the space of matrices

a ¢ ¢
d a+b c |la,bec,de 2
d d b

It is easily checked that this is a 4 dimensional rank-2 subspace of Mj3(Z2,).

It follows that for n = 3, n is not an upper bound on the dimension of a rank-2
space.

We let I}, denote the identity matrix of order k x k, O the zero matrix of order
k x I, and Oy, denotes O . When the order is obvious from the context, we omit
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the subscripts. We shall use the notation p(A) to denote the rank of the matrix
A. For increasing sequences, a C {1,2,---,m}, and 8 C {1,2,---,n}, we will let
Ala|B] denote the submatrix of A on rows a and columns 3. That is, A[é, j|k,l] =
{ T }
ajk - aji |
THEOREM 2. Ifn >4, K is a rank 2 space and F = Z,, then dim K < n.
Proof. Without loss of generality, we may assume that [ 102 8 ] € K. We also

suppose that dim /C > n.

Suppose that there is some nonzero C' € K such that C = [ %2 g2 } Then
4
C4 = O and p(Cs) = 2. Multiplying all elements of K by appropriate matrices that
I, O O I, O
leave [ 0 O } fixed, we can assume that 0O 0 O e K.

Now, since dimKC > n, there exists A € K such that a;; = 0 for all j and the

rank of A is 2. Now, let B(z,y) = x{g 8] +y{8 g 8} + A. Then,
T 0 Y

B(z,9)[1,2,3]|1,2,3] = | a21 a2+ azs | must have zero determinant for all
a31 a32 ass3

z,y € F. That is

(1) (33T + a33022T + 4230327 + A31a22Y + a31 7Y + azza21y = 0.

Recall that in F = Z5, 22 = z for all z. It follows that for z = 0 and y = 1 we
have

(2) az1a22 + az2a21 =0
and for x = 1 and y = 0 we have
as3 + azzaze + asz2a23 = 0.
Now, we have
y(aziaze + azzas1) + v(ass + aszazs + az2a23) = az vy

from (1) and each term of the left hand side is zero. Thus az; = 0.

By considering B(z,y)[1,2,r|1,2,3] as above, we get that a,; = 0 for all r.

Similarly, B(z,y)[1,2,r|1,2,4] must have zero determinant for all » > 3. Thus,
Qrg T+ Q2204+ A2402T+arxy = 0. If x =1 and y = 0 we get a,4+ 2204 + 24070 =
0 and hence a,2zy = 0 for all z,y. Thus, a,2 = 0 for all » > 3.

Now, B(z,y)[1,2,r|1,3,4] must also have zero determinant. That is, assa.4z +
(24432 + G21a,4Yy + arzzy = 0. As above we get that a,3 = 0 for all » > 3.

Since B(z,y)[1,2,7]2,3, s] must have zero determinant for r,s > 3, we get
a22a,-sy + arsxy = 0 for all z,y. As above, we get that a,.s = 0 for r,s > 3.
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The above contradicts that A has rank 2 since A has only one nonzero row. Thus,

there is no matrix C € K of the form C = 0z Ch .
0O O,

Similarly, there is no matrix in I of the form 0> O .
Cs Cy

Since n > 4 and we have supposed that dim /IC > n, there is some rank-2 matrix

A € K of the form A = { 22 ﬁ2 } . From the above, we know that As and A3 are
3 4

not zero. Since p(A) > p(As) + p(As), we must have p(A4s) = p(43) = 1.
Let R, S and @ be invertible matrices such that

RA2Q:{1 ot}

0 0t
and
-1 _ | @ B
s =[5 8]

Let B=(R® S)A(R_1 ® Q). We have two cases: a = 0 (and hence f = 1) or
a=1.

Case 1. a = 1. InthiscaseletE:[1 ﬂ]@ln_2andF:{l ﬂ]@Im_g.

0 1 0 1
z 0 1 qt
ThenF(x{Ig 8]+B>E: 2 0 0 o :x[g 8]+FBE.
g0 N
I
0

Let C = FBE. Now, since det (a: [ 8 ] + C’) [1,2,7]1,2, s] must be zero, if

r >3 and s > 3, we have ¢,; = 0 for all such (r,s) # (3, 3) since the coefficient of z
must be zero. For (r,s) = (3,3) we get z%c33 +z = 0, so c33 = 1. That is

w

— O O

Qo oo

=
Q

0]

With out loss of generality we may assume that C € K. Since dim /K > n > 4,
there is some B € K which is rank 2 and such that

0 b12 0 b14

b21 b22 b23 b24

B = 0 bs2 0 b3a
b41 b42 b43 b44
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I, O
O O
that det G(z,y)[rstluvw] = 0 for any increasing sequences (r,s,t) and (u,v,w), and
hence, the coefficient of each term in the polynomial must be 0. Thus, we obtain

a) b =0 for all o, 8 > 4,
) big =0 for all g > 4,
)

Let G(z,y) =« +yC + B. Since G(x,y) € K for all z and y, we must have

bap = 0 for all g > 4,
bsg =0 for all g > 4,
bo1 = 0 for all a > 4,
baz = 0 for all a > 4, and
g) bas =0 for all a > 4;
when we take [rstluvw] =
) [230]234],
b) [123/120],
) [123134];
d) [123)23],

b
)
d
)
f)

e) [12a[123),
f) [13a|123], and
g) [23a|123], respectively.

Thus
0 b O
_ b21 b22 b23 0
B=1"0 s o :
(0] 0]
and hence, det G(l‘,y)[123|123] = 1‘(b23b32)+y(b12b23 +b22+b21b32 +b12b21)+$y(b22).

Thus byo = 0 and bo3bss = 0. By the symmetry of x { 8 8 } + yC we may assume
that bys = 0. Since B must have rank 2, we have that by; = 1 and from the coefficient
of y, and that B must have rank 2, we get that bss = b1o = 1. So,

010
10 0 O

B= 010

0 0

Now, since dim K > 4 we must have F' € K of rank 2 such that

0 0 fizs fua
0  for faz fou
F = 0 f32 f33 f34
fu fio fi3 fu

For H(z,y,z) =z { g 8 } +yC + 2B+ F, by considering the minors on [rst|uvw]

as above, we obtain



ELA

Spaces of Rank-2 Matrices over GF(2) 15

a) fag =0 for all o, 8 > 4,
) fig = fop = 0 for all § > 4,
) fap =0forall § >4,
) fa1 = faz =0 for all @ > 4, and
e) faz = 0 for all a > 4;
when we take [rst|uvw] =
2) 2301230,
b) [123[123],
) [123]134),
)
)

0 T

d) [12|123], and
e) [23|123], respectively.
Now, det H(z,y, 2)[123|123] = z(f33 + f22f33 + f32f23) + y(foz + fa2 f13) + 2(f13 +

fiafs2 + f33) + xy(foz + fis) + wz(f23) + yz(fs2 + fos). Thus foz3 = f32 = 0 and
fa2 = fi3 = fs3. Since the rank of F' must be 2, we have that

0 01
01 0 O
F= 0 01
0 0
But then,
1 0 0
I, 0 _ 000 O
[ 0 0 } FOFE=1"1 00 ’
0 0
a rank 1 matrix, a contradiction.
Case 2. @ = 0. Here we must have 8 =1 so that
0 0 1
0 00 O
B= 01 0
(0] (0]

(Note that if b;; # 0 for any (4, j) with ¢,j > 3 then 2 [ 102 g } + B has rank 3
or more for some z.)

Now, since dim K > 4. we have some matrix £ € K such that

0 €12 0 €14

ea1r 0 ea3 exy

E—| e1 0 e33 es
€41 €42 €43 €44
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I, O

Let C(z,y) = = [ 0 O
for all strictly increasing (r,s,t) and (u,v,w), each term in the polynomial must be
zero, i.e., each coefficient in the polynomial expansion must be zero. Thus, we get

a) eg3 = ea1 = 0 and e31 = eas,

b) eq3 =0 for a > 4,

c) eq1 = 0 for a > 4,

d) esp =0 for 3 > 4,

+ yB + E. Then, since det C(z,y)[r, s, tju,v,w] =0

e) esp =0 for § >4, and

f) eap =0 for a, 8 > 4;

when considering det C(z,y)[r, s, t|u, v, w] = 0 for [r, s, t|u,v,w] =
a [17273|17273]7

)
b) [1,3,|1,2,3],
C) [1727 a|1727 3]7
d) [1,2,3|1,2, 4],
e) [17273|27 37/8]7 and?
) [1,3,all,2, 3], respectively.
Thus,
0 e2 0 en
0 0 €23 0
E = €23 0 0 0
0 o0

Subcase 1. ez3 = 1. In this case, since the rank of F must be 2, and e3; = ea3, we
have that e;; = 0 and ej» = 0 for all ¢,j > 4, and that e;» = 0 by considering that
det E[123|13i] = 0 and det E[135]123] = 0, and det E[123|123] = 0 respectively. Thus

0 0
0 1 0
E_l 0

Qo oo

0
Now, since dim KC > 4, there is some nonzero F' € K such that

fir fiz fiz fu
for 0 0 fou
F=| fzx 0 0 fau
far fio fi3 faa

_ | 2
Let G(z,y,z) =z [ 0 0

a) fag =0 for all o, 8 > 4,

+yB + zE + F. As above we get
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b) fiz = fa1 = fir = fiz = fa1 =0,
¢) fag = fop = fig = 0 for 8 > 4, and
d) faz = faz = far =0 for a > 4;
when considering that det G(z,y, 2)[r, s, t|u, v, w] must be zero for [r, s, t|u, v, w] =
) [230/234],
b) [123]123],
c) [123]123], and
d) [12a|123], respectively.
But then, F' = O, a contradiction.
Subcase 2. es3 = 0. In this case, since the rank of E is 2, we have that e;; = 1 for
some i > 4 and ej, = 1 for some j > 4. Here, there are invertible matrices U and

00 01
0000
Vsuchthat UEV =] 0 0 0 0 ,andU{IQ O}V:{b O]and
0O O 0O O
0100
0 0
00 01
0000
UBV = B. Thus we may assume that £ = 00 0 O
010 0
0 0

Now, let G(z,y, 2) :x[ g 8 } +yB + zE. Then,

G(z,y,2) =

SO OO8R
onww 8 ©
SO o oow
OO O O W
OO O OO

Since dim KL > n, there exists H € K, H # 0 such that hy; = 0 for all j. Let
K(z,y,z) = G(z,y,z) + H. We get
a) hopg =0for a >3 and 3 > 4,
b) hag =0 for 8 > 4,
c) ha1 =0, for a > 4,
d) has =0, for a > 4,
e) h33 = h23 = 0, and
£) hg1 = ho1 = 0;
when we consider that det H(z,y, z)[y|n] = 0 for [y|n] =
) [120]23),
b) [123[123],
o) [12a123],
d) [13c|123],
e) [123|234], and
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f) [123|234], respectively.

0 0 O
0 hyy O ---
That is H = | 0 hyy 0 ... |- But the rank of H is 1 since H # 0, a

contradiction since H € K and K is a rank 2 space.

We have thus obtained a contradiction in each case, and hence our supposition
that dim /C > n is false, and the theorem is proved. O

COROLLARY 3. OQuver any field F, for m,n > 3, the dimension of any rank-2
subspace of My n(F) is at most n, except when m = n = 3 and F = 25, in which
case, the dimension is at most 4.

Proof. By the above theorem and comments, unless m =n = 3 and F = 2, the
dimension of any rank-2 space is at most n. If X is a rank-2 subspace of M3(Z253),
define K+ = {[A 0]|]A € K}. Then K is a rank-2 subspace of M3 4(Z,) and hence
the dimension is at most 4. Clearly K and Kt are isomorphic so that the dimension
of K is at most 4 also. O

Another example of a 4 dimensional rank-2 subspace of M3(25) which is not
equivalent to the one in Example 1 is given below.

ExAMPLE 4. Consider the space of matrices

a 0 c
d a+b 0 ||ab,c,de 2
0 c+d b

It is easily checked that this is a 4 dimensional rank-2 subspace of Mj3(Z2,).
CONJECTURE 5. Quer any field, F, the dimension of a rank-k subspace of
Mo n(F) is at most n unlessm=n =3,k =2 and F = Z,.
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