TheElectronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society. E L A
Volume5, pp. 19-23, February 1999.

I1SSN 1081-3810. http://math.technion.ac.il/iic/ela

THE POSSIBLE NUMBERS OF ZEROS IN AN ORTHOGONAL
MATRIX*

G.-S. CHEONT, C. R. JOHNSON#, S.-G. LEE!, AND E. J. PRIBBLEY

Abstract. It is shown that for n > 2 there is an n X n indecomposable orthogonal matrix with
exactly k entries equal to zero if and only if 0 < k < (n — 2)2.
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1. Introduction. By a pattern we simply mean the arrangement of zero and
nonzero entries in a matrix. An n X n pattern P is called orthogonal if there is a
(real) orthogonal matrix U whose pattern is P. By #(U) or #(P) we mean the
number of zero entries in the matrix U or pattern P. An n x n pattern (or matrix)
P is called indecomposable if it has no r x g zero submatrix, r + ¢ = n; equivalently,
there do not exist permutation matrices )1 and ()5 such that

P =
Q1PQ> [ Py P } ,

in which P;; and Py, are square and nonempty (or, equivalently the bipartite graph
of P is connected). If P were an orthogonal pattern and there were such reducing
blocks, then an elementary calculation shows that P,y = O also. Since an n X n
orthogonal matrix U is invertible, #(U) < n(n — 1) (which is sharp because the
identity is orthogonal), but to be indecomposable, U must have more nonzero entries.
In [BBS], it was observed that the maximum number of zero entries in an n x n
indecomposable orthogonal matrix, n > 2, is (n — 2)2, in response to a query made
by [F].

What, then, about smaller numbers of zeros? It should be noted that if any
single entry is changed to a nonzero in any indecomposable orthogonal pattern P
that realizes (n — 2)% zeros, n > 5, the resulting pattern is no longer orthogonal.
Nonetheless, (n—2)2?—1 zeros can occur in an n xn indecomposable orthogonal matrix.
It is our purpose here to show that there is an n xn indecomposable orthogonal matrix
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U such that #(U) = k if and only if 0 < k < (n — 2)2, thereby greatly strengthening
earlier observations. The same is true for complex unitary matrices.

2. Numbers of Zeros from 0 to 1(n —2)(n — 1). Let P be an n X n indecom-
posable orthogonal matrix with columns py,...,p,, and let

e[ 4]

be a 2 x 2 orthogonal matrix with no zero entries. Then it is easy to show that the
matrix

oy _ [ p1oc pia oapi bpi piy1i - pa
Dl(P)_[o - 0 ¢ d 0 - 0

is an (n + 1) x (n + 1) indecomposable orthogonal matrix. This idea comes from the
notions of matrix weaving and woven matrices which can be found in [C].

It should be clear at this point that the above notion may as well be applied to
orthogonal patterns. Thus we obtain the following lemma.

LEMMA 2.1. If P is an n X n indecomposable orthogonal pattern, then D;(P) is
an (n+ 1) x (n + 1) indecomposable orthogonal pattern.

Since for each §, 0 <0 < 7,

| cos(f) —sin(f)
B(0) = sin(f)  cos(d)

is an orthogonal matrix, it is clear that there are full (i.e. indecomposable) 2 x 2
orthogonal matrices and that there are ones arbitrarily close to the identity matrix
I,. Tt follows that for any B(#) with a sufficiently small # and for any vector v € R?
with no zero components, the row vector v B() has no zero components.

We denote by K, ; the n x n pattern whose only zero entries are the first ¢ entries
of the last row.

LEMMA 2.2, Forn > 2, each K, ;, ¢ = 0,...,n — 2, is an indecomposable
orthogonal pattern.

Proof. First we show that if K, ; is an orthogonal pattern for n > 2 and some
integer i satisfying 1 < ¢ < n — 2, then K, ; ; is also an orthogonal pattern. For
n > 2, suppose there exists an n x n orthogonal matrix A = (ap,) and an integer i
satisfying 1 < i < n — 2 so that A has pattern K, ;. Define R;(f) to be the n x n
orthogonal matrix with entries equal to the identity matrix except that

RO+ 1= | ot o)

where the notation A[a] denotes the principal submatrix of A whose rows and columns
are indexed by the set a.
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Now form the product AR;(#). Note that A and AR;(f) are entrywise equal
except for columns ¢ and ¢ 4+ 1. These two columns of AR;(#) are
)

ai, COS(Q) + a1,i41 sin(&) —ay; sin(0 + a1,i+1 COS(G)
. ) and ) . ,
an—1,;c08(8) + an_1,i+1 sin(f) —p_1,;5in(0) + an_1,;+1 cos(h)
Qp,i+1 sin(0) An,i+1 COS(G)

respectively. Since both A and R;(#) are orthogonal, the product AR;(6) is orthog-
onal. Now we only need to choose some 6 sufficiently close to 0 so that we do not
create any extra zero entries in AR;(#). Thus AR;(#) is an orthogonal matrix with
pattern Ky, ;1.

Next we prove the lemma using the above result. We proceed by induction.
Assume that for n > 2 there exists a full n x n orthogonal pattern P. Note that there
is such a pattern for n = 2. By Lemma 2.1, D,(P) is also an orthogonal pattern.
D,,(P) has pattern Ky (n41)—2. By the above result, Ky 1,,i=0,...,(n+1) =2,
is also an orthogonal pattern. And K410 is an (n + 1) x (n + 1) full orthogonal
pattern, which completes the induction. Note that for ¢ satisfying 0 <i <n—-2, K, ;
is indecomposable as well. O

We now know that iterative application of the operator D;() to a Kp;, 0 <i <
n — 2, will produce indecomposable orthogonal patterns. Certain of these will be of
particular interest.

For2<m<mnand 0<i<m —2, we let

Hn,m,i = anl(Dn72(' T Dm(Km,z) T ))

Then we obtain the following immediate corollary to Lemmas 2.1 and 2.2.

COROLLARY 2.3. Fach Hy i, 2<m <n, 0<i<m—2 is an indecomposable
orthogonal pattern.

We note that since Hy 20 is the full n x n (upper) Hessenberg pattern, it follows
that this pattern with #(H,20) = 3(n—2)(n —1) is orthogonal. This is the sparsest
pattern among the H,, ,, ; and its indecomposable orthogonality will also be used in
the next section.

COROLLARY 2.4. For each k = 0,...,%(n — 2)(n — 1), there is an n x n inde-
composable orthogonal matrix with exactly k zero entries.

Proof. We count the number of zeros in each H,, ,; where 2 < m < n and
0<i<m-—2. Ky, hasizeros, Dy, (K, ;) has i+ ((m + 1) — 2) zeros and so on. So
we have

#(Hnm,i) =i+ ((m+1) =2)+((m+2)=2)+---+((m+(n—m)) - 2)
=i+(m—-1)+m+---+(n—2)
1 1
:z+§(n—2)(n—1)—§(m—2)(m—1).

Now it is clear that we do indeed get all numbers of zeros between 0 and 1(n—2)(n—1)
as we let m and ¢ vary. O
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3. Remaining Numbers of Zeros. From Corollary 2.3 we know that Hy, 2,
the n x n full upper Hessenberg pattern, is an indecomposable orthogonal pattern.
Note that column i of Hj, 2o has exactly n —1 —7 zeros as long as 1 <i <n—1. We
will need this fact in the proof of the next lemma.

LEMMA 3.1. Forn > 2, there exists an n X n indecomposable orthogonal matriz
with k zeros, k = +(n —2)(n —1),...,(n — 2)%.

Proof. We proceed by induction. Suppose that there exists an n x n indecompos-
able orthogonal pattern Py, with exactly k zeros, k = 1(n — 2)(n — 1),...,(n — 2)2.
Also suppose that P, has a column, namely column j(k), with exactly n — 2 zeros. It
is easily verified that these conditions hold for n = 2.

First note that we may take P%(n72)(n71) to be Hy2,0. Form D;(Hyz20), i =
1,...,n—1. Now we count zeros. Hpo has 1(n —2)(n — 1) zeros, we double a
column with n — 1 — ¢ zeros and we add n — 1 zeros along the bottom of the pattern.

#(Di(Hn20)) =(n—1—14)+ (n—1) + #(Hnz2,0)

:—i+(n—1)+(n—1)+%(n—2)(n—1)
1

:—i+(n—1)+2(n—1)(n)

:—i+((n+1)—2)+%((n+1)—2)((n+1)—1).

Since i ranges from 1 to n— 1, #(D;(Hy,2,0)) ranges from 1((n + 1) — 2)((n + 1) — 1)
to (n+1)—3)+1((n+1)—2)((n+1) —1). Also note that the last row of D;(Hy 2)
has (n + 1) — 2 zeros so that (D;(Hp2,0))7 is an indecomposable orthogonal pattern
with a column that has exactly (n+ 1) — 2 zeros, i =1,...,n — 1.

Next, for each k = §(n —2)(n — 1) + 1,...,(n — 2)2, form Dj, (Pk). Again we
count zeros. P has k zeros, we double a column with n — 2 zeros and we add n — 1
zeros along the bottom of the pattern.

#Djwy(Pr)) =k+(n—1)+ (n—2).

Since k ranges from $(n —2)(n — 1) + 1 up to (n — 2)?, we have that #(D;, (Pr))
ranges from

%(n—?)(n—1)+1+(n—1)+(n—2):%(n—l)(n)+(n—1)
= S ) =+ 1)~ 1) +((n+1)~2)
up to

n—224+mn-1)4+n-2)=0>-4n+4)+n—-1)+(n—-2)

=n?>-2n+1
:(n—l)2
=((n+1)—2)2.

22



ELA

Note that since D;y)(Py) has a row with exactly (n + 1) — 2 zeros, (D) (Pr))" is an
indecomposable orthogonal pattern that has a column with exactly (n + 1) — 2 zeros.

Combining the two ranges of constructed (n+1) x (n+ 1) indecomposable orthog-
onal patterns gives us matrices with numbers of zeros from £ ((n+1) —2)((n+1)—1)
up to ((n+1) —2)%. And since each of the transposes of these matrices has a column
with exactly (n + 1) — 2 zeros, the induction is complete. O

THEOREM 3.2. For n > 2, there is an n X n indecomposable orthogonal matriz
with exactly k zeros if and only if 0 < k < (n — 2)2.

Proof. The theorem follows immediately from Corollary 2.4, Lemma 3.1 and the
result of [BBS]. O

REMARK 3.3. It follows from Theorem 3.2 that for n > 4, there exists an n x n
orthogonal matrix with exactly k zeros if and only if 0 < k < n(n — 1) — 4 or
k=nn—1)—2or k=n(n-—1).
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