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SINGULAR VALUES OF TOURNAMENT MATRICES�

DAVID A. GREGORYy AND STEPHEN J. KIRKLANDz

Abstract. Upper and lower bounds on both the largest and smallest singular values of a
tournament matrix M of order n are obtained. For most values of n, the matrices M for which
equality holds are characterized.
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1. Introduction. A tournament matrix of order n is an n�n f0,1g-matrixMn

such that Mn +MT
n = Jn � In where Jn is the n � n matrix of ones and In is the

identity matrix of order n. Eigenvalues of tournament matrices have been studied
extensively [5, 9, 13, 17, 12]. In this paper, the singular values are examined.

For an n � n complex matrix C, the singular values, �1(C) � �2(C) � � � � �
�n(C) of C are the nonnegative square roots of the eigenvalues of C�C or, equiv-
alently, of CC�. Thus, if eigenvalues are also taken in nonincreasing order, then
�2i (C) = �i(C

�C) = �i(CC
�), i = 1; : : : ; n. In particular, �21(C) = �(CC�) =

�(C�C), where � denotes spectral radius. Also, using Rayleigh quotients, we have
�21(C) = maxx�x=1 x

�C�Cx , while �2n(C) = minx�x=1 x
�C�Cx where the maximi-

mum and the minimum are taken over all vectors x 2 C
n with x�x = kxk22 = 1.

The largest singular value, �1(C), is also called the spectral norm of C because
�1(C) = maxkxk2=1 kCxk2 = jjjCjjj2, the operator norm induced by the usual Eu-
clidean norm k � k2.

The singular values of C may also be de�ned as the n largest eigenvalues of the
2n� 2n Hermitian matrix

eC =

�
O C
C� O

�
;

the remaining n eigenvalues of eC being the negatives of the singular values of C [10,
p. 161]. Properties of the singular values of a tournament matrix have been examined
from this viewpoint by Dedo, Zagaglia Salvi and Kirkland in [6].

Throughout the paper, 1 = 1n will always denote a column vector of n ones,
and M = Mn a tournament matrix of order n with score vector s = M1 and score

variance �21 = �21(M) = 1
n

P
i(si � n�1

2 )2 = sT s
n
� (n�12 )2. If n is odd and each entry

of s equals n�1
2 , then M is said to be regular. It is said to be almost regular if n is

even and n
2 of the entries of s equal n

2 and the other n
2 entries equal n

2 � 1.
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If C is normal, that is if C�C = CC�, then the singular values of C are the moduli
of its eigenvalues [11, p. 157]. It is easily seen that a tournament matrix M is nearly
normal in the sense that the rank one perturbation, M � 1

2J , is a normal matrix. It
is perhaps surprising then to �nd in Section 2 that, for �xed n, �1(Mn) is maximized
precisely when �(Mn) is minimized, that is, when Mn is the matrix of a transitive
tournament. For n odd, we �nd in Section 2 that �1(Mn) is minimized precisely when
�(Mn) is maximized, namely when Mn is regular. Further, for n even, we prove in
Section 3 that if �1(Mn) is minimized, then Mn must be almost regular. Again there
appears to be a connection to �(Mn); for n even and su�ciently large, a recent result
supporting an outstanding conjecture of Brualdi and Li [3, Prob. 31(1)] asserts that
Mn must be almost regular when �(Mn) is maximum [15]. However, the tournament
matrix conjectured by Brualdi and Li to maximize �(Mn) need not minimize �1(Mn).

2. Majorization and Singular Values. Let x ; y 2 R
n. We say that x is

weakly majorized by y and write x �w y if for each k = 1; : : : ; n, the sum of the k
largest entries of x is less than or equal to the sum of the k largest entries of y . We
say that x is majorized by y and write x � y if x �w y and

P
xi =

P
yi. These

de�nitions may be rephrased using the matrix of a transitive tournament. Let

U = Un =

2666664
0 1 1 � � � 1
0 0 1 � � � 1
...

...
. . .

. . .
...

0 0 � � � 0 1
0 0 � � � 0 0

3777775
be the upper triangular tournament matrix of order n. Then Un is the matrix of the
transitive tournament with Hamilton path 1 ! 2 ! � � � ! n. If x1 � x2 � � � � � xn
and y1 � y2 � � � � � yn, then x �w y if and only if Ux � Uy and

P
xi �

P
yi, while

x � y if and only if and only if Ux � Uy and
P

xi =
P

yi.
A basic property of majorization asserts that x � y if and only if the entries

of x can be obtained from those of y by a �nite number of transfers of the form
fyi; yjg ! fyi + d; yj � dg where 0 � d � yj � yi) [20, p. 6]. Since a tournament
matrix is regular or almost regular if and only if every pair of entries of its score vector
di�er by at most one, it follows that a tournament matrix R of order n is regular or
almost regular if and only if R1 �M1 for all tournament matrices M of order n.

A similar de�ning property of majorization (resp. weak majorization) involves
transfers of the form fyi; yjg ! fayi+byj ; byi+ayjg where 0 � a; b � 1 and a+b = 1.
Such a transfer is called a T -transform [20, p. 21] and is strict if 0 < a < 1. If x ; y 2
R
n, then x � y (resp. x �w y) if and only if x = T1 � � �Tky (resp. x � T1 � � �Tky) for

some �nite sequence T1; : : : ; Tk of T -transforms [20, p. 24,26].
According to a theorem of Landau [20, p. 186], an n-vector s of nonnegative inte-

gers is the score vector of some tournament matrix of order n if and only if s � U1 . Let
k�k2 denote the usual Euclidean norm. From the necessary condition in Landau's theo-
rem and the T -transform characterization of majorization, a straightforward convexity

argument implies that kM1k2 � kU1k2 or, equivalently, that �21(M) � �21(U) =
n2�1
12

for all tournament matricesM of order n. Moreover, equality holds if and only ifM is
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the matrix of a transitive tournament. In Theorem 2.2, a similar result will be proved
for the largest singular value �1(M) = maxkxk2=1 kMxk2. The proof will require the
following generalization of the necessary condition in Landau's theorem.

Lemma 2.1. Let U be the upper triangular tournament matrix of order n. If

x �w y and y1 � y2 � � � � � yn, then Mx �w Uy for all tournament matrices M of

order n.
Proof. Since Ux �w Uy whenever the entries of x and y are nondecreasing and

x �w y , it is su�cient to prove thatMx �w Ux for allM whenever the entries of x are
nondecreasing. Since M is arbitrary, this is equivalent to showing that Mw �w Ux

for all M whenever the entries of w are a permutation of the entries of x . Also,
since M is arbitrary, by permuting the rows and columns of M and the entries of w
simultaneously, we may assume that the entries of Mw are nondecreasing. Then the
sum of the k largest entries of Mw is Sk =

Pk

i=1(Mw)i.
If k = n, then Sn = 1TMw = r1w1 + � � � rnwn, where r1 + � � � rn =

�
n
2

�
. Since

the entries of x are a nondecreasing rearrangement of the entries of w , it follows that
Sn � x2 + 2x3 + � � �+ (n� 1)xn, the sum of the n entries of Ux .

If k < n, letMk be the k�k tournament submatrix ofM obtained by selecting the
�rst k rows and columns of M . Then Sk � 1Tk (Mkŵ +J ~w) where ŵ = [w1; : : : ; wk]

T ,
~w = [wk+1; : : : ; wn]

T , and J is the k � (n � k) all-ones matrix. In the above upper
bound on Sk, becauseMk and J have k rows, each entry wi of w appears at most k�1
times if i � k and exactly k times if i > k. Consequently, because x is nondecreasing,
the upper bound would not decrease if any entry xi of ~w with i � k were swapped
with any entry xj of ŵ with j > k. Thus, it may be assumed that w = x . By the same
argument as that in the case where k = n, it follows that 1Tk Mk x̂ � 1Tk Ukx̂ where
Uk is the upper triangular tournament matrix of order k. Thus, Sk � 1Tk (Uk x̂ + J~x ),
the sum of the k largest entries of Ux .

Using Rayleigh quotients, we see that the smallest singular value of a tournament
matrix M of order n is �n(M) = minkxk2=1 kMxk2. Thus, �n(M) � 0 with equality
holding if and only if M is singular. A complete classi�cation of the tournament
matricesM with detM = 0 seems di�cult to obtain. We mention in passing, however,
a striking necessary condition due to Shader [22]: if �n(M) = 0, then M has score
variance �21 � n�1

4 .
The following theorem characterizes the tournament matrices M whose spectral

norm, �1(M) = jjjM jjj2, is maximum.
Theorem 2.2. If U is the upper triangular tournament matrix of order n � 2

then, for all tournament matrices M of order n

�1(M) � �1(U) =
1

2
csc

�

4n� 2
:

Equality holds if and only if M is the matrix of a transitive tournament.

Proof. Let x be a nonnegative eigenvector such that MTMx = �21(M)x and let
y be a nondecreasing rearrangement of the entries of x . By Lemma 2.1, Mx �w Uy

and so Mx � T1T2 � � �TkUy for some sequence T1; : : : ; Tk of T -transforms. Since
the function �(t) = jtj2 is strictly convex and is strictly increasing when t � 0, the
Euclidean norm of a vector decreases whenever a strict T -transform is performed on



ELA

42 D.A. Gregory and S.J. Kirkland

it or whenever any of its entries is decreased in modulus. Therefore, kMxk2 � kUyk2
and equality will hold if and only if the entries of Mx are a permutation of the entries
of My . Thus, �21(M)xT x = xTMTMx � yTUTUy � �(UTU)yT y = �21(U)x

T x .
Therefore, �1(M) � �1(U). Let

L�1n�1 =

26666666664

n�1 n�2 n�3 � � � 1

n�2 n�2 n�3 � � � 1

n�3 n�3 n�3 � � � 1

...
...

...
. . .

...

1 1 1 � � � 1

37777777775
and Dn�1 =

26666666666664

1 1

1 0 1

1 0
. . .

1
. . . 1
. . . 0 1

1 0

37777777777775
;

where Dn�1 is the (n�1)�(n�1) tridiagonal matrix above with all remaining entries
zero. Matrix multiplication shows that L�1n�1 is the inverse of Ln�1 = 2I�Dn�1. Since
UUT = L�1n�1 � [0], it follows that �21(U) = �(UUT ) = �(L�1n�1) = 1=(2� �(Dn�1)).
It is easily checked that the vector u = (uk), uk = cos( 2k�12n�1

�
2 ), k = 1; :::; n � 1, is

an eigenvector of Dn�1 corresponding to the eigenvalue 2 cos �
2n�1 . Since u is the

Perron vector of Dn�1, �(Dn�1) = 2 cos �
2n�1 . Thus �21(U) = 1=(2 � �(Dn�1)) =

1
2 (1� cos �

2n�1 )
�1 = 1

4 csc
2 �
4n�2 , as required.

Suppose now that �1(M) = �1(U). Let x and y be de�ned as in the �rst para-
graph of the proof. From the inequalities there, it follows that the nondecreasing
rearrangement y of the Perron vector x of MTM must be a Perron vector of UTU .
Consequently, by permuting the rows and columns of M if necessary, we may as-
sume that x is a Perron vector of both MTM and UTU with common Perron value
� = �21(M) = �21(U). Since the entries of U

Tw are strictly increasing whenever wi > 0
for i = 1; : : : ; n� 1, the entries of x = 1

�
UTUx must be strictly increasing. Therefore,

by Lemma 2.1, Mx �w Ux . But kMxk2 = kUxk2 so, as we observed in the �rst
paragraph, there must be a permutation matrix P such that PMx = Ux . Because
the entries of x are strictly increasing and (Ux )i = xi+1 + � � � + xn, by successively
comparing the rows of PM and U , it follows that PM = U . But M and U are
tournament matrices. Thus, M = U .

Remarks 2.3. 1. The algebraic connectivity of a graph G with adjacency matrix
A is de�ned as the second smallest eigenvalue, �, of its Laplacian matrix L = D�A,
where D is the diagonal matrix of vertex degrees. An interesting connection to the
algebraic connectivity of a path with an odd number N = 2n�1 of consecutively adja-
cent vertices 1; 2; : : : ; N provides an alternate route to determining �21(U) = �(L�1n�1)
in the proof of Theorem 2.2. Let � = �(L�1n�1). Then 1=� is the smallest eigenvalue
of Ln�1. Thus, it is also the smallest eigenvalue of the direct sum Ln�1�Ln�1, with
multiplicity at least two. But the direct sum matrix is easily seen to be permutation
similar to the matrix obtained by deleting the nth row and column of L. Conse-
quently, the eigenvalues of Ln�1 � Ln�1 interlace those of L [10, p. 186]. Since 0 is
an eigenvalue of L, it follows that its second smallest eigenvalue, �, must equal 1=�.
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Since the path on N vertices has algebraic connectivity � = 2(1� cos �
N
) [7, p. 304],

we see once more that �21(U) = �(L�1n�1) =
1
2 (1� cos �

2n�1 )
�1.

2. There are other norms jj � jj on tournament matrices Mn of order n for which
jjMnjj � jjUnjj. For 1 � p � 1, let k � kp denote the usual p-norm on C

n. Then
jjjCjjjp = maxx 6=0 kCxkp=kxkp, is the operator norm induced by k � kp and so is
submultiplicative [10, p. 293]. When 1 < p < 1, the function �(t) = jtjp is strictly
convex and strictly increasing for t � 0. Thus, when 1 < p < 1, it follows as in the
proof of Theorem 2.2 that jjjMnjjjp � jjjUnjjjp with equality holding if and only if
Mn is the matrix of a transitive tournament. Note that jjjCjjj1 = maxj

P
i jcij j is the

maximum column sum norm of C while jjjCjjj1 = maxi
P

j jcij j is the maximum row
sum norm of C. Therefore, jjjMnjjj1 � jjjUnjjj1 = n � 1 with equality holding if and
only if Mn has some column sum equal to n � 1, and jjjMnjjj1 � jjjUnjjj1 = n � 1
with equality holding if and only if Mn has some row sum equal to n� 1.

3. Some norms do not distinguish any of the tournament matrices of a given
order n. The numerical radius norm, r(C) = maxx�x=1 jx�Cx j, and the Frobenius

norm, kCk2 = (
P

i;j jcij j2)
1

2 are examples: for every tournament matrix M of order

n, r(M) = n�1
2 , while kMk2 = (n(n� 1)=2)

1

2 .

4. The inequality jjMnjj � jjUnjj does not hold for every norm, even if we as-
sume that the norm is unitarily invariant and submultiplicative. For example, take
jjjCjjjtr = �1(C) + � � �+ �n(C), the trace norm of a complex n� n matrix C [10, p.
441], [11, p. 211]. For n � 8, a computer search shows that jjjUnjjjtr � jjjMnjjjtr for
all tournament matrices Mn. We have been unable to prove this inequality for all n,
however.

Theorem 2.2 completed our analysis of the maximum value of �1(M) for tourna-
ment matrices M of order n. The next proposition provides bounds on the minimum
value of �1(M) (and the maximum value of �n(M)). The bounds are easily veri�ed
but, unfortunately, are attained only for special orders n.

A tournament matrix M of order n � 2 is called doubly regular if every pair of
vertices in the associated tournament jointly dominates the same number of vertices
(necessarily, n�34 ). It follows that M is doubly regular if and only if MTM = n+1

4 I +
n�3
4 J . Such matrices are also called Hadamard tournament matrices since they are

coexistent with skew Hadamard matrices of order n+ 1 [5]. They are the irreducible
tournament matrices of order n � 3 that have precisely 3 distinct eigenvalues [5].
For a doubly regular tournament matrix of order n to exist, it is necessary that
n � 3 (mod 4). The converse statement is a classical unsolved problem.

Proposition 2.4. Let M be a tournament matrix of order n and let �1(M) and
�n(M) denote the largest and smallest singular values of M , respectively. Then

(i) �1(M) � n�1
2 with equality holding if and only if M is regular; and,

(ii) �n(M) �
p
n+1
2 with equality holding if and only if M is doubly regular.

Proof. Since MTM is symmetric, �2n(M) � x
TMTMx

xT x
� �21(M) for all x 6= 0. If

x = 1 and s denotes the score vector M1 then, by the Cauchy-Schwartz inequality,

�21 �
P

s2i
n

�
�P

si
n

�2

=

�
n� 1

2

�2

:(2.1)
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If equality holds in (2.1), then the entries of s must all be equal, that is, M must be
regular. Conversely, if M is regular, then MTM1 = (J � I �M)M1 = (n�12 )21 and
so, by the Perron-Frobenius theorem, �21 = (n�12 )2.

Since the trace of MTM is the sum of its eigenvalues,

(n� 1)�2n + �21 � tr(MTM) = tr(MMT ) =
X

si =
n(n� 1)

2
:(2.2)

Thus, by (2.1),

�2n �
n

2
� �21
n� 1

� n

2
� n� 1

4
=
n+ 1

4
:(2.3)

Equality holds in (2.3) if and only if it holds in both (2.1) and (2.2), that is, if and
only if �1(M

TM) = (n�12 )2 with multiplicity 1 and �n(M
TM) = n+1

4 with multi-
plicity n � 1. If the latter conditions hold then �1 is an eigenvalue with associated
eigenspace projection 1

n
11T = 1

n
J , while the remaining eigenvalue, �n has the or-

thogonal eigenspace projection I� 1
n
J . Consequently, we have the spectral resolution

MTM = �1
n
J+�n(I� 1

n
J) = n+1

4 I+ n�3
4 J ; that is, M is doubly regular. Conversely,

if M is doubly regular, the spectral resolution above implies that the eigenvalues of
MTM are (n�12 )2 with multiplicity 1 and n+1

4 with multiplicity n� 1.
The spread, sp(C), of an n�n complex matrix C is de�ned as max j�� �j where

the maximum is taken over all eigenvalues �; � of C.
Proposition 2.5. Let M be a tournament matrix of order n. Then

(i) sp(MTM) � n(n�3)
4 with equality holding if and only if M is doubly regular;

and,

(ii) sp(MTM) � 1
4 csc

2 �
4n�2 with equality holding if and only if M is the matrix

of a transitive tournament.

Proof. Since sp(MTM) = �21(M)� �2n(M), the proof of (i) follows directly from
Proposition 2.4. By Theorem 2.2, sp(MTM) � 1

4 csc
2 �
4n�2 and, because the matrix

of a transitive tournament is singular, equality holds if and only if M is the matrix
of a transitive tournament.

The following theorem is proved in [6, p. 26] under the additional assumption
that M is irreducible.

Theorem 2.6. Let M be a tournament matrix of order n � 4. Then M has

precisely two distinct singular values if and only if M is doubly regular.

Proof. The su�ciency can be seen from the spectral resolution in the proof of
Proposition 2.4(ii).

Suppose now that M has precisely two singular values, that is, suppose that
MTM has precisely two eigenvalues: � = �(MTM) and �n = �n(M

TM), where

� > �n � 0. We �rst show that �n > 0 and that the matrix fM =

�
O M
MT O

�
is

irreducible. The necessity will then follow from a result in [6].
Recall that if an eigenvalue � of M has geometric multiplicity 2 or more, then

Re� = � 1
2 [21]. Since NulM = NulMTM , it follows that if �n = 0, then �n has mul-

tiplicity 1 and so the sum of the eigenvalues ofMTM is (n�1)� = trMTM = n(n�1)
2 .
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Thus � = n
2 , so �1(M) =

p
n=2. Since n � 4, this contradicts Proposition 2.4(i).

Thus, �n > 0.
Suppose fM is reducible. Then by [6, Thm. 2.6], either M has a zero row or

column or else, by permuting rows and columns if necessary, it may be assumed that
there is a tournament matrix Mn�2 of order n� 2 such that

M =

26664
Mn�2 1 0

0T 0 1

1T 0 0

37775 ; and so MTM =

"
MT

n�2Mn�2 + J r

rT n� 2

#
� [1] ;

where r = MT
n�21 is the score vector of MT

n�2. Since �n > 0, M has no zero row
or column and so only the latter case may occur. Because the �rst summand has at
most 2 zero entries and order n � 1 � 3, it must be irreducible and have a Perron
value � � 2 with multiplicity 1. Since the remaining eigenvalues all equal 1,MTM�I
has rank 1 and all subdeterminants of order at least 2 must equal zero. The principal
2� 2 subdeterminants of MTM determined by indices i = 1; : : : ; n� 2 and n� 1 are
(n� 3)ri � r2i = 0. Thus, ri = 0 or n� 3 for each i = 1; : : : ; n� 2; that is, for each i,
either row i or column i of Mn�2 is zero. Since Mn�2 has at most one zero row and
at most one zero column, Mn�2 must be a 2� 2 tournament matrix. But then it is

easily checked that MTM is a 4 � 4 matrix with 4 distinct eigenvalues. Thus fM is
irreducible.

Because MTM is nonsingular with exactly two distinct eigenvalues, �; �n, it fol-
lows that fM is nonsingular with exactly four distinct eigenvalues, �p�;�

p
�n. Also,fM is irreducible. Thus, by [6, Prop. 5.5], M is doubly regular.

Theorem 2.2 gave the exact maximum of the spectral norms �1(M) of the tour-
nament matrices M for each order n. Finding the minimum spectral norm for each
n is more elusive. We have only been able to do this in the cases where n or n=2 is
an odd integer. Results on walk spaces that appear in [17] will be used. Because of
some sign errors in that paper, we �rst redevelop the results needed.

3. Walk Spaces and Minimum Spectral Norms. An eigenvector of an n�n
complex matrix A is called normal if it is also an eigenvector of A�. It follows that
a nonzero vector x 2 C

n is a normal eigenvector of A if and only if there is a scalar
� 2 C such that Ax = �x and A�x = ��x .

Let M be a tournament matrix of order n. Then M +MT = J � I . The ones
vector 1 is an eigenvector of M if and only if M (and hence MT ) is regular. Thus
1 is an eigenvector of M if and only if it is a normal eigenvector. If Mx = �x ,
then (1 + 2Re�)x�x = x�(M +MT + I)x = x�Jx = j1T x j2. Also, if Mx = �x ,
then MT x = �x if and only if (1 + � + ��)x = (1T x )1 . Thus if x is a �-eigenvector
of M and x is not a multiple of 1 , then x is normal if and only if Re� = � 1

2 ,
equivalently, if and only if 1T x = 0. Let N(M) be the subspace spanned by the
normal eigenvectors x ofM with 1T x = 0. Then NM is invariant under multiplication
by M and MT and, consequently, so is its orthogonal complement, N?

M . Since the
normal eigenvectors in NM are orthogonal to 1 , it follows that N?

M � WM where
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WM = SpanfM j1 j j = 0; 1; 2; : : :g. The subspace WM , called the walkspace of M ,
has already been examined in [17] and is shown there to be equal to WM = N?

M .
Thus, C n =WM �NM .

Let dimWM = k and let e1; e2; : : : ; ek be the orthonormal basis of WM obtained
by applying the Gram-Schmidt process to the vectors 1 ;M1 ; : : : ;Mk�11 . As in [9],
it will be convenient to work with the payo� matrix A = 1

2 (M �MT ). Since A =
M� 1

2J+
1
2I and J1 is a multiple of e1 = 1p

n
1 , it follows that e1; e2; : : : ; ek may also

be obtained by applying the Gram-Schmidt process to the vectors 1 ; A1 ; : : : ; Ak�11 .
Then, for each j = 1; : : : ; k + 1, Spanf 1 ; A1 ; : : : ; Aj�2 g = Spanf e1; e2; : : : ; ej�1 g.
Applying A and including e1 = 1p

n
1 gives

Spanf 1 ; A1 ; : : : ; Aj�11 g = Spanf e1; Ae1; : : : ; Aej�1 g for j = 1; : : : ; k:

Thus we may also obtain e1; e2; : : : ; ek by successively using e1; Ae1; : : : Aek�1. Be-
cause A is skew-symmetric and ej�1 is orthogonal to

Spanf e1; : : : ; ej�2 g � Spanf e1; Ae1; : : : ; Aej�3 g;
we have (ei)TAej�1 = �(ej�1)TAei = 0 for i = 1; : : : ; j � 3 and for i = j � 1. Thus,
letting e0 = 0 , we have e1 = 1p

n
1 , and

ej =
1

�j�1

�
Aej�1 � ((ej�2)TAej�1)ej�2

�
; j = 2; : : : ; k

where �j�1 > 0 is the norm of the numerator. Then

Aej�1 = �j�1ej +
�
(ej�2)TAej�1

�
ej�2;

and taking scalar products with ej gives �j�1 = (ej)TAej�1 for j = 2; : : : ; k. Thus,
we have the recursion

e1 =
1p
n
1 and ej =

1

�j�1
(Aej�1 + �j�2ej�2); j = 2; : : : ; k(3.1)

where �j�1 = kAej�1 + �j�2ej�2k2 is the norm of the numerator in (3.1) for j =
2; : : : ; k and �k = kAek +�k�1ek�1k2 = 0. In particular, in terms of the score vector
s = M1 , we have e2 = 1

�1
Ae1 where Ae1 = 1p

n
(s � n�1

2 1 ) and �21 = kAe1k22 =

s
T
s

n
� (n�12 )2 is the variance of s .

Let cM be the matrix with respect to the basis e1; : : : ; ek , of the restriction to
WM of the linear transformation corresponding to M . Then cM has entries cMi;j =

(ei)TMej ; 1 � i; j � k. Thus cM is the following k � k tridiagonal matrix:

cM =

26666666664

n�1
2 ��1 0 0 � � � 0
�1 � 1

2 ��2 0 � � � 0

0 �2 � 1
2

. . .
. . .

...
... 0

. . .
. . . ��k�2 0

0
...

. . . �k�2 � 1
2 ��k�1

0 0 � � � 0 �k�1 � 1
2

37777777775
:
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Of course, if an orthonormal basis of eigenvectors of M is used in NM then, with
respect to that basis, the matrix of the restriction to NM of the linear transformation
corresponding to M will be a diagonal matrix with the n� k eigenvalues of M with
real part � 1

2 on the diagonal.
The following proposition provides a lower bound on the spectral norm, �1(M),

of a tournament matrix of order n. When n is odd, it agrees with Proposition 2.4
and the regular tournament matrices are those that give equality. When n is even,
it will yield the lower bound in Corollary 3.2 below. In that lower bound, equality
holds only in the special case that n = 2m where m is odd.

Proposition 3.1. Let M be a tournament matrix of order n � 2 and let

B =

264 (n�12 )2 + �21
n�1
2

n�1
2 �21 +

1
4

375 ;
where �21 is the score variance of M . Then

�21(M) � �(B) = �21 +
1

8

�
n2 � 2n+ 2 + n

q
(n� 2)2 + 16�21

�
:

Equality holds if and only if M has at least n� 2 eigenvalues with real part � 1
2 .

Proof. The proposition is easily veri�ed for n = 2. We assume then that n � 3.
By the preceeding discussion, M is unitarily equivalent to the direct sum of a

k � k matrix cM and an (n� k)� (n� k) diagonal matrix N whose diagonal entries
are the n�k eigenvalues of M with real part � 1

2 . Thus, M
TM is unitarily equivalent

to the direct sum cMTcM �NTN . The �rst summand is shown in Figure 1.266666666666666666666666666664

(n�1

2
)2 + �2

1
�n�1

2
��1�2 0 � � � 0

�n�1

2
�2
1
+�2

2
+ 1

4
0 ��2�3

. . .
.
.
.

��1�2 0 �2
2
+�2

3
+ 1

4
0

. . . 0

0 ��2�3 0
. . .

. . . ��k�2�k�1

.

.

.
. . .

. . .
. . . �2

k�1
+�2

k�2
+ 1

4
0

0 � � � 0 ��k�2�k�1 0 �2
k�1

+ 1

4

377777777777777777777777777775
Figure 1. The matrix cMTcM .
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The eigenvalues ofNTN are all of the form j�j2 = 1
4+�

2 where � is the imaginary part
of an eigenvalue � of M . By Bendixson's theorem [19, p. 140], �2 � 1

8n(n�1). Thus,

j�j2 � 1
8 (n

2 � n + 2) � �
n�1
2

�2 � �(MTM), by Proposition 2.4(i). Consequently,

�(MTM) = �(cMTcM). If k = 1, equivalently, if M is regular, then �1 = 0 and the
statement of the lemma is easily checked. Suppose then that k � 2. Then �i > 0 for
i = 1; : : : ; k � 1 and �k = 0. Examining DcMTcMD where D is the k � k diagonal
matrix with diagonal entries [1;�1;�1; 1; 1;�1;�1; 1; 1; � � �], we see that cMTcM can
be signed so that all of its entries are nonnegative. It follows from the monotone
property of the Perron value [1, p. 27] that �21 = �(MTM) is at least as large as the
Perron value of the principal submatrix264 (n�12 )2 + �21

n�1
2

n�1
2 �21 + �22 +

1
4

375 ;
which, in turn, is at least as large as the Perron value of B, with strict inequality if
�2 > 0. A routine calculation shows that the Perron value �(B) is the lower bound
in the statement of the lemma. Since �2 = 0 if and only if k = 2, the result follows
for k � 2.

Corollary 3.2. If M is a tournament matrix of even order n = 2m, then

�21(M) � 1

8

�
(n� 2)2 + n

p
(n� 2)2 + 4

�
:

Equality is attained if and only if m is odd, and M is permutation similar to a matrix

of the form �
R X

J �XT S

�
;

where R and S are regular tournament matrices of order m and X is an m � m
f0; 1g-matrix with constant row and column sums (m� 1)=2.

Proof. Since n is even, the score vector s = M1 must satisfy jsi � n�1
2 j � 1

2 for
i = 1; : : : ; n. Thus its variance is �21 = 1

n

P
i(si � n�1

2 )2 � 1
4 . Moreover, �21 = 1

4 if
and only if si =

n
2 or n�2

2 for each i, that is, if and only if M is almost regular. The
lower bound on �21(M) now follows from Proposition 3.1 with �21 =

1
4 .

Suppose now that equality is attained in the lower bound on �21(M). Since M is
almost regular, by permuting the rows and columns of M , we may assume that each
of the �rst m rows of M sum to m� 1 and each of the last m rows sum to m. Let M
be partitioned into four m�m blocks. Then M must have the form in the statement
of the theorem where, at the moment, we only know that R and S are tournament
matrices. Because M is not regular, Proposition 3.1 implies that M must have n� 2
eigenvalues with real part � 1

2 , equivalently, dimWM = 2. Applying M and M2 to
1n, we obtain

M

�
1m
1m

�
= (m�1)

�
1m
1m

�
+

�
0m
1m

�
; M2

�
1m
1m

�
= (m�1)M

�
1m
1m

�
+

�
X1m
S1m

�
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Since dimWM = 2, the vector M21n must be a linear combination of 1n and M1n.
Thus the entries of X1m must all be equal, and the entries of S1m must all be
equal. Therefore, X and S must each have constant row sums and, consequently,
so must R and J � XT . Therefore, the tournament matrices R and S must be
regular with row sums (m� 1)=2 and X must have row and column sums (m� 1)=2.
Conversely, it is straightforward to check that if M is a partitioned matrix that
satis�es these constraints, then dimWM = 2, �21 =

1
4 and equality holds in the bound

in Proposition 3.1.
If n = 2m where m is odd, then the minimum spectral norm for tournament

matrices of order n is given by the lower bound in Proposition 3.2. Although we do
not know the minimum spectral norm for all cases where n = 2m, we will prove in
Theorem 3.5 that any tournament matrix of even order that attains the minimum
spectral norm must be almost regular. The following corollary to Proposition 3.1 will
be needed in the proof.

Corollary 3.3. If M is a tournament matrix of even order n and M is not

almost regular, then

�21(M) � �(B) =
1

8n

�
n3 � 4n2 + 4n+ 16 + n

p
n4 � 4n3 + 8n2 + 32n

�
;

where B is the matrix in Proposition 3.1 with �21 =
1
4 +

2
n
.

Proof. Since n is even and M is not almost regular, the score vector s = M1

must satisfy jsi� n�1
2 j � 1

2 for i = 1; : : : ; n and jsi� n�1
2 j � 3

2 for at least one i. Thus
�21 =

1
n

P
i(si � n�1

2 )2 � 1
4 +

2
n
. The corollary now follows from Proposition 3.1.

We will require the following lemma in the proof of Theorem 3.5.
Lemma 3.4. Let R be a regular tournament matrix of odd order m and let

M =

266666664

R 0 RT 1

1T 0 0T 0

RT+I 1 R 0

0T 1 1T 0

377777775
where 1 and 0 are column m-vectors. Then M is an almost regular tournament

matrix of order n = 2(m+ 1), dimWM = 4, and �1 =
1
2 , �2 =

p
m, �3 =

1
2 .

Proof. Clearly,M is an almost regular tournament matrix. Let A = 1
2 (M �MT ).

Applying the Gram-Schmidt process to the vectors 1 ; A1 ; A21 ; A31 , recursion (3.1)
yields numerator norms �1 =

1
2 ; �2 =

p
mn;�3 =

1
2 and orthonormal vectors

e1 =
1p
n

2664
1

1
1

1

3775 ; e2 =
1p
n

2664
�1

�1
1

1

3775 ; e3 =
1p
mn

2664
1

�m
�1

m

3775 ; e4 =
1p
mn

2664
1

�m
1

�m

3775 :
Since Ae4 = � 1

2e
3, it follows that these four vectors are a basis for WM .
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Theorem 3.5. If M is a tournament matrix of even order n with minimum

spectral norm, then M is almost regular.

Proof. Let n = 2(m + 1). If m is even, the theorem follows from Corollary 3.2
and the subsequent remark. Also, the theorem is easily checked for m = 1. Referring
to Corollary 3.3, we see that it is su�cient to show that the squared spectral norm
�21(M) of the nearly regular tournament matrix M in Lemma 3.4 is less than the
lower bound �(B) in Corollary 3.3 for odd m � 3.

Let M be the tournament matrix of order n = 2(m + 1) in Lemma 3.4. By the
results in the proof of Proposition 3.1, it follows that �21(M) = �(C), where �(C) is
the Perron value of the matrix

C = DcMTcMD =
1

2

266666664
mn+ 1 n

2

p
m 0

n
2 n� 1 0

p
m

p
m 0 n� 1 0

0
p
m 0 1

377777775
and D is the diagonal matrix with diagonal entries [1;�1;�1; 1]. Let x = �(B) be
the lower bound in Corollary 3.3. We wish to show that �21(M) < x for n � 8. This
will the case if the matrix xI �C is positive de�nite. Selecting the rows and columns
of xI � C in the order 2; 3; 4; 1, we obtain the matrix

xI � 1

2

266666664

n� 1 0
p
m n

2

0 n� 1 0
p
m

p
m 0 1 0

n
2

p
m 0 mn+ 1

377777775
:

Since this matrix is permutation similar to xI � C, it is su�cient to prove that it is
positive de�nite, equivalently, that its leading principal subdeterminants of orders 1,
2, 3, 4 are all positive. The �rst 3 of these are easily veri�ed by noting that x > n

2 .
It remains only to show that the full 4 � 4 determinant is positive. It follows from

[10, p. 22] that det

�
A B
C D

�
= det(AD�CB) when A commutes with C. Thus the

4� 4 determinant is equal to the determinant of the matrix

�
x� n� 1

2

�264 x� 1
2 0

0 x� 1
2 (mn+ 1)

375� 1

8

264 n� 2 n
p
m

n
p
m n2

2 + n� 2

375 :
Evaluating this determinant, we see that it remains to show that�

x2 � n2

4
x+

1

16
(2n3 � 7n2 + 6n)

��
x2 � n

2
x+

n

8

�
� n2(n� 2)

128
> 0:(3.2)
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Because x is a root of the characteristic polynomial of the matrix B in Corollary 3.3,

x2 =
1

4n
(n3 � 2n2 + 4n+ 16)x� 1

16n2
(n4 � 4n3 � 12n2 + 32n+ 64):(3.3)

From the expression for x = �(B) in Corollary 3.3, it is straightforward to verify that
1
4 (n

2 � 2n+ 3) � x � 1
4n (n

3 � 2n2 + 4n+ 16). Substituting the expression (3.3) for
x2 into each of the two factors in the �rst term on the left of the desired inequality
(3.2), and using these bounds on x in each factor, we �nd that the left hand side of
(3.2) is greater than or equal to

(10n3�36n2�32n+ 192)

16n2
(n6�6n5 + 14n4 + 2n3�8n2 + 12n�64)

16n2
� n2(n�2)

128

� 1

256n4
(10n3 � 36n2 � 32n+ 192)(n6 � 6n5 + 14n4)� n2(n� 2)

128

=
1

256
(10n5 � 96n4 + 322n3 � 116n2 � 1600n+ 2088):

The last expression is positive when n = 8 and is easily seen to be positive when
n � 10. Thus, if a tournament matrix of even order has minimum spectral norm,
then it must be almost regular.

A computer search shows that the minimum spectral norm of the tournament
matrices of order 8 is approximately 3:588 and that the minimum is attained only by
tournament matrices that are permutation similar to26666666666664

0 0 0 1 0 0 1 1
1 0 0 0 1 0 0 1
1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0

1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0

37777777777775
:

By comparison, when n = 8, Corollary 3.2 along with the construction in Lemma 3.4
imply only that the minimum spectral norm is between 3:29 and 3:61, approximately.

We do not know which tournament matrices of order n minimize the spectral
norm in the cases n = 12, n = 16. The cases n = 4m, m odd, seem tractable,
but very di�cult. Determining the minimum spectral norm for all n may hinge on
the cases n = 2k. Unfortunately, we are unable to suggest a pattern that yields a
reasonable conjecture for the cases n = 2k.

Let Sn be the matrix obtained from the upper triangular matrix Un by replacing
u1n by 0 and un1 by 1. Thus, Sn is the matrix of the tournament obtained by revers-
ing the 1! n arc of the transitive tournament with Hamilton path 1! 2! � � � ! n.
A theorem of Moser [4, p. 220], implies that an n-vector s of nonnegative integers
is the score vector of some irreducible tournament matrix of order n if and only if
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s � Sn1 . This leads us to conjecture that an irreducible tournament matrix Mn of
order n which maximizes �1(Mn) must be permutation similar to Sn. This conjecture
has been veri�ed for n � 8. By comparison, a recent result resolving a 1983 conjecture
of Brualdi and Li [3, Prob. 31(2)] asserts that an irreducible tournament matrix Mn

of order n which minimizes �(Mn) must be the matrix of a tournament obtained from
the transitive tournament by reversing each of the arcs on its Hamilton path. The
latter matrix is not permutation similar to Sn for n � 4, but has the same set of scores.

Acknowledgement. The authors are grateful to a referee for a comment that short-
ened the proof of Theorem 2.2
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