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A CLASS OF INVERSE M-MATRICES*

REINHARD NABBENT

Abstract. Nonnegative matrices whose inverses are M—matrices are called inverse M—matrices.
It is still an open problem to characterize all inverse M-matrices. In this note a new class of inverse
M-matrices is established. This class of nonsymmetric matrices generalizes the class of strictly
ultrametric matrices.
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1. Introduction and Notations. One of the most beautiful properties of a
nonsingular M-matrix is that its inverse is a nonnegative matrix. However, the con-
verse of this result is not in general true, i.e., the inverse of a nonsingular nonnegative
matrix is not in general an M-matrix. In 1977 Willoughby [15] called the problem
of finding or characterizing nonnegative matrices whose inverses are M-matrices the
inverse M-matrix problem. First, Markham [5] established in 1972 a sufficient con-
dition for a nonnegative symmetric matrix to be an inverse of a Stieltjes matrix (a
nonsingular symmetric M-matrix). However, since that time just a few classes of
inverse M—matrices have been found; see [13] for a collection of inverse M—matrices.

In 1994 Martinez, Michon and San Martin [6] introduced so-called strictly ultra-
metric matrices whose entries satisfy the following inequalities:

(1) Qi3 = Gjj Z 0 for all i,j
(2) a;; > min(a;g,ar;) for all 4,5,k
(3) a; > a;; forall i,j, i # j.

They proved that the inverse of a strictly ultrametric matrix is a row and column
diagonally dominant M-matrix. A characterization of strictly ultrametric matrices
is established by Nabben and Varga in [11], which explains the structure of these
matrices. Later on a number of papers considering ultrametric matrices and their
relations to other classes of structured matrices appeared, e.g., [1], [2], [3], [7], [9],
[10], [11], [12], [14].

Moreover, a large effort was made to generalize the above result to the non-
symmetric case. In [7] and [12] a class of nonsymmetric matrices were introduced
consisting of matrices which satisfy the ultrametric inequality (2). These matrices
are called generalized ultrametric matrices — or short GUMs. The inverse of a GUM
is a row and column diagonally dominant M—matrix.

Recently, Fiedler found in [4] another class of nonsymmetric nonnegative matrices
which satisfy the inequality (2) and whose inverses are row and column diagonally
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dominant M-matrices. This note is motivated by the results in [4]. Here we also
present a new class of nonsymmetric nonnegative matrices satisfying the ultramet-
ric inequality (2). We show under which conditions these matrices are nonsingular.
Moreover we establish that these matrices are inverses of column diagonally dominant
M-matrices.

2. Results. Our class of inverse M—matrices is constructed in a similar way as
the class of GUMs which we will describe in the following (see [12]):

Assume that we have an arbitrary rooted tree I' = (V, E) consisting of a root 0,
the set of vertices V' and the set of edges E C {z,y € V,z # y}. Let L C V denote
the set of the leaves of the tree with cardinality |L| = n. To each edge (z,y) of E, we
assign two nonnegative numbers:

Lz,y) >0and r(z,y) >0 (for all (z,y) € E).

Then, for any i € L, let P; o denote the path connecting the leaf ¢ to the root 0. For
any ¢ and j in L, set

dl(lhj) = E{r,s}EPi,oﬂPj,o l(lr7 8)7
(1) dr(i,j) = E{r,s}epi’onpj,o r(r, ),
d(i,i) = max{di(i,i);dr(i,7)},

where {r,s} € P,y N Pjo denotes a common edge of the paths P;o and Pjq. If we
number the leaves from 1 to n and define the matrix A = [a; ;] € R™" by

dr(i,§)  fori<j,
(2) Qi5 1= d(7’7.7) fO’I" i = j:
dl(7’7.7) fOTi>j,

we obtain, for every rooted tree and for all weighting functions ! and r defined on
this rooted tree, a generalized ultrametric matrix. Conversely, for a given generalized
ultrametric matrix A, there exists a rooted tree and weighting functions [ and r such
that the entries of A are given as indicated in (1) and (2). Moreover, there exists a
permutation matrix P such that

All T(A)eseT

n—s

w(A)e,_sel Aoy

where Ay, € R**® and Ayy € R"5*"% for some s € {1,...,n — 1}, are also GUMs;
7(A) is the minimal element of the matrix 4, w(A) € Rt and ¢; = (1,...,1)T € Rt

If A itself as well as all principal submatrices which are GUMs are in the form
(3) we say that A is in nested block form; see [7].

Next we construct our new class of inverse M—matrices. Assume that we have
a binary rooted tree I' with nonnegative weights [(4, ) and (i, j). Let the leaves of
the tree are numbered such that the related GUM is in nested block form. Then we
define the following nonnegative matrix A = [a;;]: The upper triangular part of A is
given by

_J de(i,5) fori<j
(4) “J_{ d@i,j) fori=j.

(3) PAPT =
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The lower triangular part of A is defined as follows. Consider two disjoint branches
I'; and I's of T starting at the root or its successor such that I'y + I's = I'. Here we
allow a void branch I';. Let L; and L2 be the sets of leaves of I'y and I'; respectively
(where ¢ < j if § € I'; and j € I';). Then with p = max{j| € I's} let

(5) wo = | @(ip) fori€Lyjelj<i
9T\ di(i,§) fori,j€ Ly, j<i.

DEFINITION 2.1. The set of all matrices A for which there exists a rooted tree
and weighting functions | and v such that A is given by (4) and (5) is denoted by U.

Before we state the main result of this note we mention some properties of matrices
in Y.

First it follows immediately from the definition that an n x n matrix A € I has
the form

A A
6 A=
(6) [ A1 Az ]

where A;; € R**® and Agy € R™**" % for some s € {1,...,n — 1}, with

A1 isa GUM,
Asx €U,

Ay =1(Aegel ,,
Agy = bel

where b is the last column of Ay;. Note that Ass again has a similar 2 x 2 block
structure, where the first diagonal block is a special GUM.

It is clear that matrices in U are in general not GUMs. However, the next propo-
sition shows that the matrices in U satisfy the ultrametric inequality (2). Thus these
matrices are generalization of strictly ultrametric matrices.

PROPOSITION 2.2. Let A = [a;,;] € U. Then the entries of A satisfy

(7 a;; > min{a;x,ar;} for alli,j,k € {1,...,n}

Proof. If i,j,k < s then (7) is fulfilled since A;; is a GUM (see [12]). If 4,5,k > s
then (7) follows by induction. If i,j < s,k > s we use the fact that 7(411) > 7(A4).
If i,k < s,j > s we have a;; = ax;. In all other cases we have a;; = a. O

We then obtain the following result.

THEOREM 2.3. Let A = [a;;] € U. Then A is nonsingular if and only if A does
not contain a row or column of zeros, and no two rows or two columns are the same.
If A is nonsingular then A™' is a column diagonally dominant M—matriz. Moreover
A11 and Ass in (6) are nonsingular and

A/A11 = A22 —_ A21A1_11A12 € U
A/A22 = A11 — A12A2_21A21 is a GUM.
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Proof. Tt is clear that A is singular if A does contain a row or column of zeros, or
two rows or two columns are the same. For the other statements we use an induction
on the dimension of A.

So assume that A does not contain a row or column of zeros, and no two rows or
two columns are the same. Thus A;; and Ajp satisfy also this property. Therefore,
Aj; is nonsingular (see [7]) and Ay is also nonsingular by the induction hypothesis.
Moreover

Agy — Ag1 AT Arg = Agy — TeT Ajebe™ .

Since TeT Aj'e < 1 (see [12]) and b is the last column of Ass the Schur complement
AJA;; is in U. Moreover, A/A;; does not contain a row or column of zeros, and no
two rows or two columns are the same. On the other hand we have

—1 T
A11 — A12A22 A21 = A11 — T€EE .

Thus A/As» is a GUM and it does not contain a row or column of zeros, and no two
rows or two columns are the same. Thus detA = detAsadet(A/A2) # 0, ie., Ais
nonsingular. The inverse of A is given in the form

o[ @A AR AL/ AT
—Agy A1 (A)Agy) ™ (A/A11)™1
Since
— Ay Ay (AfAp) ™" = —&n_sel (A/A22)7 " <0
— AT A (AJAL) T = —r(A)ATtes x el (A/A1)T <0,
where é,_; = (0,...,0,1)7 € R**, A~! is an M -matrix. Moreover we have
er(AfAx) " —el Ay Api(A)Az) "
= 6Z(A/A22)_1 - ez—sén—sez((A/A22)_1
=0
and

el (AJAn) ' —el AT Aa(AJAn)
=el J(A/An)T" —elT(A) AT es x el (AJAn)T

Hence A~! is a column diagonally dominant M-matrix. O

It was conjectured by Neumann in [13] that Ao A, is an inverse M—matrix if A4 is
an inverse M —matrix. Here o denotes the Hadamard product of a matrix. Obviously
this conjecture is true for matrices A € U since Ao A € U.
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ExampPLE 2.4. Consider the weighted rooted tree in Figure 2.1. The related
matrix A € U is given by

8 51 11
6 8 1 11
A=(3 3 8 3 3
TT T 97
99 9 99

FIGURE 2.1

The inverse of A (rounded to four digits) is

0.2414 —-0.1379 —0.0000  0.0000 —0.0115

—0.1724  0.2414  0.0000 -0.0000 —0.0077

A7l = 0.0000  0.0000  0.2000 —0.0000 -—0.0667
0.0000 —0.0000 0  0.5000 -0.3889

—0.0690 —0.1034 —0.2000 —0.5000  0.5858

Moreover, we have

el A= =10, 0, 0, 0, 0.1111]
A~ es = [0.0920, 0.0613, 0.1333, 0.1111,—0.2866]".
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