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MAXIMAL NESTS OF SUBSPACES, THE MATRIX BRUHAT
DECOMPOSITION, AND THE MARRIAGE THEOREM -
WITH AN APPLICATION TO GRAPH COLORING*

RICHARD A. BRUALDI'

Abstract. Using the celebrated Marriage Theorem of P. Hall, we give an elementary combinato-
rial proof of the theorem that asserts that given two maximal nests A'; and N3 in a finite dimensional
vector space V, there is an ordered basis of V that generates N7 and a permutation of that ordered
basis that generates A2. From this theorem one easily obtains the Matrix Bruhat Decomposition. A
generalization to matroids is discussed, and an application to graph coloring is given.
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1. Introduction. Let V be a vector space of finite dimension n over a field F.
A family of subspaces of V is a mest provided it is totally ordered by set-inclusion.
The nest N' = (Vp,Vi,...,V,) of subspaces of V is a mazimal nest provided that
dimVj, = k for k = 0,1,...,n. Note that in a maximal nest, V) = {0} and V,, = V.
A maximal nest N can be constructed by choosing an ordered basis vy, va, ..., v, of
V and defining Vi to be the subspace of V' spanned by {v; : 1 < i < k}. We call
V1,02, ..,V an ordered basis of the mazimal nest N and write N' = [v1, v, ..., vp].
Every maximal nest is of the form [v1,vs, ..., v,] for an appropriate choice of ordered
basis.

In [2] Fillmore et al. consider nests over the complex field and, using the nest alge-
bra [1],1 they prove that for any two maximal nests A'; and A5 there is an ordered basis
U1, U, - .., U, and a permutation 7 of {1,2,...,n} such that N7 = [ug,uz, ..., u,] and
Nz = [tr(1), Un(2), - - -, Ur(n)]. This result was obtained much earlier by Steinberg [5]
without any restriction on the field.? In this note we prove this result about pairs of
maximal nests by establishing a connection with the celebrated Marriage Theorem of
P. Hall; see [4, pp. 47-51]. We also discuss a possible generalization to matroids and
give an application to “doubly-multicolored spanning trees” of connected graphs.

2. Results. The following theorem, which gives necessary and sufficient condi-
tions for two partitions of a set to have a common system of (distinct) representatives,
is equivalent to the Marriage Theorem.

THEOREM 2.1. Let n be a positive integer, and let Ay, As, ..., A, and
By, Bs, ..., B, be two partitions of a set X. Then there is a permutation 7™ of
{1,2,...,n} such that

(2.1) AN Bray #0, (1<k<n)

if and only if for each set K C {1,2,...,n}, Ujex 4; contains at most |K| of the sets
B1,Bs,...,By,.
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IThe algebra of linear operators that leave every subspace of the nest invariant.

2In a private communication, W.E. Longstaff has remarked that the proof given in [2] can be
modified to apply to arbitrary fields.
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From Theorem 2.1 we can deduce that given any two maximal nests of V, there
is a basis of V' that generates each of them [2, 5].

THEOREM 2.2. Let N7 and N3 be two maximal nests of the n-dimensional vector
space V. There exists a basis uy,us,...,u, of V and a unique permutation m of
{1,2,...,n}, depending on this basis, such that

(22) Nl = [ula U, ... 7un] and NQ = [u‘ﬂ'(l)7 Um(2)y« -+ uﬂ'(’rl)]'

Proof. Let N1 = (Vo, Vi,..., Vi) = [v1,v9, ..., 0], and No = (Wo, W1, ..., W,) =
[wy,wa, ..., w,]. We also let

A =Vi\Vicr and By =Wip\Wi_1, (1<Ek<n),
and

AK)=|J A and BE)=|JBi, (KC{1,2,...,n}).
ieK €K

We first prove the assertion:

A(K)U{0} contains a subspace of dimension | K|, namely the subspace U spanned
by the vectors v; (i € K), but no subspace of dimension larger than |K]|.

We prove this assertion by induction on k& = |K|. First suppose that £ = 1 and
K = {j}. Then every scalar multiple of v; is in A; U {0} = (V; \ V;_1) U {0} and
hence A; contains the 1-dimensional subspace spanned by v;. Suppose that A; U {0}
contains a 2-dimensional subspace U. Since dimV; = jand dimV;_; = j—1,UNV;_4
is a 1-dimensional subspace contradicting U C (V; \ V;_1) U {0}.

Now suppose that k£ > 1. Let m be the largest integer in K, and let K’ = K\ {m}.
By induction A(K’) U {0} contains the (k — 1)-dimensional subspace spanned by the
vectors v; (i € K’). The set A, contains all vectors of the form cvy, + u where ¢ is
a nonzero scalar and u is a vector in V,,_1. Since A(K’) is contained in V1, Ay,
contains all vectors of the form cv,, +u where c is a nonzero scalar and w is in A(K").
Hence A(K) U {0} contains the k-dimensional subspace spanned by v; (i € K).

Suppose that A(K) U {0} contains a subspace W of dimension |K|+ 1. Then
W C Vi, and since V,,,_1 has codimension 1 in V,,,, we have that W/ = WNV,,_1 has
dimension at least |K|. Then W/NA,, = 0, and thus W/ C A(K')U{0}, contradicting
the induction hypothesis.

We now apply Theorem 2.1. Suppose there exists a K C {1,2,...,n} such that
A(K) contains |K|+1 of the sets By, Bs,. .., By, say, B; (i € J) where |J| = |K|+1.
By the assertion applied to Aj, As, ..., A, and By, B, ..., B,, B(J)U{0} contains a
(|K|41)-dimensional subspace and A(K)U{0} does not, and we have a contradiction.
By Theorem 2.1 there is a permutation 7 of {1,2,...,n} and vectors uj,us, ..., uy,
such that u; € A; and u; € By, (1 <4 < n). The vectors {ug,uz,...,u,} are a
basis of V, and the uniqueness of the permutation 7 is obvious. The theorem now
follows. O

From Theorem 2.2 we can deduce the Matrix Bruhat Decomposition; see, e.g., [6].
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THEOREM 2.3. Let A be a nonsingular matriz of order n over a field F. Then
their exist nonsingular lower triangular matrices L1 and Lo of order n and a unique
permutation matrix P of order n such that

A=LsPL;.

Proof. Consider the two nests N7 = [v1,v2,...,v,] and No = [wy,wa, ..., w,]
where vi,vs,...,v, are the rows of A and wi,ws,...,w, are the rows of A%. It
follows from Theorem 2.2 that there exists a basis uy, us, ..., u, of F™, a permutation
o of {1,2,...,n} with corresponding permutation matrix P, and nonsingular lower
triangular matrices Ly and Ly such that

uy Ug(1) u1

U2 Ug (2 U2
LiA=| . and L;'A? = @ -p

Un Uq (n) Un

Hence L 142 = PL, A, and since A is nonsingular, A = LyPL,. The uniqueness of
P follows from the uniqueness of ¢ as given in Theorem 2.2. 00

We can generalize the notion of a nest of subspaces of a vector space to a nest
of flats of a matroid. Let M = (X,Z) be a matroid [3, 7] on the finite set X, where
7 is the collection of its independent sets. Let the rank of M be n. A mazimal nest
of the matroid M is a family F = (Fy, Fy, ..., F,) where F}, is a flat of M of rank k,

(k=0,1,...,n). Choosing, for each k = 1,2,...,n, an element xj in Fj \ Fx_1 we
obtain an ordered basis x1,x2,...,x, of M such that z1,xs,...,z is a basis of Fj.
We write F = [21,2,...,2,] and call z1,2a,...,2, an ordered basis of the mazimal

nest F. Note that Fy is the closure in M of the empty set.

Let G = (Go,G1,...,Gy) be another maximal nest of M, and define A, =
Fy \ Fy—1 and By = Gy \ Gi—1, (k = 1,2,...,n). Using Theorem 2.1 we can as-
sert that there exists a basis ui, u, ..., u, and a permutation 7 of {1,2,...,n} such
that

F =[ui,ug,...,up] and G = [Ur(1), Ur(2)s - - Un(n)]

if and only if U;csA4; contains at most |J| of the sets By, Ba,..., B, for each J C
{1,2,...,n}. Unlike for vector spaces, this last condition need not hold for arbitrary
matroids. For example, in a matroid of rank n on a set X of n + 1 elements every
proper subset of which is independent (that is, X is a circuit), this condition does not
hold.

Let K, 41 be the complete graph with n 4 1 vertices 1,2,...,n 4+ 1 and edge set
E={ij:1<i<j<n+1} and let M, ;1 be the cycle matroid of K,;; on
its set of edges.®> A flat F of M, is obtained by choosing a subset U of vertices
and a partition of U into sets Uy, Us,...,Us; the flat F' consists of the union of

3 A subset of edges is independent in My, 11 if and only if it does not contain a cycle; the rank of
Mp41 is n.



TheElectronic Journal of Linear Algebra 1SSN 1081-3810
A publication of the International Linear Algebra Society
Volume9, pp. 118-121, July 2002

http://math.technion.ac.il/iic/ela

Maximal Nests, Bruhat Decomposition, Marriage Theorem 121

the edges of the complete graphs induced on the U; and has rank equal to |U| — s.
By taking s = 1 and |U| = t + 1, we obtain a special flat of M1 of rank t, the
set of edges of the complete graph induced on a subset of ¢ + 1 vertices. A special
maximal nest of M (K,1) corresponds to a maximal chain X; C Xo C -+ C X1
of subsets of the vertex set {1,2,...,n+ 1} with |X;| =k for k =1,2,...,n+ 1. Let
X = {i1,42,... i}, (k=1,2,...,n+ 1) The set A above consists of all the edges
joining vertex iy to vertices i1,is,...,ix.* The sets By have a similar description
corresponding to a different permutation of 1,2,...,n+ 1. It is easy to check that in
this setting, the set A(J), respectively B(J), contains a complete graph on |J| vertices
(namely the vertices j with j € J) but does not contain a complete graph of |J| + 1
vertices. It follows that A(J) can contain at most |J| of the sets B;. We thus have
the following conclusion.

COROLLARY 2.4. Let K, 41 be the complete graph with vertices 1,2,...,n+1. Let

11,12, - -, int1 be a permutation of 1,2,... ,n+ 1. Suppose we color the edges joining
vertex k + 1 to vertices {1,2,...,k} with color k, and independently color the edges
joining vertez i1 to vertices {i1,ia,...,ix} with color k', (k = 1,2,...,n). Then

K41 has a spanning tree T such that no two edges of T have the same color in the
first coloring and no two edges of T have the same color in the second coloring.

The corollary asserts the existence of a spanning tree of a complete graph which
is multicolored (no two edges of the same color) in both the colorings, a doubly-
multicolored spanning tree. The corollary does not hold in the context of arbitrary
maximal nests of M(K,4+1). For example, when n = 4, ) C {12} C {12,34} C F
and ) C {13} C {13,24} C E are two maximal nests for which there does not exist a
doubly multicolored spanning tree.

Acknowledgment. We are indebted to K.R. Davidson for suggesting a simplification
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reference [5].
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4Thus Ay, is the set of edges of a star and Ay = 0.



