
ELA

MAXIMAL NESTS OF SUBSPACES, THE MATRIX BRUHAT
DECOMPOSITION, AND THE MARRIAGE THEOREM –

WITH AN APPLICATION TO GRAPH COLORING∗

RICHARD A. BRUALDI†

Abstract. Using the celebrated Marriage Theorem of P. Hall, we give an elementary combinato-
rial proof of the theorem that asserts that given two maximal nests N1 and N2 in a finite dimensional
vector space V , there is an ordered basis of V that generates N1 and a permutation of that ordered
basis that generates N2. From this theorem one easily obtains the Matrix Bruhat Decomposition. A
generalization to matroids is discussed, and an application to graph coloring is given.
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1. Introduction. Let V be a vector space of finite dimension n over a field F .
A family of subspaces of V is a nest provided it is totally ordered by set-inclusion.
The nest N = (V0, V1, . . . , Vn) of subspaces of V is a maximal nest provided that
dimVk = k for k = 0, 1, . . . , n. Note that in a maximal nest, V0 = {0} and Vn = V .
A maximal nest N can be constructed by choosing an ordered basis v1, v2, . . . , vn of
V and defining Vk to be the subspace of V spanned by {vi : 1 ≤ i ≤ k}. We call
v1, v2, . . . , vn an ordered basis of the maximal nest N and write N = [v1, v2, . . . , vn].
Every maximal nest is of the form [v1, v2, . . . , vn] for an appropriate choice of ordered
basis.

In [2] Fillmore et al. consider nests over the complex field and, using the nest alge-
bra [1],1 they prove that for any two maximal nestsN1 andN2 there is an ordered basis
u1, u2, . . . , un and a permutation π of {1, 2, . . . , n} such that N1 = [u1, u2, . . . , un] and
N2 = [uπ(1), uπ(2), . . . , uπ(n)]. This result was obtained much earlier by Steinberg [5]
without any restriction on the field.2 In this note we prove this result about pairs of
maximal nests by establishing a connection with the celebrated Marriage Theorem of
P. Hall; see [4, pp. 47-51]. We also discuss a possible generalization to matroids and
give an application to “doubly-multicolored spanning trees” of connected graphs.

2. Results. The following theorem, which gives necessary and sufficient condi-
tions for two partitions of a set to have a common system of (distinct) representatives,
is equivalent to the Marriage Theorem.

Theorem 2.1. Let n be a positive integer, and let A1, A2, . . . , An and
B1, B2, . . . , Bn be two partitions of a set X. Then there is a permutation π of
{1, 2, . . . , n} such that

Ak ∩Bπ(k) �= ∅, (1 ≤ k ≤ n)(2.1)

if and only if for each set K ⊆ {1, 2, . . . , n}, ∪i∈KAi contains at most |K| of the sets
B1, B2, . . . , Bn.
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1The algebra of linear operators that leave every subspace of the nest invariant.
2In a private communication, W.E. Longstaff has remarked that the proof given in [2] can be

modified to apply to arbitrary fields.
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From Theorem 2.1 we can deduce that given any two maximal nests of V , there
is a basis of V that generates each of them [2, 5].

Theorem 2.2. Let N1 and N2 be two maximal nests of the n-dimensional vector
space V . There exists a basis u1, u2, . . . , un of V and a unique permutation π of
{1, 2, . . . , n}, depending on this basis, such that

N1 = [u1, u2, . . . , un] and N2 = [uπ(1), uπ(2), . . . , uπ(n)].(2.2)

Proof. Let N1 = (V0, V1, . . . , Vn) = [v1, v2, . . . , vn], and N2 = (W0,W1, . . . ,Wn) =
[w1, w2, . . . , wn]. We also let

Ak = Vk \ Vk−1 and Bk = Wk \ Wk−1, (1 ≤ k ≤ n),

and

A(K) =
⋃
i∈K

Ai and B(K) =
⋃
i∈K

Bi, (K ⊆ {1, 2, . . . , n}).

We first prove the assertion:

A(K)∪{0} contains a subspace of dimension |K|, namely the subspace UK spanned
by the vectors vi (i ∈ K), but no subspace of dimension larger than |K|.

We prove this assertion by induction on k = |K|. First suppose that k = 1 and
K = {j}. Then every scalar multiple of vj is in Aj ∪ {0} = (Vj \ Vj−1) ∪ {0} and
hence Aj contains the 1-dimensional subspace spanned by vj . Suppose that Aj ∪ {0}
contains a 2-dimensional subspace U . Since dimVj = j and dimVj−1 = j−1, U∩Vj−1

is a 1-dimensional subspace contradicting U ⊆ (Vj \ Vj−1) ∪ {0}.
Now suppose that k > 1. Let m be the largest integer in K, and let K ′ = K\{m}.

By induction A(K ′) ∪ {0} contains the (k − 1)-dimensional subspace spanned by the
vectors vi (i ∈ K ′). The set Am contains all vectors of the form cvm + u where c is
a nonzero scalar and u is a vector in Vm−1. Since A(K ′) is contained in Vm−1, Am

contains all vectors of the form cvm +u where c is a nonzero scalar and u is in A(K ′).
Hence A(K) ∪ {0} contains the k-dimensional subspace spanned by vi (i ∈ K).

Suppose that A(K) ∪ {0} contains a subspace W of dimension |K| + 1. Then
W ⊆ Vm, and since Vm−1 has codimension 1 in Vm, we have that W ′ = W ∩Vm−1 has
dimension at least |K|. Then W ′∩Am = ∅, and thus W ′ ⊆ A(K ′)∪{0}, contradicting
the induction hypothesis.

We now apply Theorem 2.1. Suppose there exists a K ⊆ {1, 2, . . . , n} such that
A(K) contains |K|+1 of the sets B1, B2, . . . , Bn, say, Bi (i ∈ J) where |J | = |K|+1.
By the assertion applied to A1, A2, . . . , An and B1, B2, . . . , Bn, B(J)∪{0} contains a
(|K|+1)-dimensional subspace and A(K)∪{0} does not, and we have a contradiction.
By Theorem 2.1 there is a permutation π of {1, 2, . . . , n} and vectors u1, u2, . . . , un

such that ui ∈ Ai and ui ∈ Bπ(i), (1 ≤ i ≤ n). The vectors {u1, u2, . . . , un} are a
basis of V , and the uniqueness of the permutation π is obvious. The theorem now
follows.

From Theorem 2.2 we can deduce the Matrix Bruhat Decomposition; see, e.g., [6].
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Theorem 2.3. Let A be a nonsingular matrix of order n over a field F . Then
their exist nonsingular lower triangular matrices L1 and L2 of order n and a unique
permutation matrix P of order n such that

A = L2PL1.

Proof. Consider the two nests N1 = [v1, v2, . . . , vn] and N2 = [w1, w2, . . . , wn]
where v1, v2, . . . , vn are the rows of A and w1, w2, . . . , wn are the rows of A2. It
follows from Theorem 2.2 that there exists a basis u1, u2, . . . , un of Fn, a permutation
σ of {1, 2, . . . , n} with corresponding permutation matrix P , and nonsingular lower
triangular matrices L1 and L2 such that

L1A =




u1

u2

...
un


 and L−1

2 A2 =




uσ(1)

uσ(2)

...
uσ(n)


 = P




u1

u2

...
un


 .

Hence L−1
2 A2 = PL1A, and since A is nonsingular, A = L2PL1. The uniqueness of

P follows from the uniqueness of σ as given in Theorem 2.2.
We can generalize the notion of a nest of subspaces of a vector space to a nest

of flats of a matroid. Let M = (X, I) be a matroid [3, 7] on the finite set X , where
I is the collection of its independent sets. Let the rank of M be n. A maximal nest
of the matroid M is a family F = (F0, F1, . . . , Fn) where Fk is a flat of M of rank k,
(k = 0, 1, . . . , n). Choosing, for each k = 1, 2, . . . , n, an element xk in Fk \ Fk−1 we
obtain an ordered basis x1, x2, . . . , xn of M such that x1, x2, . . . , xk is a basis of Fk.
We write F = [x1, x2, . . . , xn] and call x1, x2, . . . , xn an ordered basis of the maximal
nest F . Note that F0 is the closure in M of the empty set.

Let G = (G0, G1, . . . , Gn) be another maximal nest of M , and define Ak =
Fk \ Fk−1 and Bk = Gk \ Gk−1, (k = 1, 2, . . . , n). Using Theorem 2.1 we can as-
sert that there exists a basis u1, u2, . . . , un and a permutation π of {1, 2, . . . , n} such
that

F = [u1, u2, . . . , un] and G = [uπ(1), uπ(2), . . . , uπ(n)]

if and only if ∪i∈JAi contains at most |J | of the sets B1, B2, . . . , Bn for each J ⊆
{1, 2, . . . , n}. Unlike for vector spaces, this last condition need not hold for arbitrary
matroids. For example, in a matroid of rank n on a set X of n + 1 elements every
proper subset of which is independent (that is, X is a circuit), this condition does not
hold.

Let Kn+1 be the complete graph with n + 1 vertices 1, 2, . . . , n + 1 and edge set
E = {ij : 1 ≤ i < j ≤ n + 1}, and let Mn+1 be the cycle matroid of Kn+1 on
its set of edges.3 A flat F of Mn+1 is obtained by choosing a subset U of vertices
and a partition of U into sets U1, U2, . . . , Us; the flat F consists of the union of

3A subset of edges is independent in Mn+1 if and only if it does not contain a cycle; the rank of
Mn+1 is n.
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the edges of the complete graphs induced on the Ui and has rank equal to |U | − s.
By taking s = 1 and |U | = t + 1, we obtain a special flat of Mn+1 of rank t, the
set of edges of the complete graph induced on a subset of t + 1 vertices. A special
maximal nest of M(Kn+1) corresponds to a maximal chain X1 ⊂ X2 ⊂ · · · ⊂ Xn+1

of subsets of the vertex set {1, 2, . . . , n+1} with |Xk| = k for k = 1, 2, . . . , n+ 1. Let
Xk = {i1, i2, . . . , ik}, (k = 1, 2, . . . , n + 1) The set Ak above consists of all the edges
joining vertex ik+1 to vertices i1, i2, . . . , ik.4 The sets Bk have a similar description
corresponding to a different permutation of 1, 2, . . . , n+ 1. It is easy to check that in
this setting, the set A(J), respectively B(J), contains a complete graph on |J | vertices
(namely the vertices j with j ∈ J) but does not contain a complete graph of |J |+ 1
vertices. It follows that A(J) can contain at most |J | of the sets Bi. We thus have
the following conclusion.

Corollary 2.4. Let Kn+1 be the complete graph with vertices 1, 2, . . . , n+1. Let
i1, i2, . . . , in+1 be a permutation of 1, 2, . . . , n+ 1. Suppose we color the edges joining
vertex k + 1 to vertices {1, 2, . . . , k} with color k, and independently color the edges
joining vertex ik+1 to vertices {i1, i2, . . . , ik} with color k′, (k = 1, 2, . . . , n). Then
Kn+1 has a spanning tree T such that no two edges of T have the same color in the
first coloring and no two edges of T have the same color in the second coloring.

The corollary asserts the existence of a spanning tree of a complete graph which
is multicolored (no two edges of the same color) in both the colorings, a doubly-
multicolored spanning tree. The corollary does not hold in the context of arbitrary
maximal nests of M(Kn+1). For example, when n = 4, ∅ ⊆ {12} ⊆ {12, 34} ⊆ E
and ∅ ⊆ {13} ⊆ {13, 24} ⊆ E are two maximal nests for which there does not exist a
doubly multicolored spanning tree.

Acknowledgment. We are indebted to K.R. Davidson for suggesting a simplification
in our induction argument for Theorem 2.2, and to Arun Ram for pointing out the
reference [5].
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4Thus Ak is the set of edges of a star and A0 = ∅.
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