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Abstract. A summary and restatement, in plain English and modern notation, of the results

of E.H. Moore on the generalized inverse that bears his name.
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1. Introduction. E. H. Moore (1862–1932) introduced and studied the general
reciprocal during the decade 1910–1920. He stated the objective as follows:

“The effectiveness of the reciprocal of a nonsingular finite matrix
in the study of properties of such matrices makes it desirable to
define if possible an analogous matrix to be associated with each finite
matrix κ12 even if κ12 is not square or, if square, is not necessarily
nonsingular.” [20, p. 197],

Moore constructed the general reciprocal, established its uniqueness and main prop-
erties, and justified its application to linear equations. This work appears in [19], [20,
Part 1, pp. 197–209].

The general reciprocal was rediscovered by R. Penrose1 [26] in 1955, and is nowa-
days called the Moore–Penrose inverse. It had to be rediscovered because Moore’s
work was sinking into oblivion even during his lifetime: it was much too idiosyn-
cratic, and used unnecessarily complicated notation, making it illegible for all but
very dedicated readers.

Moore’s work on the general reciprocal is summarized below, and – where neces-
sary – restated in plain English and modern notation. To illustrate the difficulty of
reading the original Moore, and the need for translation, here is a theorem from [20,
Part 1, p. 202]
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1Sir Roger Penrose made profound contributions to Physics, Mathematics, Geometry, Philosophy
of Science, Artificial Intelligence, and theories of Mind and Consciousness (see, e.g., [7], [9], [11], [28],
[29], [30], [31], [32], [33]). The 1988 Wolf Prize in Physics, shared with Stephen W. Hawking, cites
their “brilliant development of the theory of general relativity, in which they have shown the necessity
for cosmological singularities and have elucidated the physics of black holes. In this work they have
greatly enlarged our understanding of the origin and possible fate of the Universe”. Penrose was
awarded many other prizes and honors, and was knighted in 1994. Sir Roger discovered the Moore–
Penrose inverse while a student at Cambridge, and his seminal papers [26], [27] started the field
of generalized inverses (AMS subject class 15A09). However, this work pales in comparison with
Penrose’s other achievements, and is not even mentioned in his available biographies [25]. See also
[8], [24].
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(29.3) Theorem.
UC B1 II B2 II κ12·) ·
∃ |λ21 type M2

κ∗ M
1
κ � ·S2 κ12 λ21 = δ11

M1
κ
· S1 λ21 κ12 = δ22

M2
κ∗

One symbol needs explanation: U stands for the number system used throughout,
and UC denotes a number system of type C, that is a quasi–field with a conjugate and
an order relation, see [20, Part 1, p. 174] for details. All results below are for type C
number systems, so this assumption will not be repeated. The rest of the theorem,
in plain English, is:
(29.3) Theorem. For every matrix A there exists a unique matrix
X : R(A) → R(AH) such that

AX = PR(A) , XA = PR(AH) .

Here AH denotes the conjugate transpose of A, R(A) the range of A, and PL the
orthogonal projector on L.
The plan of this paper is as follows.

• A sketch of E. H. Moore’s biography is given in § 2.
• Section 3 summarizes the results of Moore’s lecture to the American Mathe-

matical Society in 1920 [19].
• Section 4 is a translation of the main results in [20, Part 1, pp. 197–209].

2. Eliakim Hastings Moore. Eliakim Hastings Moore (1862–1932) was a “true
forefather of modern American mathematics”, [35, p. 51]. Several comprehensive ac-
counts of Moore’s life and work are available, thanks to R. C. Archibald [1], G. A. Bliss
[5], [6], K. H. Parshall [22], K. H. Parshall and D. E. Rowe [23], R. Siegmund-Schultze
[35], and others; see [23, p. 281]2. These accounts describe Moore’s contributions
to mathematics, his stewardship of the Chicago School and service to the American
Mathematical Society and its Transactions, and how he, his students3 and others
from the Chicago School4 put American mathematics on the world map.

Reading the Moore story, one sees a brilliant and eclectic mathematician, a strong,
principled man, and a very able leader who did much to advance mathematics (at a
time when mathematical research had low standing in American académe), skillfully
navigating around administrative rocks5.

Moore made important contributions to Mathematical Analysis, Algebra and
Geometry, and in his General Analysis [14], [15], [20], attempted an ambitious unifi-
cation, justified by his principle of generalization by abstraction,

2An on-line biography appears in [13].
3Moore’s students included L. E. Dickson (1896), O. Veblen (1903), R. L. Moore (1905, supervised

jointly with Veblen), G. D. Birkhoff (1907) and T. H. Hildebrandt (1910). The online Mathematical
Genealogy Project [12] lists 5112 “descendants” (including me), as of March 2002.

4Notably O. Bolza and his student G. A. Bliss (1900).
5For example, Moore’s failure to secure funds from the University of Chicago for publication of

the papers read at the 1893 Mathematical Congress (held in Chicago as part of the World Columbian
Exposition), resulted in the transformation in 1894 of the New York Mathematical Society (a regional
organization) to the American Mathematical Society, see [23, pp. 402–408], [34].
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“The existence of analogies between central features of various theo-
ries implies the existence of a more fundamental general theory em-
bracing the special theories as particular instances and unifying them
as to those central features,” [16, p. 239],

that Barnard put in perspective
“The striking analogies between the theories for linear equations in
n–dimensional Euclidean space, for Fredholm integral equations in
the space of continuous functions defined on a finite real interval, and
for linear equations in Hilbert space of infinitely many dimensions,
led Moore to lay down his well–known principle,” [20, p. 1].

This effort, which consumed the last 20 years of Moore’s life, failed6, although uni-
fication was eventually achieved by others, along different lines. For awhile, several
Moore students used General Analysis as a framework for the study of linear equa-
tions and operators (see, e.g. [10]), and even followed Moore’s notation, but these
practices were limited and short–lived. Moore’s General Analysis was rejected, or
ignored, by the leading mathematicians of his time, and was soon forgotten. At the
end Moore worked alone on his abstract theory, isolated even in his own department7.
The main treatise of General Analysis [20] was published posthumously, by the Amer-
ican Philosophical Society8, thanks to the skillful editorship of R. W. Barnard, his
former student and loyal colleague at Chicago.

Besides the general reciprocal, Moore is remembered today mainly for his con-
tributions to the Theory of Limits [17], [21], and to Reproducing Kernels [18], [20,
pp. 186–187]; see also [2, p. 344].

3. The 1920 lecture to the AMS, [19]. This is an abstract of a lecture given
by E. H. Moore at the Fourteenth Western Meeting of the American Mathematical
Society, held at the University of Chicago in April 9–10, 1920. There were 19 lectures
in two afternoons; only the abstracts, written by Arnold Dresden (Secretary of the
Chicago Section) appear in the Bulletin. Dresden writes

“In this paper Professor Moore calls attention to a useful extension of
the classical notion of the reciprocal of a nonsingular square matrix.”
[19, p. 394].

The details: Let A be any m× n complex matrix. Then there exists a unique n× m
matrix A†, the reciprocal of A, such that

(1) the columns of A† are linear combinations of the conjugate of the rows of A,
(2) the rows of A† are linear combinations of the conjugate of the columns of A,
(3) AA†A = A.
If A is of rank r, then A† is given explicitly as follows

6For a “sociological explanation” see [35, pp. 83–85].
7See letter of I. J. Schoenberg quoted in [35, p. 56].
8Why not the American Mathematical Society? G. A. Bliss cites financial reasons [20, p. iv]. I

suspect the reason is that by 1934 (when Barnard finished editing the General Analysis) Moore’s
work was already far removed from the mainstream.
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(r ≥ 2):

A†[j1, i1] =

∑
i2 < · · · < ir
j2 < · · · < jr

A

(
i2 · · · ir
j2 · · · jr

)
A

(
i1 i2 · · · ir
j1 j2 · · · jr

)

∑
k1 < · · · < kr

�1 < · · · < �r

A

(
k1 · · ·kr

�1 · · · �r

)
A

(
k1 · · · kr

�1 · · · �r

) ,

(r = 1):

A†[j, i] =
A[i, j]∑

k�

A[k, �]A[k, �]
,

(r = 0):

A†[j, i] = 0 ,

where A

(
g1 · · · gk

h1 · · ·hk

)
denotes the determinant of the k2 numbers A[gi, hj ] and x

denotes the conjugate of x.
The relation between A and A† is mutual: A is the reciprocal of A†, viz.,
(4),(5): the columns (rows) of A are linear combinations of the conjugates of rows

(columns) of A†,
(6) A†AA† = A†.
The linear combinations of the columns of A (A†) are the linear combinations

of the rows of A† (A) and constitute the m–dimensional vectors y (n–dimensional
vectors x) of an r–dimensional subspace M (N) of Cm (Cn). Let M (N) denote the
conjugate space of the conjugate vectors y (x). Then the matrices A, A† establish 1–1
linear vector correspondences between the spaces M, M and the respective subspaces
N, N ; y = Ax is equivalent to x = A†y and x = yA is equivalent to y = xA†.

4. The general reciprocal in General Analysis [20]. The centerpiece of
Moore’s work on the general reciprocal is Section 29 of [20], his treatise on General
Analysis, edited by R. W. Barnard and published posthumously. These results were
since rediscovered, some more than once.
For a matrix A and index sets I, J ,

AI∗ (or A[I, ∗]) denotes the submatrix of rows indexed by I,
A∗J (or A[∗, J ]) the submatrix of columns indexed by J , and
AIJ denotes the submatrix of A with rows in I and columns in J .

If A is nonsingular, its inverse A−1 satisfies

AX = I, XA = I .
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Moore begins by constructing generalized identity matrices to replace the identity
matrices above. This is done in Lemma (29.1) and Theorem (29.2). The general
reciprocal is then constructed in Theorems (29.3) and (29.4), and its properties are
studied in the sequel.
(29.1) Lemma. Let A be a nonzero m× n matrix, and let AIJ be a maximal nonsin-
gular submatrix of A.

(1) AH
∗JA∗J is Hermitian, positive–definite9.

(2)
(
AH

∗JA∗J

)−1 is Hermitian, positive–definite.
(3) AI∗AH

I∗ is Hermitian, positive–definite.
(4)

(
AI∗AH

I∗
)−1 is Hermitian, positive–definite.

(5) PR(A) := A∗J

(
AH

∗JA∗J

)−1
AH

∗J (the generalized identity on R(A)).
(6) PR(AH ) := AH

I∗
(
AI∗AH

I∗
)−1

AI∗ (the generalized identity on R(AH)).
(7) PR(A)x = x for all x ∈ R(A) .
(8) xHPR(A) = xH for all x ∈ R(A) .
(9) PR(AH )x = x for all x ∈ R(AH) .

(10) xHPR(AH ) = xH for all x ∈ R(AH) .
(11) Let

X := AH
I∗

(
AI∗AH

I∗
)−1

AIJ

(
AH

∗JA∗J

)−1
AH

∗J

= AH
I∗

(
AH

I∗AI∗
)−1

PR(A)[I, ∗]

= PR(A∗)[∗, J ]
(
AH

∗JA∗J

)−1
AH

∗J , (the general reciprocal of A) .

(12) X maps R(AH) onto R(A) .
(13) AX = PR(A) .
(14) XA = PR(AH ) .

(29.2) Theorem. Let M be a finite dimensional subspace.
(1) There exists a unique linear operator10 PM such that

PMx = x, xHPM = xH , for all x ∈ M .

(2) PM is positive semidefinite, Hermitian and idempotent.
(3) M = R(PM ) .
(4) For all x: PMx ∈ M , (x− PMx) ∈ M⊥ .
(5) x ⊥ M ⇐⇒ PMx = 0 .
(6) For any matrix A

A = PM ⇐⇒
{

Ax = x , for all x ∈ M
R(AH) ⊂ M

⇐⇒
{

Ax = x , for all x ∈ M
Ax = 0 , for all x ∈ M⊥ .

9Moore calls it proper (i.e., the determinants of all principal minors are nonzero), positive (i.e.,
the corresponding quadratic form is nonnegative) and Hermitian.

10Called the generalized identity matrix for the space M , and denoted by δM , [20, p. 199].
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(29.3) Theorem. For every matrix A there exists a unique matrix X : R(A) → R(AH)
such that

AX = PR(A) , XA = PR(AH) .

We call X the general reciprocal and denote it by A†.
(29.4) Theorem. For every matrix A the general reciprocal A† satisfies:

(1) A†AA† = A†, AA†A = A .
(2) rankA = rankA† .
(3) R(A) = R(A†H) , R(AH) = R(A†) .
(4) A†H = (AH)† , A = (A†)† .

(29.45) Corollary. If A[I, J ] is a maximal nonsingular submatrix of A then:
(1) A† = PR(AH )[∗, J ]A−1

IJ PR(A)[I, ∗] .

(2) xHA†y = xH
I A−1

IJ yJ .
(29.5) Theorem. For any matrix A, the following statements on a matrix X are
equivalent:

(1) X = A†

(2) R(X) ⊂ R(AH) , AX = PR(A)

(3) R(X) ⊂ R(AH) , R(XH) ⊂ R(A) , AXA = A .

(29.55) Corollary. If A =
[
B O
O C

]
then A† =

[
B† O
O C†

]
.

(29.6) Theorem. Let the matrix A be Hermitian. Then
(1) A† is Hermitian.
(2) If A is positive semidefinite then so is A†.
Consider a square matrix A. Then for any principal submatrix AII ,

AII = AIIA
†
IIAII .

More can be said if A is Hermitian positive semidefinite.
(29.7) Theorem. Let A be Hermitian positive semidefinite. Then for any principal
submatrix AII

(1) AIIA
†
IIAI∗ = AI∗ .

(2) A∗IA
†
IIAII = A∗I .

(29.8) Theorem. Let A be Hermitian positive semidefinite. Then the following state-
ments, about a vector x, are equivalent.

(1) xHAx = 0 ,
(2) x ⊥ R(A) ,
(3) x ⊥ R(A†) ,
(4) xHA†x = 0 .
The general reciprocal can be used to solve linear equations

Ax = b ,

that are assumed consistent, i.e., b ∈ R(A), or the way Moore expresses consistency:
rank A = rank

[
A b

]
.
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(29.9) Theorem. Let A be a matrix, b a vector in R(A). Then the general solution
of Ax = b is

A† b + {y : y ⊥ R(AH)} .

Note that Moore avoids the concept of null space, and the equivalent form of
the general solution, A† b + N(A). Also, Moore does not consider the case where
Ax = b is inconsistent. A. Bjerhammar [4], R. Penrose [27] and Yuan–Yung Tseng11

[36] would later use A† to obtain least squares solutions. This has become the major
application of the Moore–Penrose inverse.

Acknowledgment. I thank Professor R. Siegmund-Schultze for his helpful com-
ments.
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