EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publishers TeX code     *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you retrieve the article in DVI,       *
%_ * PostScript, or PDF format.                                             *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{3-OCT-2000,3-OCT-2000,3-OCT-2000,3-OCT-2000}
 
\documentclass{era-l}

\issueinfo{6}{11}{}{2000}
\dateposted{October 5, 2000}
\pagespan{90}{94}
\PII{S 1079-6762(00)00085-8}
\copyrightinfo{2000}{American Mathematical Society}
%\newcommand{\copyrightyear}{2000}
%\copyrightinfo{2000}{American Mathematical Society}
%\copyrightinfo[2000]{American Mathematical Society}

\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}

\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{xca}[theorem]{Exercise}

\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}

\numberwithin{equation}{section}

% personal environment
\unitlength0.1mm
\usepackage{euscript}
\newcommand{\Z}{\mbox{\rm\bf Z}}
\newcommand{\Ext}   {\mbox{\rm Ext}   }
\newcommand{\Sl}{\CMcal{S}}
\newcommand{\lraa}[1]{\begin{picture}(80,50)
                      \put(   0,   0){$\lra$}
                      \put(  10,  27){\makebox[6mm]{$\scm #1$}}
                      \end{picture} }
\newcommand{\Aut}   {\mbox{\rm Aut}}
\newcommand{\mb}[1]{{\mbox{#1}}}
\newcommand{\N}{\mbox{\rm\bf N}}
\newcommand{\lra}{\begin{picture}(80,17)
                  \put(10,10){\vector(1,0){60}}
                  \end{picture}}
\newcommand{\ti}{\times}
\newcommand{\scm}{\scriptstyle}
\newcommand{\scr}{\scriptsize}
\newcommand{\sscr}{\tiny}
\newcommand{\spi}[1]{\la #1\rl}
\newcommand{\eps}{\varepsilon}
\newcommand{\equ}{\Longleftrightarrow}
\newcommand{\la}{\langle}
\newcommand{\rl}{\rangle}
\newcommand{\Hom}   {\mbox{\rm Hom}   }
\newcommand{\ts}{\otimes}
\newcommand{\sZ}{\mbox{\rm\scr\bf Z}}
\newcommand{\ssZ}{\mbox{\rm\sscr\bf Z}}
\newcommand{\F}{\mbox{\rm\bf F}}
\newcommand{\llaiso}{\begin{picture}(80,30)
                     \put(   0,   0){$\lla$}
                     \put(  30,  15){$\scm\sim$}
                     \end{picture} }
\newcommand{\ub}{\underbrace}
\newcommand{\ohne}{\backslash}
\newcommand{\fracd}[2]{{\dis\frac{#1}{#2}}}
\newcommand{\iso}{\simeq}
\newcommand{\ds}{\oplus}
\newcommand{\Q}{\mbox{\rm\bf Q}}
\newcommand{\lraiso}{\begin{picture}(80,30)
                     \put(   0,   0){$\lra$}
                     \put(  25,  15){$\scm\sim$}
                     \end{picture} }
\newcommand{\hra}{\begin{picture}(100,17)
                   \put(25,5){\vector(1,0){50}}
                   \put(25,15){\oval(20,20)[l]}
                   \end{picture}}
\newcommand{\con}{\equiv}
\newcommand{\mateckzz}[4]{ \left[
                           \begin{array}{cc}
                            #1 & #2 \\
                            #3 & #4 \\
                           \end{array}
                           \right] }
\newcommand{\tm}{\subseteq}
\newcommand{\lla}{\begin{picture}(80,17)
                   \put(70,10){\vector(-1,0){60}}
                   \end{picture}}
\newcommand{\dis}{\displaystyle}
\newcommand{\lraisoa}[1]{\begin{picture}(80,40)
                         \put(   0,   0){$\lra$}
                         \put(  10,  25){\makebox[6mm]{$\scm #1$}}
                         \put(  25,  -8){$\scm\sim$}
                         \end{picture} }
\newcommand{\vs}{\vspace*{3mm}}
% end of personal environment

\begin{document}

\title{A one-box-shift morphism between Specht modules}

%    Information for first author
\author{Matthias K\"unzer}
%    Address of record for the research reported here
\address{Fakult\"at f\"ur Mathematik, Universit\"at Bielefeld, Postfach 
100131, 33501 Bielefeld}
\email{kuenzer@mathematik.uni-bielefeld.de}

%    General info
\subjclass[2000]{Primary 20C30}

\date{July 14, 2000}

\commby{David J. Benson}

\keywords{Symmetric group, Specht module}

\begin{abstract}
We give a formula for a morphism between Specht modules over 
$(\mbox{\rm\bf Z}/m){\CMcal S}_n$, where $n\geq 1$, and where the 
partition indexing the
target Specht module arises from that indexing the source Specht module 
by a downwards shift of one box, $m$ being the box shift length. Our 
morphism can be reinterpreted integrally as an
extension of order $m$ of the corresponding Specht lattices.
\end{abstract}

\maketitle

\setcounter{section}{-1}

\section{Notation}

We write composition of maps on the right, $\lraa{\alpha}\lraa{\beta} = 
\lraa{\alpha\beta}$. Intervals are to be read as subsets of $\Z$. Let 
$n\geq 1$, let
$\Sl_n = \Aut_\mb{\scr Sets} [1,n]$ denote the symmetric group on $n$ 
letters and let $\eps_\sigma$ denote the sign of a permutation 
$\sigma\in\Sl_n$. Let
\[
\begin{array}{rcl}
\N & \lraa{\lambda} & \N_0 \\
i  & \lra           & \lambda_i
\end{array}
\]
be a {\it partition} of $n$, i.e.\ assume $\sum_i \lambda_i = n$ and 
$\lambda_i \geq \lambda_{i+1}$ for $i\in \N$. Let
\[
[\lambda] := \{ i\ti j \in\N\ti\N \; |\; j \leq\lambda_i \}
\]
denote the {\it diagram} of $\lambda$. We say that $i\ti j\in 
[\lambda]$ lies in row $i$ and in column $j$. A {\it $\lambda$-tableau} 
is a bijection
\[
\begin{array}{rcl}
[\lambda] & \lraisoa{[a]} & [1,n] \\
i\ti j    & \lra          & a_{i,j}.
\end{array}
\]
The element $\sigma\in\Sl_n$ acts on the set $T^\lambda$ of 
$\lambda$-tableaux via composition $[a] \lraa{\sigma} [a]\sigma$. Let 
$F^\lambda$ be the free $\Z$-module on $T^\lambda$ with the induced
operation of $\Sl_n$. Let
\[
\begin{array}{rclcrcl}
[\lambda]  & \lraa{\rho} & \N & \hspace*{2cm} & [\lambda] & 
\lraa{\kappa} & \N \\
i\ti j     & \lra        & i  &               & i\ti j    & \lra        
  & j  
\end{array}
\]
denote the projections. We denote by $\{ a\} := [a]^{-1}\rho$ the {\it 
$\lambda$-tabloid} associated to the $\lambda$-tableaux $[a]$. The free 
$\Z$-module on the
set of tabloids, equipped with the inherited $\Sl_n$-operation, is 
denoted by $M^\lambda$. Let
\[
C_{[a]} := \{ \sigma\in\Sl_n \; |\; [a]^{-1}\kappa = 
([a]\sigma)^{-1}\kappa \}
\]
be the {\it column stabilizer} of $[a]$. Let the {\it Specht lattice} 
$S^\lambda$ be the $\Z\Sl_n$-sublattice of $M^\lambda$ generated over 
$\Z$ by the {\it $\lambda$-polytabloids}
\[
\spi{a} := \sum_{\sigma\in C_{[a]}} \{ a\}\sigma\eps_\sigma.
\]
Let $\lambda'$ denote the {\it transposed partition} of $\lambda$, 
i.e.\ $j\leq \lambda_i \equ i\ti j\in [\lambda] \equ i\leq\lambda'_j$.

\section{Carter-Payne}

Let $d\in [1,n]$ be the number of shifted boxes. Let $1\leq s < t\leq n$, 
$s$ being the row of $[\lambda]$ from which the boxes are shifted, and $t$ 
being the row
into which the boxes are shifted. Suppose
\[
\mu_i :=
\left\{
\begin{array}{ll}
\lambda_i - d & \mb{ for } i = s, \\
\lambda_i + d & \mb{ for } i = t, \\
\lambda_i     & \mb{ else}
\end{array}
\right.
\]
defines a partition of $n$. Let the {\it box shift length} be denoted by
\[
m := (\lambda_s - s) - (\lambda_t - t) - d.
\]
Let $m[p] := p^{v_p(m)}$ be the $p$-part of $m$. Using \cite{CL74}, 
{\sc Carter} and {\sc Payne} proved the following

\begin{theorem}[\cite{CP80}]
Let $K$ be an infinite field of characteristic $p$. Suppose $d < m[p]$. 
Then
\[
\Hom_{K\Sl_n}(K\ts_{\sZ}S^\lambda,K\ts_{\sZ}S^{\mu}) \neq 0.
\]
\end{theorem}

\section{Integral reinterpretation}

Assume $d = 1$, i.e.\ $[\mu]$ arises from $[\lambda]$ by a 
one-box-shift. The condition $d < m[p]$ translates into $p|m$.

As we will see below, this particular case of the result of {\sc 
Carter} and {\sc Payne} already holds over $K = \F_p$. So we obtain a 
nonzero element in
\[
\Hom_{\sZ\Sl_n}(S^\lambda/p S^\lambda, S^\mu/p S^\mu) \llaiso 
\Hom_{\sZ\Sl_n}(S^\lambda, S^\mu/p S^\mu).
\]
We consider a part of the long exact 
$\Ext^\ast_{\sZ\Sl_n}(S^\lambda,-)$-sequence on
\[
0\lra S^\mu\lraa{p} S^\mu \lra S^\mu/pS^\mu\lra 0,
\]
viz.\
%\[
%\begin{array}{rrccccl}
%0 & \lra & \ub{\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu)}_{=\; 0} & \lraa{p} & 
%%\ub{\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu)}_{=\; 0} & \lra & 
%%\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu/pS^\mu)  \\
  %& \lra & \Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu)            & \lraa{p} & 
%%\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu). \\
%\end{array}
%\]
\begin{eqnarray}
& 0 & \lra  \ub{\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu)}_{=\; 0} \lraa{p} 
\ub{\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu)}_{=\; 0} \lra  
\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu/pS^\mu)  \nonumber\\
  & \; & \lra  \Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu)  \lraa{p} 
\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu).\nonumber
\end{eqnarray}
Mapping our morphism into $\Ext^1$, we obtain a nonzero element of 
$\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu)$ which is annihilated by $p$. 
Conversely, the $p$-torsion elements of $\Ext^1$
are given by morphisms modulo $p$.

Since $n!$ annihilates $\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu)$, 
replacement of $p$ by $n!$ shows that any element in $\Ext^1$ is given 
by a modular morphism modulo $n!$,
\[
\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu/n!\, S^\mu)\lraiso 
\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu).
\]
Therefore, in order to get hold of the whole $\Ext^1$, we need to 
calculate modulo prime powers in general.

\section{One-box-shift formula}

We keep the assumption $d = 1$. Let $s' := \lambda_s$ and let $t' := 
\lambda_t + 1$. A {\it path} of length $l\in [1,s'-t']$ is a map
\[
\begin{array}{rcl}
[0,l] & \lraa{\gamma} & [\lambda]\cup [\mu] \\
k     & \lra          & \alpha_k \ti \beta_k
\end{array}
\]
such that $k < k'$ implies $\beta_k < \beta_{k'}$, and such that 
$\alpha_0\ti\beta_0 = t \ti t'$ and $\beta_l = s'$. For a 
$\lambda$-tableau $[a]$, we define the
$\mu$-tableau $[a^\gamma]$ by
\[
\begin{array}{rcll}
a^\gamma_{i,j}               & := & a_{i,j}                       & 
\mbox{ for } i\ti j\in [\mu]\ohne (\gamma([1,l]) \cup \N\ti \{ s'\}), \\
a^\gamma_{\alpha_k,\beta_k}  & := & a_{\alpha_{k+1},\beta_{k+1}}  & 
\mbox{ for } k\in [0,l-1], \\
a^\gamma_{i,s'}              & := & a_{i,s'}                      & 
\mbox{ for } i < \alpha_l, \\
a^\gamma_{i,s'}              & := & a_{i+1,s'}                    & 
\mbox{ for } i \geq \alpha_l.
\end{array}
\]
For $i\in [t'+1,s'-1]$, we denote
\[
X_i := (s' - \lambda'_{s'}) - (i - \lambda'_i).
\]
Let
\[
x_\gamma := (-1)^{\alpha_l+1}\fracd{\prod_{i\in [t'+1,s'-1],\; \mu'_i > 
\mu'_{i+1}} X_i}{\prod_{k\in [1,l-1]} X_{\beta_k}}.
\]
Let $\Gamma$ be the set of paths of some length $l\in [1, s'-t']$.

\begin{theorem}[\cite{K99}, 4.3.31, cf.\ 0.7.1] The abelian group 
$\Hom_{\sZ\Sl_n}(S^\lambda,S^\mu/mS^\mu)$ contains an element $f$ of 
order $m = (\lambda_s - s) - (\lambda_t - t) - 1$ which
is given by the commutative diagram of $\Z\Sl_n$-linear maps
\begin{center}
\begin{picture}(250,350)
\put(   0, 270){$[a]$}
\put(  50, 280){\vector(1,0){130}}
\put( 200, 270){$\sum_{\gamma\in\Gamma}x_\gamma\ts\spi{a^\gamma}$}
\put( -10, 200){$F^\lambda$}
\put(  50, 210){\vector(1,0){130}}
\put( 200, 200){$\Q\ts_{\sZ} S^\mu$}
\put(-100, 200){$[a]$}
\put( -80, 180){\vector(0,-1){130}}
\put(-100,   0){$\spi{a}$}
\put(  10, 180){\vector(0,-1){130}}
\put( 210, 140){\vector(0,1){40}}
\put( 200, 100){$S^\mu$}
\put( 210,  80){\vector(0,-1){40}}
\put(  50, 190){\vector(2,-1){130}}
\put( 400, 100){$\spi{b}$}
\put( 420,  80){\vector(0,-1){40}}
\put( 400,   0){$\spi{b} + mS^\mu$.}
\put( 420, 140){\vector(0,1){40}}
\put( 400, 200){$1\ts\spi{b}$}
\put( -10,   0){$S^\lambda$}
\put(  50,  10){\vector(1,0){130}}
\put( 110,  20){$\scm f$}
\put( 200,   0){$S^\mu/m S^\mu$}
\end{picture}
\end{center}
\end{theorem}

Reducing modulo a prime dividing $m$, this recovers the case $d = 1$ of 
the result of {\sc Carter} and {\sc Payne}. By the long exact sequence 
as above, but with $p$ replaced by $m$, we obtain a
nonzero element in $\Ext^1_{\sZ\Sl_n}(S^\lambda,S^\mu)$ of order $m$. 
\footnote{I do not know the structure of 
$\Ext^1_{\ssZ\Sl_n}(S^\lambda,S^\mu)$ as an abelian group. At least 
{\it in case
$n\leq 7$,} direct computation yields that the projection of our 
element to its $2'$-part generates this $2'$-part. We have, however, 
for example
$\Ext^1_{\ssZ\Sl_6}(S^{(4,1^2)},S^{(3,1^3)})_{(2)}\iso\Z/2\ds\Z/2$.}

The proof of this theorem proceeds by showing that a sufficient set of 
Garnir relations in $F^\lambda$ is annihilated by $F^\lambda\lra 
S^\mu/m S^\mu$.

\section{Example}

Let $n = 9$, $\lambda = (4,3,2)$, $\mu = (3,3,2,1)$, $t' = 1$ and $s' = 
4$, whence $m = 6$, $X_2 = 4$, $X_3 = 2$. We obtain a morphism of order 
$6$ that maps
\[
\begin{array}{rcl}
S^{(4,3,2)} & \lraa{f} & S^{(3,3,2,1)}/6\; S^{(3,3,2,1)} \\
\la\begin{array}{llll}
1 & 4 & 7 & 9 \\
2 & 5 & 8 &   \\
3 & 6 &   &  
\end{array}\rl
& \lra
& \;\;\; 4^0 2^0
\setlength{\arraycolsep}{1pt}
\left(
\la\begin{array}{ccc}
1        & \fbox{7} & \fbox{9} \\
2        & 5        & 8 \\
3        & 6        &   \\
\fbox{4} &          &   \\
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & \fbox{9} \\
2        & \fbox{7} & 8 \\
3        & 6        &   \\
\fbox{5} &          &   \\
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & \fbox{9} \\
2        & 5        & 8 \\
3        & \fbox{7} &   \\
\fbox{6} &          &  
\end{array}\rl \right. \vs \\
& & \hspace*{10mm} \left. +
\setlength{\arraycolsep}{1pt}
\la\begin{array}{ccc}
1        & \fbox{8} & 7 \\
2        & 5        & \fbox{9} \\
3        & 6        &   \\
\fbox{4} &          &   
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & 7 \\
2        & \fbox{8} & \fbox{9} \\
3        & 6        &   \\
\fbox{5} &          &  
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & 7 \\
2        & 5        & \fbox{9} \\
3        & \fbox{8} &   \\
\fbox{6} &          &  
\end{array}\rl
\right)\vs \\
& &  + 4^1 2^0
\setlength{\arraycolsep}{1pt}
\left(
\la\begin{array}{ccc}
1        &  \: 4 & \: \fbox{9} \\
2        &  \: 5 & \: 8 \\
3        &  \: 6 &   \\
\fbox{7} &       &  
\end{array}\rl
+
\la\begin{array}{ccc}
1        &  \: 4 & \: 7 \\
2        &  \: 5 & \: \fbox{9} \\
3        &  \: 6 &   \\
\fbox{8} &       &  
\end{array}\rl
\right)\vs\\
& &  + 4^0 2^1
\setlength{\arraycolsep}{1pt}
\left(
\la\begin{array}{ccc}
1        & \fbox{9} & \: 7 \\
2        & 5        & \: 8 \\
3        & 6        &      \\
\fbox{4} &          &     
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & \: 7 \\
2        & \fbox{9} & \: 8 \\
3        & 6        &      \\
\fbox{5} &          &     
\end{array}\rl
+
\la\begin{array}{ccc}
1        & 4        & \: 7 \\
2        & 5        & \: 8 \\
3        & \fbox{9} &      \\
\fbox{6} &          &      
\end{array}\rl
\right)\vs\\
& &  + 4^1 2^1
\setlength{\arraycolsep}{1pt}
\left(
\la\begin{array}{ccc}
1        & \: 4 & \;\; 7 \\
2        & \: 5 & \;\; 8 \\
3        & \: 6 &        \\
\fbox{9} &      &        
\end{array}\rl
\right).\\
\end{array}
\]
The $[0,l-1]$-part of the respective path is highlighted.

\section{Motivation}

We consider the rational Wedderburn isomorphism
\[
\begin{array}{rcl}
\Q\Sl_n & \lraiso & \prod_\lambda (\Q)_{n_\lambda\ti n_\lambda} \\
\sigma  & \lra    & (\rho^\lambda_\sigma)_\lambda
\end{array}
\]
where $\lambda$ runs over the partitions of $n$ and where 
$\rho^\lambda_\sigma$ denotes the matrix describing the operation of 
$\sigma\in\Sl_n$ on $S^\lambda$ {\it with respect to a chosen
tuple of integral bases.} The restriction
\[
\Z\Sl_n\hra \prod_\lambda (\Z)_{n_\lambda\ti n_\lambda}
\]
of this isomorphism, viewed as an embedding of abelian groups, has 
index \footnote{{\bf Question.} {\it Given a central primitive 
idempotent
$e^\lambda$ of $\Gamma := \prod_\lambda (\Z)_{n_\lambda\ti n_\lambda}$, 
what is the index of $e^\lambda\Z\Sl_n$ in $e^\lambda\Gamma$ ?} Cf.\ 
(\cite{K99}, Section 1.1.3).}
\[
\prod_\lambda \left(\frac{n!}{n_\lambda}\right)^{n_\lambda^2/2}.
\]
In particular, for $n\geq 2$ it is no longer an isomorphism.

Suppose, for partitions $\lambda$ and $\mu$ of $n$ and for some modulus 
$m\geq 2$, we are given a $\Z\Sl_n$-linear map
\[
S^\lambda\lraa{g} S^\mu/m S^\mu.
\]
Let $G$ be the matrix, with respect to the chosen integral bases of 
$S^\lambda$ and $S^\mu$, of a lifting of $g$ to a $\Z$-linear map 
$S^\lambda\lra S^\mu$. The $\Z\Sl_n$-linearity of
$g$ reads
\[
G \rho^\mu_\sigma - \rho^\lambda_\sigma G  \in m(\Z)_{n_\lambda\ti 
n_\mu} \hspace*{1cm} \mb{for all $\sigma\in\Sl_n$.}
\]
Thus such a morphism yields a {\it necessary} condition for a tuple of 
matrices to lie in the image of the Wedderburn embedding.

For example, the evaluations of our one-box-shift morphism at hook 
partitions, i.e.\ at $\lambda = (k,1^{n-k})$ and $\mu = (k-1,1^{n-k+
1})$, $k\in [2,n]$, furnish
a long exact sequence. In the (simple) case of $n = p$ prime, and 
localized at $(p)$, the set of necessary conditions imposed by these 
morphisms already turns out to be sufficient for a tuple of
matrices over $\Z_{(p)}$ to lie in the image of the localized 
Wedderburn embedding (\cite{K99}, Section 4.2.1). Therefore, it is advisable 
to chose a tuple of locally integral bases adapted to this long
exact sequence. For instance, we obtain
\[
\begin{array}{rcl}
\Z_{(3)}\Sl_3 & \lraiso & \left\{ a\ti\mateckzz{b}{c}{d}{e}\ti f 
\;\Big|\; a\con_3 b,\; d\con_3 0,\; e\con_3 f\right\} \\
& \tm & \Z_{(3)}\ti \mateckzz{\Z_{(3)}}{\Z_{(3)}}{\Z_{(3)}}{\Z_{(3)}} 
\ti \Z_{(3)}, 
\end{array}
\]
the embedding {\it not} being written in the combinatorial standard 
polytabloid bases.

For an approach to the general case, see (\cite{K99}, Chapters 3 and 5). 
Further examples may be found in (\cite{K99}, Chapter 2).

\section{Acknowledgments}

This result being part of my thesis, I'd like to repeat my thanks to my 
advisor {\sc Steffen K\"onig.}

\bibliographystyle{amsplain}
\begin{thebibliography}{10}

\bibitem{CL74} R.\ W.\ Carter and G.\ Lusztig, \textit{On the modular 
representations of the general linear and symmetric groups}, Math.\ Z.\ 
\textbf{136} (1974), 139--242. 
\MR{50:7364}
\bibitem{CP80} R.\ W.\ Carter and M.\ T.\ J.\ Payne, \textit{On 
homomorphisms between Weyl modules and Specht modules}, Math.\ Proc.\ 
Camb.\ Phil.\ Soc.\ \textbf{87} (1980), 419--425.
\MR{81h:20048}
\bibitem{J78} G.\ D.\ James, \textit{The representation theory of the 
symmetric groups}, SLN 682, 1978.
\MR{80g:20019}
\bibitem{K99} M.\ K\"unzer, \textit{Ties for the $\Z\Sl_n$}, thesis, 
http://www.mathematik.uni-bielefeld.de/$\scm\sim$kuenzer, Bielefeld, 
1999.

\end{thebibliography}

\end{document}