EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publishers TeX code     *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you retrieve the article in DVI,       *
%_ * PostScript, or PDF format.                                             *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{25-JUN-2001,25-JUN-2001,25-JUN-2001,25-JUN-2001}
 
\documentclass{era-l}
\issueinfo{7}{08}{}{2001}
\dateposted{June 26, 2001}
\pagespan{54}{62}
\PII{S 1079-6762(01)00094-4}
\usepackage{amssymb}

\copyrightinfo{2001}{American Mathematical Society}

\newcommand{\Ka}{{K_1}}
\newcommand{\Kb}{{K_2}}
\newcommand{\Kaa}{K_{1}^{-1}}
\newcommand{\Kbb}{K_{2}^{-1}}
\newcommand{\Ki}{{K_i}}
\newcommand{\KKa}{{\overline{K_1}}}
\newcommand{\KKb}{{\overline{K_2}}}
\newcommand{\vv}{v^{-1}}
\newcommand{\K}{\begin{bmatrix}K_i\\b_1\end{bmatrix}\begin{bmatrix}K_j\\b_2\end{bmatrix}}
\newcommand{\KK}[2]{\begin{bmatrix}K_i\\#1 \end{bmatrix}\begin{bmatrix}K_j\\#2\end{bmatrix}}
\newcommand{\ea}{E_\alpha^{(a)}}
\newcommand{\fc}{F_\alpha^{(c)}}
\newcommand{\fa}{F_\alpha^{(a)}}
\newcommand{\ec}{E_\alpha^{(c)}}
\newcommand{\Ha}{{H_i}}
\newcommand{\Hb}{{H_j}}
\newcommand{\ep}{\varepsilon}
\newcommand{\al}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\Ea}{E_{\alpha}}
\newcommand{\Eb}{E_{\beta}}
\newcommand{\Eg}{E_{\gamma}}
\newcommand{\Ep}{E_{\rho}}
\newcommand{\Eij}{E_{ij}}
\newcommand{\Ekl}{E_{kl}}
\newcommand{\vbinom}[2]{\begin{bmatrix}#1\\#2\end{bmatrix}}
\newcommand{\vbinomm}[3]{\begin{bmatrix}#1; #2\\#3\end{bmatrix}}
\newcommand{\Lnd}{\Lambda (n,d)}
\newcommand{\Ua}{\mathbf{U}_{\mathcal{A}}}

\newcommand{\N}{{\mathbb N}}
\newcommand{\Z}{{\mathbb Z}}
\newcommand{\Q}{{\mathbb Q}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\C}{{\mathbb C}}
\newcommand{\g}{{\mathfrak g}}
\newcommand{\n}{{\mathfrak n}}
\newcommand{\dist}{\operatorname{Dist}}
\newcommand{\per}{\operatorname{per}}
\newcommand{\cov}{\operatorname{cov}}
\newcommand{\non}{\operatorname{non}}
\newcommand{\cf}{\operatorname{cf}}
\newcommand{\add}{\operatorname{add}}
\newcommand{\End}{\operatorname{End}}
\newcommand{\Ext}{\operatorname{Ext}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\Tor}{\operatorname{Tor}}
\newcommand{\ch}{\operatorname{ch}}
\newcommand{\ind}{\operatorname{ind}}
\newcommand{\coind}{\operatorname{Coind}}
\newcommand{\res}{\operatorname{res}}
\newcommand{\soc}{\operatorname{soc}}
\newcommand{\rad}{\operatorname{rad}}
\newcommand{\Aut}{\operatorname{Aut}}
\newcommand{\Dist}{\operatorname{Dist}}
\newcommand{\Lie}{\operatorname{Lie}}
\newcommand{\im}{\operatorname{im}}

\newcommand{\GL}{{\sf GL}}
\newcommand{\SL}{{\sf SL}}
\newcommand{\gl}{\mathfrak{gl}}
\newcommand{\mysl}{\mathfrak{sl}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\divided}[2]{#1^{(#2)}}
\newcommand{\ct}{\chi}%content%
\newcommand{\ctl}{\ct_L}
\newcommand{\ctr}{\ct_R}
\newcommand{\sqbinom}[2]{\begin{bmatrix}#1\\#2\end{bmatrix}}
\newcommand{\U}{\mathbf{U}}
\newcommand{\myS}{\mathbf{S}}
\newcommand{\A}{\mathcal{A}}


\newtheorem{theorem}{Theorem}%[section]
\newtheorem{lemma}[theorem]{Lemma}

\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{xca}[theorem]{Exercise}

\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}

%\numberwithin{equation}{section}

\begin{document}

\title{Generators and relations for Schur algebras}

\author{Stephen Doty}
\address{Department of Mathematics, Loyola University, Chicago, IL 60626}
\email{doty@math.luc.edu}

\author{Anthony Giaquinto}
\address{Department of Mathematics, Loyola University, Chicago, IL 60626}
\email{tonyg@math.luc.edu}

\subjclass[2000]{Primary 16P10, 16S15; Secondary 17B35, 17B37}

\date{April 8, 2001}

\keywords{Schur algebras, finite-dimensional algebras, enveloping algebras,
quantized enveloping algebras}

\commby{Alexandre Kirillov}


\begin{abstract}
We obtain a presentation of Schur algebras (and $q$-Schur algebras) by
generators and relations, one which is compatible with the usual
presentation of the enveloping algebra (quantized enveloping algebra)
corresponding to the Lie algebra $\gl_n$ of $n\times n$ matrices.  We
also find several new bases of Schur algebras.
\end{abstract}

\maketitle

\section{Introduction}\label{sec:intro}
The classical Schur algebra $S(n,d)$ (over $\Q$) may be defined as the
algebra $\End_{\Sigma_d}(V^{\otimes d})$ of linear endomorphisms on
the $d$th tensor power of an $n$-dimensional $\Q$-vector space $V$
commuting with the action of the symmetric group $\Sigma_d$, acting by
permutation of the tensor places (see \cite{Green}).  Schur algebras
determine the polynomial representation theory of general linear
groups, and they form an important class of quasi-hereditary algebras.

We identify $V$ with $\Q^n$. Then $V_\Z=\Z^n$ is a lattice in
$V$.  One can define a $\Z$-order $S_\Z(n,d)$ (the integral Schur
algebra) in $S(n,d)$ by setting $S_\Z(n,d) =
\End_{\Sigma_d}(V_\Z^{\otimes d})$.  For any field $K$, one then
obtains the Schur algebra $S_K(n,d)$ over $K$ by setting $S_K(n,d)=
S_\Z(n,d)\otimes_\Z K$.  Moreover, $S_\Q(n,d) \cong S(n,d)$.

In the quantum case one can replace $\Q$ by $\Q(v)$ ($v$ an
indeterminate), $V$ by an $n$-dimensional $\Q(v)$-vector space, and
$\Sigma_d$ by the corresponding Hecke algebra $\mathbf{H}(\Sigma_d)$.
Then the resulting commuting algebra, $\myS(n,d)$, is known as the
$q$-Schur algebra, or quantum Schur algebra. It appeared first in work
of Dipper and James, and, independently, Jimbo. Beilinson, Lusztig,
and MacPherson \cite{BLM} have given a geometric construction of
$\myS(n,d)$ in terms of orbits of flags in vector spaces. (See also
\cite{Du}.)

In this situation $\Z$ is replaced by the ring $\A=\Z[v,v^{-1}]$, and
there is a corresponding ``integral'' form $\myS_\A(n,d)$ in
$\myS(n,d)$. The above quantized objects specialize to their classical
versions when $v=1$.  We have more detailed information about the
Schur algebras in rank $1$; see \cite{DG} and \cite{DGquantum}.
Proofs of the main results will appear in \cite{PSA}.


\section{Serre's presentation of $U$}\label{sec:presentU}

Let $\Phi=\{\varepsilon_i - \varepsilon_j \mid 1\le i \ne j \le n\}$
be the root system of type $A_{n-1}$, with simple roots $\Delta=\{
\varepsilon_i - \varepsilon_{i+1} \mid i=1, \dots, n-1 \}$, where
$\{\varepsilon_1, \dots, \varepsilon_n\}$ denotes the standard basis
of $\Z^n$.  The corresponding set $\Phi^+$ of positive roots is the
set $ \Phi^+ = \{ \varepsilon_i - \varepsilon_j \mid 1\le i < j \le n
\}$.

The abelian group $\Z^n$ has a bilinear form $(\ ,\ )$ given by
$(\varepsilon_i,\varepsilon_j)=\delta_{ij}$ (Kronecker delta). We
write $\alpha_j:= \varepsilon_j - \varepsilon_{j+1}$.


The enveloping algebra $U=U(\gl_n)$ is the associative algebra (with
$1$) on generators $e_i,f_i$ ($i=1,\dots,n-1$) and $H_i$
($i=1,\dots,n$) with relations
\begin{align}
H_i H_j &= H_j H_i, \tag{R1}\label{R1} \\
e_i f_j - f_j e_i &= \delta_{ij}(H_j - H_{j+1}), \tag{R2}\label{R2}\\
{}H_i e_j - e_j H_i = (\varepsilon_i, \alpha_j) e_j&, \quad
H_i f_j - f_j H_i = -(\varepsilon_i, \alpha_j) f_j, \tag{R3}\label{R3}
\end{align}
\begin{equation}\label{R4}
\begin{aligned}
{}&e_i^2 e_j - 2 e_i e_j e_i + e_j e_i^2 = 0 \quad (|i-j|=1),\\
&e_i e_j - e_j e_i = 0 \quad (\text{otherwise}),
\end{aligned} \tag{R4}
\end{equation}
\begin{equation}\label{R5}
\begin{aligned}
{}&f_i^2 f_j - 2 f_i f_j f_i + f_j f_i^2 = 0 \quad (|i-j|=1),\\
&f_i f_j - f_j f_i = 0 \quad (\text{otherwise}).
\end{aligned} \tag{R5}
\end{equation}

For $\alpha\in \Phi$, let $x_{\alpha}$ denote the corresponding
root vector of $\gl_n$ viewed as an element of $U$. We have in
particular $e_i=x_{\alpha_i}$ and $f_i=x_{-\alpha_i}.$



\section{The quantized enveloping algebra}\label{sec:que}

The Drinfeld-Jimbo quantized enveloping algebra
$\U=\U_v(\gl_n)$, by definition, is the $\Q(v)$-algebra with
generators $E_i$, $F_i$ ($1\leq i\leq n-1$), $K_i^{\pm
1}$ ($1\leq i\leq n$) and relations
\begin{align}
& K_i K_j =K_j K_i, \qquad K_i K_i^{-1} = K_i^{-1}K_i =1,
  \tag{Q1}\label{Q1}\\
& E_iF_j - F_jE_i =
\delta_{ij}\frac{K_iK_{i+1}^{-1}-K_i^{-1}K_{i+1}}{v-v^{-1}},\tag{Q2}\label{Q2}\\
& K_i E_j = v^{(\ep_i, \al_j)}E_jK_i, \qquad
K_i F_j = v^{-(\ep_i, \al_j)}F_jK_i, \tag{Q3}\label{Q3}
\end{align}
\begin{equation}\label{Q4}
\begin{aligned}
{}& E_i^2E_j - (v+v^{-1})E_iE_jE_i +E_jE_i^2 =0 \quad(|i-j|=1), \\
{}& E_iE_j - E_i E_j = 0 \quad(\text{otherwise}),
\end{aligned}\tag{Q4}
\end{equation}
\begin{equation}
\begin{aligned}\label{Q5}
{}& F_i^2F_j - (v+v^{-1})F_iF_jF_i +F_jF_i^2 =0 \quad(|i-j|=1), \\
{}& F_iF_j - F_jF_i = 0 \quad(\text{otherwise}).
\end{aligned}\tag{Q5}
\end{equation}


For $\alpha\in \Phi^+$, let $E_{\alpha}$ and $F_{\alpha}$ be the
positive and negative quantum root vectors of $\U$ as defined by
Jimbo \cite{Jimbo}. We have in particular $E_i=E_{\alpha_i}$ and
$F_i=F_{\alpha_i}.$



\section{Main results: classical case} \label{sec:main}
We now give a precise statement of our main results in the classical
case.  The first result describes a presentation by generators and
relations of the Schur algebra over the rational field $\Q$. This
presentation is compatible with the usual presentation (see section
\ref{sec:presentU}) of $U=U(\gl_n)$.

\begin{theorem} \label{thm:present:S}
Over $\Q$, the Schur algebra $S(n,d)$ is isomorphic to the
associative algebra (with $1$) on the same generators as for $U$
subject to the same relations \eqref{R1}--\eqref{R5} as for $U$,
together with the additional relations:
\begin{align}
& H_1 + H_2 + \cdots + H_n = d, \tag{R6}\label{R6} \\
& H_k(H_k-1)\cdots(H_k-d) = 0 \qquad(k = 1, \dots, n).
  \tag{R7}\label{R7}
\end{align}
\end{theorem}

The next result gives a basis for the Schur algebra which is the analogue
of the Poincare-Birkhoff-Witt (PBW) basis of $U$.

\begin{theorem} \label{thm:truncPBW}
The algebra $S(n,d)$ has a ``truncated PBW'' basis (over $\Q$) which
can be described as follows. Fix an integer $k_0$ with $1\le k_0 \le
n$ and set
\[
G=\{ x_\alpha \mid \alpha\in \Phi \} \cup
\{H_k \mid k \in \{1,\dots,n\}-\{k_0\}\}
\]
and fix some ordering for this set.  Then the set of all monomials in
$G$ (with specified order) of total degree at most $d$ is a basis for
$S(n,d)$.
\end{theorem}


Our next result constructs the integral Schur algebra $S_\Z(n,d)$
in terms of the generators given above.  We need some more
notation. For $B$ in $\N^n$, we write
\[
H_B = \prod_{k=1}^n \dbinom{H_k}{b_k}.
\]
Let $\Lambda(n,d)$ be the subset of $\N^n$ consisting of those
$\lambda \in \N^n$ satisfying $|\lambda|=d$; this is the set of
$n$-part compositions of $d$. Given $\lambda \in \Lambda(n,d)$ we
set $1_\lambda:=H_{\lambda}.$ One can show that the collection
$\{1_\lambda\}$ as $\lambda$ varies over $\Lambda(n,d)$ forms a
set of pairwise orthogonal idempotents in $S_\Z(n,d)$ which sum
to the identity element.

For $m\in \N$ and $\alpha \in \Phi$, set $\divided{x_\alpha}{m}:=
x_\alpha^m/(m!)$. Any product in $U$ of elements of the form
\[
\divided{x_\alpha}{m}, \quad \dbinom{H_k}{m}\qquad
(m\in \N, \alpha\in\Phi, k\in \{1,\dots, n\}),
\]
taken in any order, will be called a {\em Kostant monomial}.  Note
that the set of Kostant monomials is multiplicatively closed, and
spans $U_\Z$.  We define a function $\ct$ (content function) on
Kostant monomials by setting
\[
\ct(\divided{x_\alpha}{m}):= m\,\varepsilon_{\max(i,j)}, \quad
\ct( \binom{H_k}{m} ) := 0,
\]
where $\alpha = \varepsilon_i - \varepsilon_j$ ($i\ne j$), and by
declaring that $\ct(XY) = \ct(X)+\ct(Y)$ whenever $X,Y$ are Kostant
monomials.

We write any $A\in \N^{\Phi^+}$ in ``multi-index'' form
$A=(a_\alpha)_{\alpha\in \Phi^+}$ and set $|A|:= \sum_{\alpha\in
\Phi^+} a_\alpha$.  For $A, C \in \N^{\Phi^+}$ we write
\[
e_A = \prod_{\alpha\in \Phi^+} \divided{x_\alpha}{a_\alpha}, \quad
f_C = \prod_{\alpha\in \Phi^-} \divided{x_{\alpha}}{c_\alpha}
\]
where the products in $e_A$ and $f_C$ are taken relative to any
fixed orders on $\Phi^+$ and $\Phi^-$.

\begin{theorem} \label{thm:idemp:basis}
The integral Schur algebra $S_\Z(n,d)$ is the subring of $S(n,d)$
generated by all divided powers $ \divided{e_j}{m},\,
\divided{f_j}{m} (j\in\{1,\ldots , n-1\}, m\in \N)$. Moreover,
this algebra has a $\Z$-basis consisting of all
\begin{equation}\label{B1}
e_A 1_\lambda f_C  \qquad (\ct(e_A f_C) \preceq \lambda)\tag{B1}
\end{equation}
and another such basis consisting of all
\begin{equation}\label{B2}
f_A 1_\lambda e_C  \qquad (\ct(f_A e_C) \preceq \lambda)\tag{B2}
\end{equation}
where $A,C \in \N^{\Phi^+}$, $\lambda\in \Lambda(n,d)$, and where
$\preceq$ denotes the {\em componentwise} partial ordering on
$\N^n$.
\end{theorem}


Finally, we have another presentation of the Schur algebra by
generators and relations. This presentation has the advantage that it
possesses a quantization of the same form, in which we can set $v=1$
to recover the classical version.

\begin{theorem} \label{thm:idemp:present}
For each $i\in \{1,\dots,n-1\}$ write $\alpha_i := \varepsilon_i
-\varepsilon_{i+1}$.
The algebra $S(n,d)$ is the associative
algebra (with $1$) given by generators $1_\lambda$ ($\lambda\in
\Lambda(n,d)$), $e_i$, $f_i$ ($i\in \{1,\dots,n-1\}$) subject to
the relations
\begin{equation}\label{S1}
\begin{gathered}
1_\lambda 1_\mu = \delta_{\lambda,\mu} 1_\lambda
  \quad(\lambda,\mu\in \Lambda(n,d)),\\
\sum_{\lambda\in \Lambda(n,d)} 1_\lambda = 1,
\end{gathered}\tag{S1}
\end{equation}
\begin{equation}\label{S2}
\begin{gathered}
e_i 1_\lambda =
\begin{cases}
1_{\lambda+\alpha_i} e_i &
   \text{if $\lambda+\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
f_i 1_\lambda =
\begin{cases}
1_{\lambda-\alpha_i} f_i &
   \text{if $\lambda-\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
1_\lambda e_i =
\begin{cases}
e_i 1_{\lambda-\alpha_i} &
   \text{if $\lambda-\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
1_\lambda f_i =
\begin{cases}
f_i 1_{\lambda+\alpha_i} &
   \text{if $\lambda+\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}
\end{gathered}\tag{S2}
\end{equation}
\begin{equation}\label{S3}
e_i f_j - f_j e_i = \delta_{ij}
\sum_{\lambda\in \Lambda(n,d)} (\lambda_j-\lambda_{j+1}) 1_\lambda, \tag{S3}
\end{equation}
along with the Serre relations \eqref{R4}, \eqref{R5}, for
$i,j \in \{1, \dots,n-1\}$.
\end{theorem}



\section{Main results: quantized case} \label{qsec:main}
Our main results in the quantized case are similar in form to those in
the classical case.  The first result describes a presentation by
generators and relations of the quantized Schur algebra over the
rational function field $\Q(v)$. This presentation is compatible with
the usual presentation (see section \ref{sec:que}) of $\U=\U_v(\gl_n)$.

\setcounter{theorem}{0} 
\renewcommand{\thetheorem}{\arabic{theorem}$^\prime$}

\begin{theorem} \label{qthm:present:S}
Over $\Q(v)$, the $q$-Schur algebra $\myS(n,d)$ is isomorphic with the
associative algebra (with $1$) on the same generators as for $\U$
subject to the same relations \eqref{Q1}--\eqref{Q5} as
for $\U$, together with the additional relations:
\begin{align}
& K_1  K_2 \cdots  K_n = v^d \tag{Q6}\label{Q6}, \\
& (K_j-1)(K_j-v)(K_j-v^2)\cdots(K_j-v^d) = 0 \qquad(j=1, \dots, n).
  \tag{Q7}\label{Q7}
\end{align}
\end{theorem}

The next result gives a basis for the $q$-Schur algebra which is
the analogue of the Poincare-Birkhoff-Witt (PBW) type basis of
$\U$, given in Lusztig \cite[Prop.\ 1.13]{Lusztigbook}.

\begin{theorem} \label{qthm:truncPBW}
The algebra $\myS(n,d)$ has a ``truncated PBW type'' basis which
can be described as follows. Fix an integer $k_0$ with $1\le k_0
\le n$ and set
\[
G'=\{ E_\alpha, F_{\alpha} \mid \alpha\in \Phi^+ \} \cup \{K_k
\mid k \in \{1,\dots,n\}-\{k_0\} \}
\]
and fix some ordering for this set.  Then the set of all
monomials in $G'$ (with specified order) of total degree at most
$d$ is a basis for $\myS(n,d)$.
\end{theorem}

Note that setting $v=1$ in the basis of Theorem
\ref{qthm:truncPBW} does not yield the basis of Theorem
\ref{thm:truncPBW} since $K_i$ acts as the identity when $v=1$.

Our next result constructs the integral $q$-Schur algebra
$\myS_\A(n,d)$ in terms of the generators given above. For $B$ in
$\N^n$, we write
\[
K_B = \prod_{j=1}^n \sqbinom{K_j}{b_j},
\]
where for indeterminates $X,X^{-1}$ satisfying $X X^{-1} = X^{-1} X = 1$ and
any $t\in \N$ we formally set
\[
\sqbinom{X}{t}:=\prod_{s=1}^{t}
\frac{Xv^{-s+1}-X^{-1}v^{s-1}}{v^s-v^{-s}},
\]
an expression that makes
sense if $X$ is replaced by any invertible element of a
$\Q(v)$-algebra.


Given $\lambda \in \Lambda(n,d)$ we set (when we are in the
quantum case) $1_\lambda:= K_\lambda$. It turns out that, just as
in the classical case, the collection $\{1_\lambda\}$ as
$\lambda$ varies over $\Lambda(n,d)$ forms a set of pairwise
orthogonal idempotents in $\myS_\A(n,d)$ which sum to the identity
element.

Let $[m]$ denote the quantum integer $[m]:=
(v^m-v^{-m})/(v-v^{-1})$ and set $[m]! := [m][m-1] \cdots [1]$.
Then the $q$-analogues of the divided powers of root vectors are
defined to be $ \divided{E_\alpha}{m}:= E_\alpha/[m]!$ and
$\divided{F_\alpha}{m}:= F_\alpha/[m]!.$ Any product in $\U$ of
elements of the form
\[
\divided{E_\alpha}{m}, \quad \divided{F_\alpha}{m}, 
\quad K_j^{\pm 1},
\quad\sqbinom{K_j}{m}
\qquad (m\in \N,\ \alpha\in\Phi,\ j\in \{1,\dots, n\}),
\]
taken in any order, will be called a {\em Kostant monomial}.  As before,
the set of Kostant monomials is multiplicatively closed, and
spans $\U_\A$.  The definition of content $\ct$ of
a Kostant monomial is obtained similarly, by setting
\[
\ct(\divided{E_\alpha}{m}) = \ct(\divided{F_\alpha}{m})
  := m\,\varepsilon_{\max(i,j)}, \quad
\ct(K_l^{\pm 1}) = \ct( \sqbinom{K_l}{m} ) := 0
\]
where $\alpha = \varepsilon_i - \varepsilon_j \in \Phi^+$, and by
declaring that $\ct(XY) = \ct(X)+\ct(Y)$ whenever $X,Y$ are
Kostant monomials. For $A, C \in \N^{\Phi^+}$ we write
\[
E_A = \prod_{\alpha\in \Phi^+} \divided{E_\alpha}{a_\alpha}, \quad
F_C = \prod_{\alpha\in \Phi^+} \divided{F_{\alpha}}{c_\alpha}
\]
where the products in $E_A$ and $F_C$ are taken relative to any
two specified orderings on $\Phi^+$.

\begin{theorem} \label{qthm:idemp:basis}
The integral $q$-Schur algebra $\myS_\A(n,d)$ is the subring of
$\myS(n,d)$ generated by all quantum divided powers $
\divided{E_j}{m},\, \divided{F_j}{m} \,(j\in \{ 1,\ldots , n-1\},
m\in \N),$ along with the elements $\sqbinom{K_j}{m}$ ($j \in
\{1,\dots,n\}$, $m\in \N$). Moreover, this algebra has a basis
over $\A$ consisting of all
\begin{equation}\label{B1'}
E_A 1_\lambda F_C  \qquad (\ct(e_A f_C) \preceq \lambda)\tag{B$1^\prime$}
\end{equation}
and another such basis consisting of all
\begin{equation}\label{B2'}
F_A 1_\lambda E_C  \qquad (\ct(f_A e_C) \preceq \lambda)\tag{B$2^\prime$}
\end{equation}
where $A,C \in \N^{\Phi^+}$, $\lambda\in \Lambda(n,d)$, and where
$\preceq$ denotes the {\em componentwise} partial ordering on
$\N^n$.
\end{theorem}

Unlike the truncated PBW basis, the bases of Theorem
\ref{qthm:idemp:basis} do specialize when $v=1$ to their classical
analogues given in Theorem \ref{thm:idemp:basis}.


Finally, we have another presentation of the $q$-Schur algebra by
generators and relations. This presentation has the advantage that by
setting $v=1$, we recover the classical version given in Theorem
\ref{thm:idemp:present}.  The relations of the presentation are
similar to relations that hold for Lusztig's modified form $\dot{\U}$
of $\U$.  (See \cite[Chap.\ 23]{Lusztigbook}.)


\begin{theorem} \label{qthm:idemp:present}
For each $i\in \{1,\dots,n-1\}$ write $\alpha_i := \varepsilon_i
-\varepsilon_{i+1}$.
The algebra $\myS(n,d)$ is the associative
algebra (with $1$) given by generators $1_\lambda$ ($\lambda\in
\Lambda(n,d)$), $E_i$, $F_i$ ($i\in \{1,\dots,n-1\}$) subject to
the relations
\begin{equation}\label{S1'}
\begin{gathered}
1_\lambda 1_\mu = \delta_{\lambda,\mu} 1_\lambda
  \quad(\lambda,\mu\in \Lambda(n,d)),\\
\sum_{\lambda\in \Lambda(n,d)} 1_\lambda = 1,
\end{gathered} \tag{S$1^\prime$}
\end{equation}
\begin{equation}\label{S2'}
\begin{gathered}
E_i 1_\lambda =
\begin{cases}
1_{\lambda+\alpha_i} E_i &
   \text{if $\lambda+\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
F_i 1_\lambda =
\begin{cases}
1_{\lambda-\alpha_i} F_i &
   \text{if $\lambda-\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
1_\lambda E_i =
\begin{cases}
E_i 1_{\lambda-\alpha_i} &
   \text{if $\lambda-\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}\\
1_\lambda F_i =
\begin{cases}
F_i 1_{\lambda+\alpha_i} &
   \text{if $\lambda+\alpha_i \in \Lambda(n,d)$},\\
0 & \text{otherwise},
\end{cases}
\end{gathered}\tag{S$2^\prime$}
\end{equation}
\begin{equation} \label{S3'}
E_i F_j - F_j E_i = \delta_{ij}
\sum_{\lambda\in \Lambda(n,d)} [\lambda_j-\lambda_{j+1}] 1_\lambda,
  \tag{S$3^\prime$}
\end{equation}
along with the $q$-Serre relations \eqref{Q4}, \eqref{Q5}, for
$i,j \in \{1, \dots,n-1\}$.
\end{theorem}



\section{Other results}\label{sec:other}

\subsection{Triangular decomposition.}
One can define the plus, minus, and zero parts of Schur algebras in
terms of the generators, as follows. (These subalgebras have been
studied before.) The plus part $S^+(n,d)$ (resp., the minus part
$S^-(n,d)$) is the subalgebra of $S(n,d)$ generated by all $x_\alpha$,
$\alpha\in \Phi^+$ (resp., $\alpha\in \Phi^-$). The zero part
$S^0(n,d)$ is the subalgebra generated by all $H_j$, $j=1,\dots, n$.
We also have the Borel Schur algebras $S^{\geqslant0}(n,d)$ (resp.,
$S^{\leqslant0}(n,d)$), the subalgebra generated by $S^+(n,d)$ (resp.,
$S^-(n,d)$) together with $S^0(n,d)$.

The appellations $S_\Z^+(n,d)$, $S_\Z^-(n,d)$, $S_\Z^0(n,d)$,
$S_\Z^{\geqslant0}(n,d)$, $S_\Z^{\leqslant0}(n,d)$ will denote the
intersection of the appropriate algebra from above with the integral
form $S_\Z(n,d)$.

The algebra $S=S(n,d)$ has a triangular decomposition $S=S^+S^0S^-$.
We show that in this decomposition one can permute the three factors
in any order. Moreover, the same result holds over $\Z$.


The zero part $S_\Z^0(n,d)$ is the algebra generated by all
$\binom{H_j}{m}$ for $j=1,\dots,n$ and $m \in \N$. We give in
\cite{PSA} a presentation of $S^0(n,d)$ by generators and relations.
In particular, we prove that $H_B = 0$ whenever $|B| > d$ ($B\in
\N^n$) and that the set of (pairwise orthogonal) idempotents
$1_\lambda$, $\lambda\in \Lambda(n,d)$, is a $\Z$-basis of
$S_\Z^0(n,d)$.

$S_\Z^+(n,d)$ (resp., $S_\Z^-(n,d)$) is the algebra generated by all
divided powers $\divided{x_\alpha}{m}$ for $\alpha\in \Phi^+$ (resp.,
$\alpha\in \Phi^-$) and $m\in \N$.  It is an easy consequence of the
commutation formulas \eqref{S2} that each generator $x_\alpha$
is nilpotent of index $d+1$; see \cite{PSA} for details.  Moreover,
from our main results we see easily that the set of all $e_A$ (resp.,
$f_A$) such that $|A|\le d$ is a $\Z$-basis for the algebra
$S_\Z^+(n,d)$ (resp., $S_\Z^-(n,d)$).

It also follows immediately from our results that the set of all $e_A
1_\lambda$ (resp., $1_\lambda f_A$) satisfying $\ct(e_A)\preceq
\lambda$ is an integral basis for the Borel Schur algebra
$S_\Z^{\geqslant0}(n,d)$ (resp., $S_\Z^{\leqslant0}(n,d)$).


Similar statements to the above hold in the quantum case. In
particular, as a corollary of the commutation formulas
\eqref{S2'} one can give a simple proof of \cite[Prop.\ 2.3]{RGreen}.



\subsection{Explicit reduction formulas}
Fix a positive root $\alpha$ and write $\alpha = \varepsilon_i -
\varepsilon_j$ for $i2$.


We also have from \cite{DGquantum} the following $q$-version of the
above, which presents the $q$-Schur algebra $\myS(2,d)$ as a quotient of
the quantized enveloping algebra $\U(\mysl_2)$.

\setcounter{theorem}{4} 
\renewcommand{\thetheorem}{\arabic{theorem}$^\prime$}

\begin{theorem}
Over $\Q(v)$, the quantum Schur algebra $\myS(2,d)$ is isomorphic to the
algebra generated by $E$, $F$, $K^{\pm 1}$ subject to the
relations:
\begin{align*}
& KK^{-1}=K^{-1}K=1,\\
&K E K^{- 1} =v^{2}E, \qquad
K F K^{- 1} =v^{- 2}F, \\
& EF-FE=\frac{K - K^{-1}}{v-v^{-1}}, \\
& (K-v^d)(K-v^{d-2})\cdots (K-v^{-d+2})(K-v^{-d})=0.
\end{align*}
\end{theorem}


\subsection{Hecke algebras.}
Suppose that $n\ge d$.  Let $\omega = (1^d)$.  Then the subalgebra
$1_\omega \myS(n,d) 1_\omega$ is isomorphic with the Hecke algebra
$\mathbf{H}(\Sigma_d)$.  The nonzero elements of the basis \eqref{B1'}
of the form $1_\omega E_A F_C 1_\omega$ form a basis of the Hecke
algebra; similarly for elements of the basis \eqref{B2'} of the form
$1_\omega F_A E_C 1_\omega$.

Moreover, taking $d=n$, we can see that
$\mathbf{H}=\mathbf{H}(\Sigma_n)$ is generated by the elements
$1_\omega E_i F_i 1_\omega$ ($1 \le i \le n-1$).  Alternatively,
$\mathbf{H}$ is generated by the $1_\omega F_i E_i 1_\omega$ ($1 \le i
\le n-1$).  One can easily describe the relations on these generators,
thus obtaining a presentation of $\mathbf{H}$ which is closely related
to one in \cite{Wenzl}.

\bibliographystyle{amsplain}
\begin{thebibliography}{10}


\bibitem{BLM} A.A. Beilinson, G. Lusztig, and R. MacPherson,
A geometric setting for the quantum deformation of $\GL_n$, {\em Duke
Math. J.} {\bf61} (1990), 655--677.
\MR{91m:17012}
\bibitem{DG} S. Doty and A. Giaquinto, Presenting Schur
algebras as quotients of the universal enveloping algebra of $\gl_2$,
{\em Algebras and Representation Theory}, to appear.
\bibitem{DGquantum} S. Doty and A. Giaquinto, Presenting
quantum Schur algebras as quotients of the quantized enveloping
algebra of $\gl_2$, preprint, Loyola University Chicago, December
2000.
\bibitem{PSA} S. Doty and A. Giaquinto, Presenting
Schur algebras, preprint, Loyola University Chicago, April 2001.
\bibitem{Du} Jie Du, A note on quantized Weyl reciprocity at
roots of unity, {\em Algebra Colloq.} {\bf2} (1995), 363--372.
\MR{96m:17024}
\bibitem{Green} J.~A.~Green, {\em Polynomial Representations
of $\GL_n$} (Lecture Notes in Math.~{\bf830}), Springer-Verlag, New
York 1980.
\MR{83j:20003}
\bibitem{RGreen} R. Green, $q$-Schur algebras as quotients of
quantized enveloping algebras, {\em J. Algebra} {\bf185} (1996),
660--687.
\MR{97k:17016}
\bibitem{Jimbo} M. Jimbo, A $q$-analogue of $U(\gl(N+1))$, Hecke
algebra, and the Yang-Baxter equation, {\em Letters Math. Physics} {\bf11}
(1986), 247--252.
\MR{87k:17011}
\pagebreak
\bibitem{Lusztigbook} G. Lusztig, {\em Introduction to
Quantum Groups}, Birkh\"{a}user Boston 1993.
\MR{94m:17016}
\bibitem{Wenzl} H. Wenzl, Hecke algebras of type $A_n$ and
subfactors, {\em Invent. Math.} {\bf92} (1988), 349-383.
\MR{90b:46118}
\end{thebibliography}
\end{document}