EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publishers TeX code     *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you retrieve the article in DVI,       *
%_ * PostScript, or PDF format.                                             *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{27-FEB-2004,27-FEB-2004,27-FEB-2004,27-FEB-2004}
 
\RequirePackage[warning,log]{snapshot}
\documentclass{era-l}
\issueinfo{10}{02}{}{2004}
\dateposted{March 4, 2004}
\pagespan{11}{20}
\PII{S 1079-6762(04)00125-8}

\copyrightinfo{2004}{American Mathematical Society}

\usepackage{latexsym, amssymb, amsfonts, amscd}
\newenvironment{pf}{\proof[\proofname]}{\endproof}
\theoremstyle{plain}
\newtheorem{Thm}{Theorem}[section]
\newtheorem{Cor}[Thm]{Corollary}
\newtheorem{Main}[Thm]{Main Theorem}
\newtheorem{Mainf}[Thm]{First Main Theorem}
\newtheorem{LTF}[Thm]{Lefschetz Trace Formula}
\newtheorem{Mains}[Thm]{Second Main Theorem}
\newtheorem{Maint}[Thm]{Third Main Theorem}
\newtheorem{Mainfo}[Thm]{Fourth Main Theorem}
\newtheorem{Prop}[Thm]{Proposition}
\newtheorem{Lem}[Thm]{Lemma}
\newtheorem{Cl}[Thm]{Claim}


\theoremstyle{definition}
\newtheorem{Conj}[Thm]{Conjecture}
\newtheorem{Def}[Thm]{Definition}
\newtheorem{Ex}[Thm]{Example}
\newtheorem{Exs}[Thm]{Examples}
\newtheorem{Q}[Thm]{Question}
\newtheorem{step}{Step}
\newtheorem{Not}[Thm]{Notation}
\newtheorem{Emp}[Thm]{}

\theoremstyle{remark}
\newtheorem{Rem}[Thm]{Remark}
\newtheorem{Rem1}[Thm]{Remarks}
\newtheorem{Con}[Thm]{Construction}



\errorcontextlines=0


\numberwithin{equation}{section}
\newcommand{\qlbar}{\overline{\B{Q}_l}}
\newcommand{\fqbar}{\overline{\fq}}
\newcommand{\om}{\omega}
\newcommand{\La}{\Lambda}
\newcommand{\pp}{\boxtimes}
\newcommand{\ov}{\overline}
\newcommand{\rig}{^{rig}}
\newcommand{\fq}{\B{F}_q}
\newcommand{\fqk}{\B{F}_{q^k}}
\newcommand{\pgp}{\text{$\PGL{d}(K_w)$}}
\newcommand{\gp}{\text{$\GL{d}(K_w)$}}
\newcommand{\psp}{\text{$\PSL{d}(K_w)$}}
\newcommand{\ssp}{\text{$\SL{d}(K_w)$}}
\newcommand{\B}[1]{\mathbb#1}
\newcommand{\cal}[1]{\mathcal{#1}}
\newcommand{\C}[1]{\cal#1}
\newcommand{\pgr}{\text{$\PGU{d-1,1}(\B{R})$}}
\newcommand{\gr}{\text{$\GU{d-1,1}(\B{R})$}}
\newcommand{\psr}{\text{$\PSU{d-1,1}(\B{R})$}}
\newcommand{\sr}{\operatorname{sr}}
\newcommand{\ssc}{\operatorname{sc}}
\newcommand{\der}{\operatorname{der}}
\newcommand{\nr}{\operatorname{nr}}
\newcommand{\tu}{\operatorname{tu}}
\newcommand{\tn}{\operatorname{tn}}
\newcommand{\ff}[1]{\text {$\cal F(#1)$}}
\newcommand{\isom}{\overset {\thicksim}{\to}}
\newcommand{\oom}[2]{\text{$\Omega^{#1}_{#2}$}}
\newcommand{\Om}{\Omega}
\newcommand{\omn}{\prod_{i=1}^r(\oom{d}{K_{w_i}}
\widehat{\otimes}_{K_{w_i}}\widehat{K}_{w_i}^{\nr})\otimes_{K_{w_i}}E_v}
\newcommand{\si}{\sigma}
\newcommand{\Si}{\Sigma}
\newcommand{\SI}{\prod_{i=1}^r\si{d}{K_{w_i}}\otimes_{K_{w_i}}E_v}
\newcommand{\SIN}{\prod_{i=1}^r\si{d,n}{K_{w_i}}\otimes_{K_{w_i}}E_v}
\newcommand{\SiN}{\si{d,n}{K_w}}
\newcommand{\esc}[2]{\text{$(#1,#2)$-scheme}}
\newcommand{\surj}{\twoheadrightarrow}
\newcommand{\lra}{\longrightarrow}
\newcommand{\lla}{\longleftarrow}
\newcommand{\hra}{\hookrightarrow}
\newcommand{\wt}{\widetilde}
\newcommand{\wh}{\widehat}
\newcommand{\Gm}{\Gamma}
\newcommand{\G}{\bo{G}}
\newcommand{\bo}{\mathbf}
\newcommand{\bb }{B^{d-1}}
\newcommand{\bbr }{(\bb)^r  }
\newcommand{\g}{\C{G}}
\newcommand{\h}{\frak{h}}
\newcommand{\gm}{\gamma}
\newcommand{\ka}{\kappa}
\newcommand{\dt}{\delta}
\newcommand{\Dt}{\Delta}
\newcommand{\bs}{\backslash}
\newcommand{\DtG}{\Dt _{G}}
\newcommand{\GmG}{\Gm _{G}}
\newcommand{\dtG}{\dt _{G}}
\newcommand{\gmG}{\gm _{G}}
\newcommand{\DtE}{\Dt _{E}}
\newcommand{\GmE}{\Gm _{E}}
\newcommand{\dtE}{\dt _{E}}
\newcommand{\gmE}{\gm _{E}}
\newcommand{\DtS}{\Dt _{S}}
\newcommand{\GmS}{\Gm _{S}}
\newcommand{\SIE}{\text{$S\in\ff{E}$}}
\newcommand{\imm}{\Longleftrightarrow}
\newcommand{\m}{^{\times}}
\newcommand{\mDw}{\text{$D_{w}^{\times}$}}
\newcommand{\mODw}{\text{$\C{O}_{D_w}^{\times}$}}
\newcommand{\pan}{\text{$\gp\bs (\Si\times ((\gp\times E)/\Gm ))$}}
\newcommand{\ii}{^{int}}
\newcommand{\un}{\operatorname{un}}
\newcommand{\nil}{\operatorname{nil}}
\newcommand{\op}{^{op}}
\newcommand{\disc}{^{disc}}
\newcommand{\al}{\alpha}
\newcommand{\af}{\B{A}_{F}^{f}}
\newcommand{\afv}{\B{A}^{f;v_1,...,v_r}_{F}}
\newcommand{\la}{\lambda}
\newcommand{\an}{^{an}}
\newcommand{\tw}{^{tw}}
\newcommand{\rs}[1]{Section \ref{S:#1}}
\newcommand{\rss}[1]{Subsection \ref{SS:#1}}
\newcommand{\rl}[1]{Lemma \ref{L:#1}}
\newcommand{\rn}[1]{Notation \ref{N:#1}}
\newcommand{\rcl}[1]{Claim \ref{C:#1}}
\newcommand{\rp}[1]{Proposition \ref{P:#1}}
\newcommand{\rr}[1]{Remark \ref{R:#1}}
\newcommand{\rc}[1]{Construction \ref{C:#1}}
\newcommand{\re}[1]{\ref{E:#1}}
\newcommand{\rco}[1]{Corollary \ref{C:#1}}
\newcommand{\rcr}[1]{Corollary \ref{C:#1}}
\newcommand{\rt}[1] {Theorem \ref{T:#1}}
\newcommand{\rd}[1]{Definition \ref{D:#1}}
\newcommand{\sm}{\smallsetminus}
\newcommand{\be}{\infty}
\newcommand{\emp}{\varnothing}
\newcommand{\GU}[1]{\bold{GU_{#1}}}
\newcommand{\PU}[1]{\bold{PU_{#1}}}
\newcommand{\PSU}[1]{\bold{PSU_{#1}}}
\newcommand{\SU}[1]{\bold{SU}_{#1}}
\newcommand{\PGU}[1]{\bold{PGU_{#1}}}
\newcommand{\GL}[1]{\bold{GL_{#1}}}
\newcommand{\PGL}[1]{\bold{PGL_{#1}}}
\newcommand{\SL}[1]{\bold{SL_{#1}}}
\newcommand{\PSL}[1]{\bold{PSL_{#1}}}
\newcommand{\Mat}{\operatorname{Mat}}
\newcommand{\vol}{\operatorname{vol}}
\newcommand{\IC}{\operatorname{IC}}
\newcommand{\inv}{\operatorname{inv}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\Ker}{\operatorname{Ker}}
\newcommand{\Out}{\operatorname{Out}}
\newcommand{\Coker}{\operatorname{Coker}}
\newcommand{\Norm}{\operatorname{Norm}}
\newcommand{\val}{\operatorname{val}}
\newcommand{\Det}{\operatorname{det}}
\newcommand{\im}{\operatorname{Im}}
\newcommand{\diag}{\operatorname{diag}}
\newcommand{\Spec}{\operatorname{Spec}}
\newcommand{\Aut}{\operatorname{Aut}}
\newcommand{\Gr}{\operatorname{Gr}}
\newcommand{\TrAd}{\operatorname{TrAd}}
\newcommand{\Spp}{\operatorname{Sp}}
\newcommand{\Inn}{\operatorname{Inn}}
\newcommand{\Ind}{\operatorname{Ind}}
\newcommand{\myss}{^{\operatorname{ss}}}
\newcommand{\Ad}{\operatorname{Ad}}
\newcommand{\Frob}{\operatorname{Frob}}
\newcommand{\Gal}{\operatorname{Gal}}
\newcommand{\Tr}{\operatorname{Tr}}
\newcommand{\Fr}{\operatorname{Fr}}
\newcommand{\coh}{\operatorname{H}}
\newcommand{\PG}{\bold{PG}}
\newcommand{\PH}{\bold{PH}}
\newcommand{\Lie}{\operatorname{Lie}}
\newcommand{\ad}{\operatorname{ad}}
\newcommand{\Id}{\operatorname{Id}}
\newcommand{\Rep}{\operatorname{Rep}}
\newcommand{\vect}{\operatorname{Vec}}
\newcommand{\Tor}{\operatorname{Tor}}
\newcommand{\End}{\operatorname{End}}
\newcommand{\Dim}{\operatorname{dim}}
\newcommand{\rk}{\operatorname{rk}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\RHom}{\operatorname{RHom}}
\newcommand{\Span}{\operatorname{Span}}
\newcommand{\lan}{\langle}
\newcommand{\ran}{\rangle}
\DeclareMathOperator{\image}{Im}
\newcommand{\set}[1]{\left\{#1\right\}}


\newcommand{\mR}{{\mathbb R}}
\newcommand{\mC}{{\mathbb C}}
\newcommand{\mZ}{{\mathbb Z}}
\newcommand{\mP}{{\mathbb P}}
\newcommand{\mG}{{\mathbb G}}
\newcommand{\mA}{{\mathbb A}}
\newcommand{\mF}{{\mathbb F}}
\newcommand{\mQ}{{\mathbb Q}}

\newcommand{\ho}{\hookrightarrow}

\newcommand{\Gg}{\gamma}
\newcommand{\GG}{\Gamma}
\newcommand{\bO}{\Omega}
\newcommand{\bl}{\lambda}
\newcommand{\bL}{\Lambda}
\newcommand{\bS}{\Sigma}
\newcommand{\ep}{\epsilon}
\newcommand{\D}{\Delta}

\newcommand{\mcA}{{\mathcal A}}
\newcommand{\mcB}{{\mathcal B}}
\newcommand{\mcC}{{\mathcal C}}
\newcommand{\mcD}{{\mathcal D}}
\newcommand{\mcE}{{\mathcal E}}
\newcommand{\mcF}{{\mathcal F}}
\newcommand{\mcG}{{\mathcal G}}
\newcommand{\mcH}{{\mathcal H}}
\newcommand{\mcI}{{\mathcal I}}
\newcommand{\mcJ}{{\mathcal J}}
\newcommand{\mcK}{{\mathcal K}}
\newcommand{\mcL}{{\mathcal L}}
\newcommand{\mcM}{{\mathcal M}}
\newcommand{\mcN}{{\mathcal N}}
\newcommand{\mcO}{{\mathcal O}}
\newcommand{\mcP}{{\mathcal P}}
\newcommand{\mcQ}{{\mathcal Q}}
\newcommand{\mcR}{{\mathcal R}}
\newcommand{\mcS}{{\mathcal S}}
\newcommand{\mcT}{{\mathcal T}}
\newcommand{\mcU}{{\mathcal U}}
\newcommand{\mcV}{{\mathcal V}}
\newcommand{\mcW}{{\mathcal W}}
\newcommand{\mcX}{{\mathcal X}}
\newcommand{\mcY}{{\mathcal Y}}
\newcommand{\mcZ}{{\mathcal Z}}

\newcommand{\fa}{{\mathfrak a}}
\newcommand{\fb}{{\mathfrak b}}
\newcommand{\fc}{{\mathfrak c}}
\newcommand{\fd}{{\mathfrak d}}
\newcommand{\fe}{{\mathfrak e}}
\newcommand{\fh}{{\mathfrak h}}
\newcommand{\fii}{{\mathfrak i}}
\newcommand{\fj}{{\mathfrak j}}
\newcommand{\fk}{{\mathfrak k}}
\newcommand{\fl}{{\mathfrak l}}
\newcommand{\fm}{{\mathfrak m}}
\newcommand{\fn}{{\mathfrak n}}
\newcommand{\fo}{{\mathfrak o}}
\newcommand{\fp}{{\mathfrak p}}
\newcommand{\fr}{{\mathfrak r}}
\newcommand{\fs}{{\mathfrak s}}
\newcommand{\ft}{{\mathfrak t}}
\newcommand{\fu}{{\mathfrak u}}
\newcommand{\fv}{{\mathfrak v}}
\newcommand{\fw}{{\mathfrak w}}
\newcommand{\fx}{{\mathfrak x}}
\newcommand{\fy}{{\mathfrak y}}
\newcommand{\fz}{{\mathfrak z}}
\newcommand{\ti}{\tilde}
\newcommand{\va}{\vartriangleleft}

\begin{document}

\title[Endoscopic decomposition]%
{Endoscopic decomposition of characters of certain cuspidal
representations}

\author{David Kazhdan}
\address{Institute of Mathematics,
Hebrew University, Givat-Ram, Jerusalem,  91904 Israel}
\email{kazhdan@math.huji.ac.il}
\thanks{The work of the second author was supported by
the Israel Science Foundation (Grant No. 38/01-1)}

\author{Yakov Varshavsky}
\address{Institute of Mathematics,
Hebrew University, Givat-Ram, Jerusalem,  91904 Israel}
\email{vyakov@math.huji.ac.il }


\date{September 18, 2003 and, in revised form, January 19, 2004}

\keywords{Endoscopy, Deligne-Lusztig representations}

\subjclass[2000]{Primary 22E50; Secondary 22E35}


\commby{Svetlana Katok}

\begin{abstract}
We construct an endoscopic decomposition 
for local $L$-packets
associated to irreducible cuspidal Deligne-Lusztig representations. 
Moreover, the obtained decomposition is compatible with inner 
twistings.
\end{abstract}
\maketitle

\section{Introduction}

Let $E$ be a local non-Archimedean field, with ring of integers $\C{O}$ 
and residue field
$\fq$ of characteristic $p$. We denote by $\Gm\supset W\supset I$ the 
absolute Galois,
the Weil, and the inertia groups of $E$. Let $G$ be a reductive group over
$E$, ${}^LG=\wh{G}\rtimes W$ its complex Langlands dual group, and 
$\C{D}(G(E))$ the
space of invariant distributions on $G(E)$.

Every admissible homomorphism $\la:W\to {}^LG$ (see \cite[$\S$ 10]{Ko1})
gives rise to a finite group 
$S_{\la}:=\pi_0(Z_{\wh{G}}(\la)/Z(\wh{G})^{\Gm})$,
where $Z_{\wh{G}}(\la)$ is the centralizer of $\la(W)$ in $\wh{G}$.
Every conjugacy class $\ka$ of $S_{\la}$ defines an endoscopic
subspace $\C{D}_{\ka,\la}(G(E))\subset\C{D}(G(E))$. For simplicity, we 
will restrict
ourselves to the elliptic case, where $\la(W)$ does not lie in any 
proper Levi subgroup of ${}^LG$.

Langlands conjectured that every elliptic $\la$ corresponds to a finite 
set $\Pi_{\la}$,
called an $L$-packet, of cuspidal irreducible representations of $G(E)$.
Moreover, the subspace $\C{D}_{\la}(G(E))\subset\C{D}(G(E))$, generated 
by the characters
$\{\chi(\pi)\}_{\pi\in\Pi_{\la}}$, must have an endoscopic 
decomposition.
More precisely, it is expected (\cite[IV, 2]{La})
that there exists a basis $\{a_{\pi}\}_{\pi\in \Pi_{\la}}$ of the space 
of central functions on
$S_{\la}$ such that
$\chi_{\ka,\la}:=\sum_{\pi\in \Pi_{\la}}a_{\pi}(\ka) \chi(\pi)$ belongs 
to
$\C{D}_{\ka,\la}(G)$ for every conjugacy class $\ka$ of $S_{\la}$.

The goal of this paper is to construct the endoscopic decomposition of 
$\C{D}_{\la}(G(E))$ for
tamely ramified $\la$'s such that $Z_{\wh{G}}(\la(I))$ is a maximal 
torus. In this case, $G$ splits over
an unramified extension of $E$, and $\la$ factors through 
${}^LT\hra{}^LG$ for an elliptic
unramified maximal torus $T$ of $G$.
By the local Langlands correspondence for tori (\cite{La2}), a 
homomorphism
$\la:W\to {}^LT$ defines a tamely ramified homomorphism 
$\theta:T(E)\to\B{C}\m$.
Each $\ka\in S_{\la}=\wh{T}^{\Gm}/Z(\wh{G})^{\Gm}$ gives rise to an 
elliptic endoscopic
datum $\C{E}_{\ka,\la}$ of $G$, while the characters of $S_{\la}$ are in 
bijection with the
conjugacy classes of embeddings $T\hra G$, stably conjugate to the 
inclusion.
Therefore each character $a$ of $S_{\la}$ gives rise to an irreducible 
cuspidal
representation
$\pi_{a,\la}$ of $G(E)$ (denoted by $\pi_{a,\theta}$ in \rn{repr}).


Our main result asserts, for fields $E$ of sufficiently large residual 
characteristic,
that each $\chi_{\ka,\la}:=\sum_{a}a(\ka) \chi(\pi_{a,\la})$ is
$\C{E}_{\ka,\la}$-stable. Moreover, the resulting endoscopic 
decomposition of
$\C{D}_{\la}(G(E))$ is compatible with inner twistings.
For simplicity, we restrict ourselves to local fields of characteristic 
zero,
while the case of positive characteristic follows by approximation (see 
\cite{Ka3}, \cite{De}).


Our argument goes as follows. First we prove the stability
of the restriction of $\chi_{\ka,\la}$ to the subset of topologically 
unipotent elements of
$G(E)$. If $p$ is sufficiently large, this assertion reduces to
the analogous assertion about distributions on the Lie algebra.
Now the stability follows from a combination of a Springer hypothesis 
\cite{Ka1}
and a generalization of a theorem of Waldspurger \cite{Wa}.
To prove the result in general, we use the topological Jordan 
decomposition (\cite{Ka2}).


When this work was in the process of writing, we have heard that S. 
DeBacker and  M. Reeder
obtained similar results.

\subsection*{Notation and conventions}In addition to the notation 
introduced above, we use the following
conventions:

  For a reductive group $G$, always assumed to be connected, we denote 
by $Z(G)$, $G^{\ad}$, $G^{\der}$,
$G^{\ssc}$, $G_{\dt}$,
and $G^{\sr}$ the center of $G$, the adjoint group of $G$, the derived 
group of $G$,
the simply connected covering of $G^{\der}$, the centralizer of $\dt\in 
G$, and
the set of strongly regular semisimple elements of  $G$ (that is, the 
set of $\dt\in G$ such that
$G_{\dt}\subset G$ is a maximal torus), respectively.

  Denote by $\C{G}, \C{T},$ and $\C{L}$ the Lie algebras of the algebraic 
groups $G, T$, and
$L$.

  Let $E$ be a local non-Archimedean field of characteristic zero,  
$\ov{E}$
a fixed algebraic closure of $E$, and $E^{\nr}$ a maximal unramified 
extension of $E$ in $\ov{E}$.

  For a reductive group $G$ (resp. its Lie algebra $\C{G}$) over $E$, 
we denote
by  $\C{S}(G(E))$ (resp.  $\C{S}(\C{G}(E))$) the space of locally 
constant measures with compact support.
We denote by $\C{D}(G(E))$ (resp. $\C{D}(\C{G}(E))$) the space of  
invariant distributions on $G(E)$
(resp. $\C{G}(E)$), namely $G(E)$-invariant linear functionals on
$\C{S}(G(E))$ (resp.  $\C{S}(\C{G}(E))$), where  $G(E)$ acts by 
conjugation.
Whenever necessary we equip $G(E)$ and $\C{G}(E)$ with invariant 
measures, denoted by $\mu$, defined
by a translation-invariant top degree differential form on $G$.
We denote by $G(E)_{\tu}$ (resp. $\C{G}(E)_{\tn}$) the set of 
topologically unipotent
(resp. topologically nilpotent) elements of $G(E)$ (resp. $\C{G}(E)$).
Finally, we denote by $\rk(G)$ the rank of $G$ over $E$, and put 
$e(G):=(-1)^{\rk(G^{\ad})}$. Note that our sign
$e(G)$ differs from that defined by Kottwitz.


\section{Formulation of the main result}


\begin{Emp} \label{E:finite}
Let $L$ be a connected reductive group over $\fq$, and
$\ov{a}:\ov{T}\hra L$ an embedding of a maximal elliptic torus of $L$.
Following Deligne and Lusztig,  we associate to every
character $\ov{\theta}:\ov{T}(\fq)\to\B{C}\m$ in general position an 
irreducible cuspidal representation
$\rho_{\ov{a},\ov{\theta}}$ of $L(\fq)$ (see \cite[Prop. 7.4 and Thm. 
8.3]{DL}).
\end{Emp}

\begin{Emp}
There is an equivalence of categories $T\mapsto \ov{T}$ between tori 
over $E$ splitting over
$E^{\nr}$ and tori over $\fq$. Every such $T$ has a canonical 
$\C{O}$-structure.
\end{Emp}

\begin{Not} \label{N:repr}

a) Let $G$ be a reductive group over $E$, $T$ a torus over $E$ 
splitting over $E^{\nr}$, and
$a:T\hra G$ an embedding of a maximal elliptic torus of $G$. Then
$G$ splits over $E^{\nr}$, and $a(T(\C{O}))$ lies in a unique parahoric 
subgroup $G_{a}$ of $G(E)$.
Let $G_{a^+}$ be the pro-unipotent radical of $G_a$.
Then there exists a canonical reductive group $L_a$ over $\fq$
with an identification $L_a(\fq)=G_a/G_{a^+}$.
Moreover, $a:T\hra G$ induces an embedding $\ov{a}:\ov{T}\hra L_a$ of a 
maximal elliptic torus of $L_a$.

b) Let $\theta:T(E)\to\B{C}\m$ be a character in general position, 
trivial on
$\Ker[T(\C{O})\to\ov{T}(\fq)]$. Denote by 
$\ov{\theta}:\ov{T}(\fq)\to\B{C}\m$
the character of $\ov{T}(\fq)$ defined by $\theta$.
Then there exists a unique irreducible representation $\rho_{a,\theta}$ 
of $Z(G)(E)G_a$,
whose central character is the restriction of $\theta$, extending the 
inflation to $G_a$
of the cuspidal Deligne-Lusztig representation 
$\rho_{\ov{a},\ov{\theta}}$ of $L_a(\fq)$.
We denote by $\pi_{a,\theta}$ the induced cuspidal representation
$\Ind_{Z(G)(E)G_a}^{G(E)}\rho_{a,\theta}$ of $G(E)$.
\end{Not}
\begin{Emp} \label{E:coh}
Recall (see \cite[Thm 1.2]{Ko2}) that for every reductive group $G$ over
$E$, $H^1(E,G)$ is canonically isomorphic to the group  
$\pi_0(Z(\wh{G})^{\Gm})^D$
of characters of $\pi_0(Z(\wh{G})^{\Gm})$. If $T$ is a maximal torus of 
$G$,
we get a commutative diagram:
\[
\CD
H^1(E,T)@>{\sim}>> \pi_0(\wh{T}^{\Gm})^D\\
@VVV          @VVV\\
 H^1(E,G)@>{\sim}>> \pi_0(Z(\wh{G})^{\Gm})^D.
\endCD
\]
In particular, we have a canonical surjection
\[
\wh{T}^{\Gm}/Z(\wh{G})^{\Gm}\to 
\Coker[\pi_0(Z(\wh{G})^{\Gm})\to\pi_0(\wh{T}^{\Gm})]\overset{\thicksim}{\to}
(\Ker\,[H^1(E,T)\to H^1(E,G)])^D.
\]
\end{Emp}

\begin{Not} \label{N:char}
a) To every pair $a, a'$ of stably conjugate embeddings $T\hra G$, one 
associates the class
$\inv(a',a)\in\Ker\,[H^1(E,T)\to H^1(E,G)]$. This is the class of a 
cocycle
$c_{\sigma}=g^{-1}\sigma(g)$, where $g\in G(\ov{E})$ is such that 
$a'=gag^{-1}$
(compare \cite[4.1]{Ko2}).

b) To each  $\ka\in \wh{T}^{\Gm}/Z(\wh{G})^{\Gm}$, an embedding  
$a_0:T\hra G$, and
a character $\theta$ of $T(E)$ as in \rn{repr}, we associate the 
invariant distribution
\[
\chi_{a_0,\ka,\theta}:=e(G)\sum_{a}\lan \inv(a,a_0),\ka\ran 
\chi(\pi_{a,\theta}).
\]
Here $a$ runs over a set of representatives of conjugacy classes of 
embeddings which are
stably conjugate to $a_0$, and $\chi(\pi_{a,\theta})$ denotes the 
character of $\pi_{a,\theta}$.
\end{Not}

\begin{Not} \label{N:endoscopy}
Each pair $(a,\ka)$, where $a:T\hra G$ is an embedding of a maximal 
torus of
$G$ and $\ka$ is an element of $\wh{T}^{\Gm}$, gives rise to an 
isomorphism class
 $\C{E}_{(a,\ka)}$ of an endoscopic datum of $G$.
Furthermore,  $\C{E}_{(a,\ka)}$ is elliptic if $a(T)$ is an elliptic 
torus of $G$
(see \cite[\S 7]{Ko1} for the definitions of endoscopic data, and 
compare \cite[II, 4]{La}).

More precisely, each embedding $\eta:\wh{T}\hra\wh{G}$, whose conjugacy 
class
corresponds to the stable conjugacy class of $a$, defines an endoscopic 
datum
$\C{E}_{(a,\ka,\eta)}=(s,\rho)$, consisting of a semisimple element
$s=\eta(\ka)$ of $\wh{G}$ and a homomorphism
$\rho:\Gm\overset{\rho_T}{\lra}\Norm_{\Aut\,\wh{G}}(\eta(\wh{T}))_s/%
\eta(\wh{T})\overset{\rho'}{\lra}
\Out(\wh{G}_s^0)$. Here $\rho_T$ is induced by the $E$-structure of 
$T$, and $\rho'$ is induced
by the inclusion $\Norm_{\Aut\,\wh{G}}(\eta(\wh{T}))_s\subset 
\Norm_{\Aut\,\wh{G}}(\wh{G}^0_s)$.
Moreover, the isomorphism class of $\C{E}_{(a,\ka,\eta)}$, denoted by  
$\C{E}_{(a,\ka)}$,
does not depend on $\eta$.
\end{Not}

\begin{Not} \label{N:end}
For each $\gm\in G^{\sr}(E)$ and $\xi\in\wh{G_{\gm}}^{\Gm}$,
\begin{itemize}
\item[(i)] put $\C{E}_{(\gm,\xi)}:=\C{E}_{(a_{\gm},\xi)}$, where
$a_{\gm}:G_{\gm}\hra G$ is the inclusion map;
\item[(ii)] fix an
invariant measure $dg_{\gm}$ on $G_{\gm}(E)$, and put
\[
O_{\gm}(\phi):=\int_{G(E)/G_{\gm}(E)}f(g\gm g^{-1})\frac{dg}{dg_{\gm}}
\]
for each $\phi=fdg\in\C{S}(G(E))$;
\item[(iii)] denote by $\ov{\xi}\in 
\pi_0(\wh{G_{\gm}}^{\Gm}/Z(\wh{G})^{\Gm})$ the class of $\xi$;
\item[(iv)] denote by $O^{\ov{\xi}}_{\gm}\in \C{D}(G(E))$ the sum
$\sum_{\gm'}\lan\inv(\gm',\gm),\ov{\xi}\ran O_{\gm'}$,
taken over a set of representatives of the conjugacy classes stably 
conjugate to $\gm$, where each
$dg_{\gm'}$ is compatible with $dg_{\gm}$.
\end{itemize}
\end{Not}

\begin{Def} \label{D:stab}
Let $\C{E}$ be an endoscopic datum of $G$.
\begin{itemize}
\item[(i)] A measure $\phi\in\C{S}(G(E))$ is called {\em 
$\C{E}$-unstable} if
$O^{\ov{\xi}}_{\gm}(\phi)=0$ for all pairs $(\gm,\xi)$ as in \rn{end} 
for which
$\C{E}_{(\gm,\xi)}$ is isomorphic to $\C{E}$.
\item[(ii)] A distribution $F\in\C{D}(G(E))$ is called {\em 
$\C{E}$-stable} if $F(\phi)=0$ for all
$\C{E}$-unstable $\phi\in\C{S}(G(E))$.
\end{itemize}
\end{Def}



\begin{Thm} \label{T:main}
Assume that $p>\dim\,G^{\der}$. Then for each triple  
$(a_0,\ka,\theta)$, the distribution
$\chi_{a_0,\ka,\theta}$ is $\C{E}_{(a_0,\ka)}$-stable.
\end{Thm}

\begin{Not} \label{N: }
For an endoscopic datum $\C{E}=(s,\rho)$, choose a representative 
$\wt{s}\in\wh{G}^{\ssc}$ of $s$, and
let $Z(\C{E})$ be the set of $z\in Z(\wh{G}^{\ssc})^{\Gm}$ for which 
there exists $g\in\wh{G}_s$ commuting with
$\rho:\Gm\to\Out(\wh{G}^0_s)$ such that $g\wt{s}g^{-1}=z\wt{s}$.
Then $Z(\C{E})$ is a subgroup of $Z(\wh{G}^{\ssc})^{\Gm}$, depending 
only on the isomorphism class of $\C{E}$.
\end{Not}

\begin{Def} \label{D:adm}
Let $\C{E}$ be an endoscopic datum of $G$. An inner twisting 
$\varphi:G\to G'$ is called
{\em $\C{E}$-admissible} if the corresponding class
$\inv(G',G)\in H^1(E,G^{\ad})\cong (Z(\wh{G}^{\ssc})^{\Gm})^D$ is 
orthogonal to
$Z(\C{E})\subset Z(\wh{G}^{\ssc})^{\Gm}$.
\end{Def}

\begin{Def} \label{D:def2}
Let $G$ be a reductive group over $E$, $\C{E}=(s,\rho)$ an elliptic 
endoscopic datum of $G$,
and $\varphi:G\to G'$ an $\C{E}$-admissible inner twisting. Fix a 
triple $(a,a';\ka)$, consisting of
a pair $a:T\hra G$ and  $a':T\hra G'$ of stably conjugate embeddings of 
maximal tori, and an element
$\ka\in\wh{T}^{\Gm}$ such that $\C{E}_{(a,\ka)}\cong\C{E}$.

a) Consider $\phi\in\C{S}(G(E))$ and $\phi'\in\C{S}(G'(E))$. They are 
called
{\em $(a,a';\ka)$-in\-dis\-tin\-guish\-able} if they satisfy the following 
conditions.
\begin{itemize}
\item[(A)]
For every $\gm\in G^{\sr}(E)$ and  $\xi\in
\wh{G_{\gm}}^{\Gm}$
such that $\C{E}_{(\gm,\xi)}\cong\C{E}$ and
$O^{\ov{\xi}}_{\gm}(\phi)\neq 0$,
\begin{itemize}
\item[(i)] there exists $\gm'\in G'(E)$ stably conjugate to $\gm$;
\item[(ii)] we have $O^{\ov{\xi}}_{\gm'}(\phi')=\lan 
\frac{\gm',\gm;\xi}{a',a;\ka}\ran O^{\ov{\xi}}_{\gm}(\phi)$.
\end{itemize}
Here $\lan \frac{\gm',\gm;\xi}{a',a;\ka}\ran\in\B{C}\m$ is the 
invariant $\lan \frac{a_{\gamma'},a_{\gamma};\xi}{a',a;\ka}\ran$
defined in the Appendix for embeddings $a_{\gamma}:G_{\gm}\hra G$ and 
$a_{\gamma'}:G_{\gm}\hra G'$  such that
$a_{\gamma}(\gm)=\gm$ and $a_{\gamma'}(\gm)=\gm'$.
\item[(B)] Condition (A) holds if $G$, $a_0$, $\gm$, $\phi$ are 
interchanged with $G'$, $a'_0$, $\gm'$, $\phi'$.
\end{itemize}

b)  The distributions $F\in\C{D}(G(E))$ and $F'\in\C{D}(G'(E))$ are 
called
{\em $(a,a';\ka)$-equivalent} if $F(\phi)=F'(\phi')$ for every two  
$(a,a';\ka)$-indistinguishable
measures $\phi$ and $\phi'$.
\end{Def}

\begin{Rem}\label{R:end}
If $\phi$ is $\C{E}_{(a_0,\ka)}$-unstable, then $\phi$ and $\phi'\!=0$ are
$(a_0,a'_0;\ka)$-indistin\-guish\-able. Therefore every two 
$(a_0,a'_0;\ka)$-equivalent
distributions $F$ and $F'$ are $\C{E}_{(a_0,\ka)}$-stable.
\end{Rem}

\begin{Main} 
Assume that  $p>\dim\,G^{\der}$.
Let $\varphi:G\to G'$ be an $\C{E}_{(a_0,\ka)}$-admissible inner 
twisting.
Let $a'_0:T\hra G'$ be an embedding which is  stably conjugate to $a_0$.
Then the distributions $\chi_{a_0,\ka,\theta}$ on $G(E)$ and  
$\chi_{a'_0,\ka,\theta}$ on $G'(E)$ are
$(a_0,a'_0;\ka)$-equivalent.
\end{Main}

\begin{Rem}
a) By \rr{end}, \rt{main} follows from the Main Theorem.

b) We believe that a much smaller bound on $p$ would suffice.
\end{Rem}

\section{Basic ingredients of the argument}
\subsection{A generalization of a theorem of Waldspurger} \label{SS:Wa}

Suppose that we are in the situation of \rd{def2}. Then $\varphi$ 
induces an inner twisting
$\C{G}\to \C{G}'$. As in \rd{def2}, one can define 
$(a,a';\ka)$-equivalence of
$F\in\C{D}(\C{G}(E))$ and $F'\in\C{D}(\C{G}'(E))$.

Fix a nontrivial character $\psi: E\to \B{C}\m$, a nondegenerate 
$G$-invariant pairing
$\lan\cdot,\cdot\ran$ on $\C{G}$, and $\varphi$-compatible invariant 
measures on $\C{G}(E)$ and
$\C{G}'(E)$.
Then $\varphi$ defines a  nondegenerate $G'$-invariant pairing 
$\lan\cdot,\cdot\ran'$
on $\C{G}'$. These data determine the Fourier transforms $F\mapsto \C{F}(F)$ 
on $\C{G}(E)$ and $\C{G}'(E)$.


\begin{Thm} \label{T:Wa}
The distributions $F\in\C{D}(\C{G}(E))$ and $F'\in\C{D}(\C{G}'(E))$ are 
 $(a,a';\ka)$-equivalent
if and only if $e(G)\C{F}(F)$ and $e(G')\C{F}(F')$ are  
$(a,a';\ka)$-equivalent.
\end{Thm}

The proof is a generalization of that of Waldspurger \cite{Wa},
who treated the case $\phi'=0$ (compare also \cite[Thm. 2.7.1]{KP}, 
where the stable case is considered).

\subsection{Springer hypothesis}

In the notation of \re{finite}, assume that  
$\ov{a}(\ov{\C{T}})(\fq)\subset\C{L}(\fq)$
contains an $L$-regular element $\ov{t}$ [and that $p$ is so large that
the logarithm defines an isomorphism $\log:L_{\un}\isom \C{L}_{\nil}$ 
between unipotent elements
of $L$ and nilpotent elements of $\C{L}$].
Let $\dt_{\ov{t}}$ be the characteristic function of the 
$\Ad(L(\fq))$-orbit of $\ov{t}$, and let
$\C{F}(\dt_{\ov{t}})$ be its Fourier transform.
We need the following result of \cite{Ka1}.

\begin{Thm} \label{T:Spr}
For every $u\in L_{\un}(\fq)$, we have
\[
\Tr\,\rho_{\ov{a},\ov{\theta}}(u)=q^{-(\dim\,L-\dim\,\ov{T})/2}\C{F}(%
\dt_{\ov{t}})(\log(u)).
\]
\end{Thm}

\subsection{Topological Jordan decomposition}
We will call an element $\gm\in G(E)$ {\em compact} if it generates a 
relatively compact subgroup of $G(E)$.
We will call an element $\gm\in G(E)$ {\em topologically unipotent} if 
the sequence $\{\gm^{p^n}\}_n$
converges to $1$.
Every topologically unipotent element is compact.
The following result is a rather straightforward generalization of 
\cite[Lem. 2, p. 226]{Ka2}.
\begin{Lem} \label{L:jor}
For every compact element $\gm\in G(E)$ there exists a unique 
decomposition $\gm=\dt u$ such that
$\dt$ and $u$ commute, $\dt$ is of finite order prime to $p$, and $u$ 
is topologically unipotent.
In particular, this decomposition is compatible with conjugation and 
field extensions.
\end{Lem}

\section{A sketch of the proof of the main theorem}

\subsection{Reformulation of the problem}

\begin{Not}
To each $a:T\hra G$ and $\theta:T(E)\to\B{C}\m$ as in \rn{repr} we 
associate a function $t_{a,\theta}$ on $G(E)$
supported on  $Z(G)(E) G_a$ and equal to $\Tr\,\rho_{a,\theta}$ there.
Since $t_{a,\theta}$ is cuspidal, the integral
\[
F_{a,\theta}(\gm):=\frac{1}{\mu((G^{\ad})_a)}
\int_{G(E)/Z(G)(E)}t_{a,\theta}(g\gm g^{-1})dg
\]
stabilizes for every $\gm\in G^{\sr}(E)$ (see \cite[Lem. 23]{HC}), thus 
providing us with a locally constant
invariant function $F_{a,\theta}$ on $G^{\sr}(E)$.
\end{Not}

\begin{Lem} \label{L:HCH}
For each $a$ and $\theta$, $F_{a,\theta}$ is a locally $L^1$-function 
on $G(E)$.
Moreover, the corresponding distribution equals $\chi({\pi_{a,\theta}})$.
\end{Lem}
\begin{proof}
The assertion follows from Harish-Chandra's theorem \cite[Thm. 16]{HC}.
\end{proof}

\begin{Not} \label{N:sigma}
For every $\gm_0\in G^{\sr}$ and
$\ov{\xi}\in\pi_0(\wh{G_{\gm_0}}^{\Gm}/Z(\wh{G})^{\Gm})$ we define
\begin{equation} \label{E:redst}
\Sigma_{G;\gm_0,\ov{\xi};a_0,\ka}:=e(G)\sum_{a}\sum_{\gm}
\lan \inv(a,a_0),\ka\ran \lan \inv(\gm,\gm_0),\ov{\xi}\ran 
^{-1}F_{a,\theta}(\gm),
\end{equation}
where $a$ and $\gm$ run over sets of representatives of the conjugacy 
classes within the
stable conjugacy classes of $a_0$ and $\gm_0$, respectively.
\end{Not}

\begin{Thm} \label{T:main'}
For all $\gm_0\in G^{\sr}$ and 
$\ov{\xi}\in\pi_0(\wh{G_{\gm_0}}^{\Gm}/Z(\wh{G})^{\Gm})$
such that $\Sigma_{G;\gm_0,\ov{\xi};a_0,\ka}\!\neq 0$,
\begin{itemize}
\item[$(i)$] there exists a representative $\xi\in 
\wh{G_{\gm_0}}^{\Gm}$ of $\ov{\xi}$ such that
$\C{E}_{\gm_0,\xi}\cong\C{E}_{(a_0,\ka)};$
\item[$(ii)$] if $\varphi:G\to G'$ is
$(\C{E},a_{\gm_0},\ov{\xi})$-admissible (see \rd{app}),
then for every $\xi$ as in  $(i)$ and every stably conjugate $\gm'_0\in
G'(E)$ of $\gm_0$ we have
\[\Sigma_{G';\gm'_0,\ov{\xi};a'_0,\ka}= \lan
\frac{\gm'_0,\gm_0;\xi}{a',a;\ka}\ran\Sigma_{G;\gm_0,\ov{\xi};a_0,\ka}.\]
\end{itemize}
\end{Thm}

\begin{Emp}
It follows from \rl{HCH} that \rt{main'} is equivalent to the Main Theorem.
Moreover, by standard arguments, \rt{main'} reduces to the case when 
the derived group of
$G$ is simply connected.
\end{Emp}

\begin{Emp} \label{E:red}
From now on we will assume that $G^{\der}=G^{\ssc}$.
In particular, the centralizer of each semisimple element of $G$ is
connected, and each $G_a$ is a maximal compact subgroup of $G(E)$.
We fix $(\gm_0,\ov{\xi})$ such that 
$\Sigma_{G;\gm_0,\ov{\xi};a_0,\ka}\neq 0$.
Since $\Sigma_{G;z\gm_0,\ov{\xi};a_0,\ka}=\theta(z)\Sigma_{G;\gm_0,\ov{%
\xi};a_0,\ka}$
for each  $z\in Z(G)(E)$ and since the support of each $t_{a,\theta}$ 
consists of elements compact modulo center,
we can assume that $\gm_0$ is compact with topological Jordan 
decomposition  $\gm_0=\dt_0 u_0$.
Moreover, we can assume that either $\gm_0$ is topologically unipotent, 
or $\dt_0\notin Z(G)(E)$.
\end{Emp}

\subsection{The topologically unipotent case} \label{SS:topun}
\begin{Emp}
Since $p$ does not divide the order of $Z(G^{\der})$, the canonical map
$G^{\der}(E)_{\tu}\times Z(G)(E)_{\tu}\to G(E)_{\tu}$ is an isomorphism.
Therefore to prove \rt{main'} for topologically unipotent $\gm_0$, we 
can assume that
$G$ is semisimple and simply connected.
\end{Emp}

\begin{Not}
Denote by $\Phi_{G}:G\to\C{G}$ the composition map
\[
G\overset{\Ad}{\lra} GL(\C{G})\overset{\log_{(p)}}{\lra}\End(\C{G})%
\overset{\pr}{\lra}\C{G},
\]
where $\log_{(p)}(1-A)=-\sum_{i=1}^{p-1} \frac{A^i}{i}$,
and $\pr$ is the canonical projection, defined by the standard pairing
$(A,B)\mapsto\Tr AB$ on 
$\End(\C{G})$.
\end{Not}

\begin{Lem} \label{L:bij}
The map $\Phi_G$ defines a $G(E)$-equivariant homeomorphism
\[G(E)_{\tu}\isom \C{G}(E)_{\tn}\,,\]
where $G(E)$ acts by conjugation.
Moreover, for every parahoric subgroup $G_x$ of $G(E)$,
$\Phi_G$ induces a bijection $(\Phi_G)_x:(G_x)_{\tu}\isom 
(\C{G}_x)_{\tn}$, which in turn
induces the logarithm map $\log:(L_x)_{\un}(\fq)\isom 
(\C{L}_x)_{\nil}(\fq)$.
\end{Lem}

\begin{Not} 
a) By our assumption on $p$, there exists $t\in\C{T}(\C{O})$ whose 
reduction
$\ov{t}\in \ov{\C{T}}(\fq)$ is not fixed by any nontrivial element of the
Weyl group of $G$.

b) For every $a:T\hra G$ as in \rn{repr}, we denote by 
$\Om_{a,t}\subset \C{L}_a(\fq)$
the $\Ad(L_a(\fq))$-orbit of $\ov{a}(\ov{t})$, by 
$\wt{\Om}_{a,t}\subset \C{G}_{a}\subset \C{G}$
the preimage of $\Om_{a,t}$, and let $\dt_{a,t}$ be the characteristic 
function of $\wt{\Om}_{a,t}$.

c) As  the centralizer $G_y$ of each $y\in\wt{\Om}_{a,t}$ is 
$G_a$-conjugate to $a(T)$, the integral
\[
\Dt_{a,t}(x):=\frac{1}{\mu(G_a)}\int_{G(E)}\dt_{a,t}(\Ad(g)x) dg
\]
converges absolutely for each $x\in\C{G}(E)$. Thus it defines an 
element of $\C{D}(\C{G}(E))$.
Similarly to \rn{char}, we consider
${\Dt}_{a_0,\ka,t}:=e(G)\sum_{a}\lan \inv(a,a_0),\ka\ran \Dt_{a,t}\in 
\C{D}(\C{G}(E))$.
\end{Not}

\begin{Lem} \label{L:four}
Let $\C{I}^+\subset\C{G}(E)$ be a maximal topologically nilpotent 
subalgebra.
Assume that $\psi:E\to\B{C}\m$ is trivial on the maximal ideal 
$M\subset\C{O}$ and
induces a nontrivial character of $\fq$. Then for each $u\in 
G(E)_{\tu}$ we have
\[t_{a,\theta}(u)=\mu(\C{I}^+)^{-1} \C{F}(\dt_{a,t})(\Phi_G(u)).\]
\end{Lem}
\begin{proof}
The assumption on $\psi$ implies that $\C{G}_{a^+}$ is the orthogonal 
complement of
$\C{G}_{a}$ with respect to the pairing $(x,y)\mapsto\psi(\lan 
x,y\ran)$. Therefore our lemma
is an immediate consequence of the definition of the Fourier transform 
(over $E$ and $\fq$),
 \rt{Spr}, \rl{bij}, and the equality 
$q^{(\dim\,L_a-\dim\,\ov{T})/2}\mu(\C{G}_{a^+})=\mu(\C{I}^+)$.
\end{proof}

\begin{Emp}
Now we are ready to show that $(\chi_{a_0,\ka,\theta})_{|G(E)_{\tu}}\!$ 
and
$(\chi_{a'_0,\ka,\theta})_{|G'(E)_{\tu}}$ are \linebreak
$(a_0,a'_0;\ka)$-equivalent. First of all, by
direct calculations, $e(G){\Dt}_{a_0,\ka,t}$ is 
$(a_0,a'_0;\ka)$-equivalent to $e(G'){\Dt}_{a'_0,\ka,t}$.
Hence, by \rt{Wa}, 
$\C{F}({\Dt}_{a_0,\ka,t})$ is $(a_0,a'_0;\ka)$-equiv\-a\-lent 
to
$\C{F}({\Dt}_{a'_0,\ka,t})$. Using Lemmas \ref{L:HCH}, \ref{L:bij}, and 
\ref{L:four} we see that
$\chi_{a_0,\ka,\theta}$ has the same restriction to $G(E)_{\tu}$ as
$\mu(\C{I}^+)^{-1}\Phi_G^*(\C{F}({\Dt}_{a_0,\ka,t}))$, and similarly 
for $\chi_{a'_0,\ka,\theta}$ and
$\mu(\C{I'}^+)^{-1}\Phi_{G'}^*(\C{F}({\Dt}_{a'_0,\ka,t}))$.
Since $\Phi_G$ is a $G^{\ad}$-invariant algebraic morphism defined over
$E$, the assertion follows from the equality $\mu(\C{I}^+)=\mu(\C{I'}^+
)$.
\end{Emp}

\subsection{The general case}

It remains to prove \rt{main'} for $\dt_0\notin Z(G)(E)$ (see \re{red}).
We are going to deduce the assertion from that for $G_{\dt_0}$.

\begin{Prop} \label{P:reduction}
For every embedding $a:T\hra G$ and a compact element $\gm$ in $G(E)$ 
with topological Jordan decomposition
$\gm=\dt u$, we have
\[
e(G)F_{a,\theta}(\gm)=e(G_{\dt})\sum_{b}\theta(b^{-1}({\dt}))F_{b,%
\theta}(u).
\]
Here $b$ runs over the set of conjugacy classes of embeddings $b:T\hra 
G_{\dt}$
whose composition with the inclusion $G_{\dt}\subset G$ is conjugate to 
$a$.
\end{Prop}
\begin{proof}
The proposition follows by direct calculation from the recursive formula
(\cite[Thm. 4.2]{DL}) for characters of Deligne-Lusztig representations.
\end{proof}

\begin{Not}
a) We say that $t\in T(E)$ is {\em $(G,a_0,\gm_0)$-relevant} if there 
exists an embedding
$b_0:T\hra  G_{\dt_0}\subset G$ stably conjugate to $a_0$ such that 
$b(t)=\dt_0$.

b) Assume that  $t\in T(E)$ is $(G,a_0,\gm_0)$-relevant.
Since $a_0(T)\subset G$ is elliptic, for each $\dt\in G(E)$ stably 
conjugate to $\dt_0$
there exists an embedding $b_{t,\dt}:T\hra G_{\dt}\subset G$ stably 
conjugate to $a_0$ such that
$b_{t,\dt}(t)=\dt$. Further, $b_{t,\dt}$ is unique up to stable 
conjugacy, and
the endoscopic datum $\C{E}_{t,\ka}:=\C{E}_{(b_{{\dt},t},\ka)}$ of 
$G_{\dt_0}$ is independent of $\dt$.

c) We will write $\dt_1\sim_{\C{E}_{t,\ka}}\dt$ (resp. 
$\dt'\sim_{\C{E}_{t,\ka}}\dt$) if
$\dt,\dt_1\in G(E)$ (resp. $\dt\in G(E)$ and $\dt'\in G'(E)$) are 
stably conjugate to $\dt_0$,
and $G_{\dt_1}$ (resp.  $G'_{\dt'}$) is an  $\C{E}_{t,\ka}$-admissible 
inner form of $G_{\dt}$
 (see \rd{adm}).
\end{Not}

\begin{Emp}
Using \rp{reduction}, we see that
\begin{equation} \label{E:for2}
\Sigma_{G;\gm_0,\ov{\xi};a_0,\ka}=\sum_{t}\theta(t)\sum_{{\dt}}I_{t,\dt},
\end{equation}
where
\begin{itemize}
\item[(i)] $t$ runs over the set of $(G,a_0,\gm_0)$-relevant elements 
of $T(E)$;
\item[(ii)] ${\dt}$ runs over a set of representatives of the conjugacy 
classes within the stable conjugacy class
of ${\dt}_0$;
\item[(iii)] $I_{t,\dt}$ vanishes unless there exists an element  
$\gm\in G(E)$ stably conjugate to $\gm_0$
with topological Jordan decomposition $\gm={\dt}u$, in which case we get
\begin{equation} \label{E:for4}
I_{t,\dt}=\lan \inv(b_{t,\dt},a_0),\ka\ran \lan 
\inv(\gm,\gm_0),\ov{\xi}\ran ^{-1}
\Si_{G_{\dt};u,\ov{\xi};b_{t,\dt},\ka}.
\end{equation}
\end{itemize}
\end{Emp}

\begin{Emp}
For simplicity of the exposition, we will restrict
     ourselves to the case when $\gamma_0\in G(E)$ is elliptic.
Choose $t$ which has a nonzero contribution to (\ref{E:for2}).
Replacing $\dt_0$ by a stably conjugate element we can assume that
$\sum_{\dt\sim_{\C{E}_{t,\ka}}\dt_0}I_{t,\dt}\neq 0$ and 
$I_{t,\dt_0}\neq 0$.
So $\Si_{G_{\dt_0};u_0,\ov{\xi};b_{t,\dt},\ka}\neq 0$.
Hence by \rt{main'} for $G_{\dt_0}$ there exists a representative 
$\xi\in \wh{G_{\gm_0}}^{\Gm}$ of
$\ov{\xi}$ such that the endoscopic datum $\C{E}_{(u_0,\xi)}$ of 
$G_{\dt_0}$ is isomorphic to $\C{E}_{t,\ka}$.
Therefore there exist embeddings 
$\eta_1:\wh{G_{\gm_0}}\hra\wh{G_{\dt_0}}$ and
$\eta_2:\wh{T}\hra\wh{G_{\dt_0}}$ such that
$\C{E}_{(\gm_0,\xi,\eta_1)}=\C{E}_{(b_{t,\dt_0},\ka,\eta_2)}$ (compare 
\rn{endoscopy}) and
$\eta_2(\ka)=z\eta_1(\xi)$ for a certain $z\in Z(\wh{G_{\dt_0}})^{\Gm}$.
Moreover, $z$ is defined up to multiplication by an element of 
$Z(\C{E}_{t,\ka})$. Therefore
for all $\dt\sim_{\C{E}_{t,\ka}}\dt_0$, the expression $\lan 
\inv(\dt,\dt_0),z\ran$ is
independent of the choice of the $\eta_i$'s.
\end{Emp}

\begin{Cl} \label{C:eq}
For each $\dt\sim_{\C{E}_{t,\ka}}\dt_0$ we have
$I_{t,\dt}=\lan \inv(\dt,\dt_0),z\ran I_{t,\dt_0}$.
\end{Cl}
\begin{proof}
Since $\Si_{G_{\dt_0};u_0,\ov{\xi};b_{t,\dt},\ka}\neq 0$, \rt{main'} 
for inner forms $G_{\dt}$ and $G_{\dt_0}$
implies that for every stably conjugate $u\in G_{\dt}(E)$ of 
$u_0\in G_{\dt_0}(E)$,  we have
\[
\Sigma_{G_{\dt};u,\ov{\xi};b_{t,\dt},\ka}=\lan
\frac{u,u_0;\xi}{b_{t,\dt} ,b_{t,\dt_0};\ka}\ran
\Sigma_{G_{\dt_0};u_0,\ov{\xi};b_{t,\dt_0},\ka}\,.
\]
Then $\gm:=\dt u\in G(E)$ is stably conjugate to $\gm_0$, and the 
assertion follows by
direct calculation from (\ref{E:for4}).
\end{proof}

\begin{Emp}
Now we are ready to show the validity of (i), (ii) of \rt{main'}.

\smallskip

(i) As $\sum_{\dt\sim_{\C{E}_{t,\ka}}\dt_0}I_{t,\dt}\neq 0$, we 
get from \rcl{eq} that
$\sum_{\dt\sim_{\C{E}_{t,\ka}}\dt_0}\lan 
\inv(\dt,\dt_0),z\ran\neq 0$. By the definition of
$\C{E}_{t,\ka}$-equivalence, this implies that $z$ belongs to 
$Z(\C{E}_{t,\ka})Z(\wh{G})^{\Gm}$.
Thus changing $\eta_1$ (or $\eta_2$), we can assume that $z\in 
Z(\wh{G})^{\Gm}$.
Since  $(\gm_0,\xi)$ and $(b_{t,\dt_0},\ka)$ define isomorphic 
endoscopic data of $G_{\dt_0}$,
we therefore conclude that $\C{E}_{(\gm_0,\xi)}\cong\C{E}_{(a_0,\ka)}$.

\smallskip

(ii) Since $T$ is elliptic, an element $t\in T(E)$ is 
$(G,a_0,\gm_0)$-relevant if and only if it is
 $(G',a'_0,\gm'_0)$-relevant. Thus it will suffice to show that for 
every such $t$ we have
$\sum_{\dt'}I_{t,\dt'}=\lan\frac{\gm'_0,\gm_0;\xi}{a'_0,a_0;\ka}\ran 
\sum_{\dt}I_{t,\dt}$.
For every stably conjugate $\dt\in G(E)$ of $\dt_0$, there exists
a stably conjugate $\dt'\in G'(E)$ of $\dt'_0$ such that  
$\dt'\sim_{\C{E}_{t,\ka}}\dt$.
Therefore it will suffice to show that for every such pair 
$\dt'\sim_{\C{E}_{t,\ka}}\dt$, we have
$I_{t,\dt'}=\lan\frac{\gm'_0,\gm_0;\xi}{a'_0,a_0;\ka}\ran I_{t,\dt}$.
The latter equality can be proved by the same arguments as \rcl{eq}.
\end{Emp}

\appendix
\section{}

Let $G$ be a reductive group over $E$, $\C{E}=(s,\rho)$ an elliptic 
endoscopic datum of $G$,
and $\varphi:G\to G'$ an $\C{E}$-admissible inner twisting. For every 
two triples
$(a'_i,a_i;\ka_i)$, $i=1,2$, where $a_i:T_i\hra G$ and  $a'_i:T_i\hra G'$
are stably conjugate embeddings of maximal tori, and $\ka_i$ is an 
element of $\wh{T_i}^{\Gm}$
such that $\C{E}_{(a_i,\ka_i)}$ is isomorphic to $\C{E}$, we are going 
to define an invariant
$\lan \frac{a'_1,a_1;\ka_1}{a'_2,a_2;\ka_2}\ran\in\B{C}\m$.

\begin{step}
Replacing $G$, $G'$, $T_i$, $\ka_i$, and $\C{E}$ by 
$G^{\ssc}$, $G'^{\ssc}$,
$T^{\ssc}_i:=a_i^{-1}(G^{\ssc})=a'^{-1}_i(G'^{\ssc})$, the image of 
$\ka_i$ in
$\wh{T^{\ssc}_i}^{\Gm}$, and the corresponding endoscopic datum of
$G^{\ssc}$, respectively, we can assume that $G$ is semisimple and 
simply connected.
Let $T_{1,2}$ be the quotient of the product
$T_1\times T_2$ by the subgroup $\{(z, z^{-1})| z\in Z(G)=Z(G')\}$.
\end{step}

\begin{step} Choose elements $g_1,g_2$, and 
$\{\wt{c}_{\si}\}_{\si\in\Gm}$ of $G(\ov{E})$ such that
$a'_i=\varphi(g_i a_i g_i^{-1})$ and each $\wt{c}_{\si}$ is a 
representative of
$\varphi^{-1}{}^{\si}\varphi\in G^{\ad}(\ov{E})$. Then  each
$g_i^{-1}\wt{c}_{\si}{}^{\si}g_i\in G(\ov{E})$ belongs to 
$a_i(T_i(\ov{E}))$, and the images of
$(a_1^{-1}(g_1^{-1}\wt{c}_{\si}{}^{\si}g_1),a_2^{-1}((g_2^{-1}\wt{c}_{%
\si}{}^{\si}g_2)^{-1}))$ in
$T_{1,2}(\ov{E})$ form a cocycle, whose cohomology class
$\inv(\frac{a'_1,a_1}{a'_2,a_2})\in  H^1(E,T_{1,2})$ is independent of 
the choices.
\end{step}

\begin{step}
Choose embeddings $\eta_i:\wh{T_i}\hra\wh{G}$ such that
$\C{E}_{(a_i,\ka_i,\eta_i)}=(s,\rho)$ and a representative 
$\wt{s}\in\wh{G}^{\ssc}=\wh{G^{\ad}}$ of $s$.
Put $T^{\ad}_i:=T_i/a_i^{-1}(Z(G))$. Each $\eta_i$ defines
an embedding $\wt{\eta}_i:\wh{T^{\ad}_i}\hra\wh{G^{\ad}}$, hence an
element $\wt{\ka}_i=\kappa(\widetilde{s},\eta_i):=\wt{\eta}_i^{-1}(\wt{s})\in\wh{T^{\ad}_i}$.
Then the image of $(\wt{\ka}_1,\wt{\ka}_2)$ in
$\wh{T^{\ad}_1}\times \wh{T^{\ad}_2}/Z(\wh{G^{\ad}})\cong\wh{T_{1,2}}$, 
denoted by $\ka_{1,2}$,
is $\Gm$-invariant. Moreover, as $\varphi:G\to G'$ is 
$\C{E}$-admissible, the expression
$\lan \frac{a'_1,a_1;\ka_1}{a'_2,a_2;\ka_2}\ran:=\lan\inv(%
\frac{a'_1,a_1}{a'_2,a_2}),\ka_{1,2}\ran\in\B{C}\m$
is independent of the choices.
\end{step}

\begin{Def} \label{D:app}
Let $\C{E}=(s,\rho)$ be an endoscopic datum of $G$, $\varphi:G\to
G'$ an inner twisting, $a:T\hra G$ an embedding of a maximal
torus, and $\ka$ an element of $\wh{T}^{\Gm}$ such that
$\C{E}_{(a,\ka)}\cong\C{E}$. We say that $\varphi:G\to G'$ is {\em
$(\C{E},a,\ov{\ka})$-admissible}, if for all representatives
$\ka'\in\wh{T}^{\Gm}$ of
$\ov{\ka}\in\pi_0(\wh{T}^{\Gm}/Z(\wh{G})^{\Gm})$ satisfying
$\C{E}_{(a,\ka')}\cong\C{E}$, all embeddings
$\eta,\eta':\wt{T}\hra\wh{G}$ such that
$\C{E}_{(a,\ka,\eta)}=\C{E}_{(a,\ka',\eta')}=(s,\rho)$, and all
representatives
 $\wt{s}\in\wh{G^{\ad}}$ of $s$,
the difference $\ka(\wt{s},\eta')-\ka(\wt{s},\eta)\in
Z(\wh{G^{\ad}})^{\Gm}$ is orthogonal to $\inv(G',G)\in
H^1(E,G^{\ad})$.
\end{Def}

\begin{Rem} \label{R:app}
a) Every $(\C{E},a,\ov{\ka})$-admissible inner twisting is
$\C{E}$-admissible.

b) If $a(T)\subset G$ is elliptic, then every $\C{E}$-admissible
inner twisting  is $(\C{E},a,\ov{\ka})$-admissible.

c) $\varphi:G\to G'$ is $(\C{E},a_1,\ov{\ka}_1)$-admissible if and
only if $\lan \frac{a'_1,a_1;\ka_1}{a'_2,a_2;\ka_2}\ran=
\lan\frac{a'_1,a_1;\ka'_1}{a'_2,a_2;\ka_2}\ran$  for all
representatives $\ka'_1\in\wh{T}_1^{\Gm}$ of
$\ov{\ka}_1\in\pi_0(\wh{T}_1^{\Gm}/Z(\wh{G})^{\Gm})$ satisfying
$\C{E}_{(a_1,\ka'_1)}\cong\C{E}$.
\end{Rem}

\begin{thebibliography}{Ka3}

\bibitem[De]{De}
P. Deligne, {\em Les corps locaux de caract\'eristique $p$, limites de 
corps locaux de caract\'eristique $0$},
in {\em Repr\'esentations des groupes r\'eductifs sur un corps local}, 
pp. 119--157, Hermann, Paris, 1984.
\MR{86g:11068}

\bibitem[DL]{DL}
P. Deligne and  G. Lusztig, {\em Representations of reductive groups 
over finite fields},
Ann. of Math. (2) {\bf  103} (1976), 103--161.
\MR{52:14076}

\bibitem[HC]{HC}
Harish-Chandra, {\em Harmonic analysis on reductive $p$-adic groups} 
(Notes by G. van Dijk),
Lecture Notes in Mathematics {\bf 162}, Springer-Verlag, Berlin-New 
York, 1970.
\MR{54:2889}

\bibitem[Ka1]{Ka1}
D. Kazhdan, {\em Proof of Springer's hypothesis}, Israel J. Math. {\bf 
28} (1977), 272--286.
\MR{58:5959}

\bibitem[Ka2]{Ka2}
D. Kazhdan, {\em On lifting}, in {\em  Lie group representations}, II 
(College Park, Md., 1982/1983), 209--249,
Lecture Notes in Mathematics {\bf 1041}, Springer, Berlin, 1984.
\MR{86h:22029}

\bibitem[Ka3]{Ka3}
D. Kazhdan, {\em Representations of groups over close local fields}, J. 
Analyse Math. {\bf 47} (1986), 175--179.
\MR{88g:22018}

\bibitem[KP]{KP}
D. Kazhdan and A. Polishchuk, {\em Generalization of a theorem of
Waldspurger to nice representations}, in {\em The orbit method in
geometry and physics} (Marseille, 2000), 197--242, Progr. Math.
{\bf 213}, Birkh\"auser, Boston, 2003.

\bibitem[Ko1]{Ko1}
 R. E. Kottwitz, {\em Stable trace formula: cuspidal tempered terms}, 
Duke Math. J. {\bf 51} (1984), 611--650.
\MR{85m:11080}

\bibitem[Ko2]{Ko2}
R. E. Kottwitz, {\em Stable trace formula: elliptic singular terms}, 
Math. Ann. {\bf 275} (1986), 365--399.
\MR{88d:22027}

\bibitem[La1]{La}
R. P. Langlands, {\em Les d\'ebuts d'une formule des traces stable}, 
Publ. Math. Univ. Paris VII {\bf 13},
Paris, 1983.
\MR{85d:11058}

\bibitem[La2]{La2}
R. P. Langlands, {\em Representations of abelian algebraic groups},  
Pacific J. Math. {\bf 1997}, Special Issue, 231--250.
\MR{99b:11125}

\bibitem[Wa]{Wa}
J.-L., Waldspurger, {\em Transformation de Fourier et endoscopie}, J. 
Lie Theory {\bf 10} (2000), 195--206.
\MR{2001g:11078}

\end{thebibliography}


\end{document}