EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publishers TeX code     *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you retrieve the article in DVI,       *
%_ * PostScript, or PDF format.                                             *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{29-JUL-2004,29-JUL-2004,29-JUL-2004,29-JUL-2004}
 
\RequirePackage[warning,log]{snapshot}
\documentclass{era-l}
\issueinfo{10}{08}{}{2004}
\dateposted{August 2, 2004}
\pagespan{68}{77}
\PII{S 1079-6762(04)00131-3}
\copyrightinfo{2004}{American Mathematical Society}
\revertcopyright
\usepackage{amsmath}
\usepackage{amscd}
\usepackage{amssymb}
\usepackage{amsthm}
\newcounter{assumption}[subsection]
\newenvironment{asm}%
  { %
    \begin{list}{\arabic{section}.\arabic{subsection}.\Alph{assumption}.}%
       { %
          \usecounter{assumption}%
\setlength{\leftmargin}{0pt}\setlength{\rightmargin}{0pt}%
            \setlength{\itemindent}{1.55cm}\setlength{\labelsep}{.2cm}%
            \setlength{\labelwidth}{1cm}%
       }%
   }%
  {\end{list}}
	    
\renewcommand{\theassumption}{\thesubsection.\Alph{assumption}}

\newcounter{assumptionn}[subsection]
\newenvironment{asmN}%
  { %
    \begin{list}{\arabic{section}.\arabic{subsection}.\arabic{assumptionn}.}%
       { %
          \usecounter{assumptionn}%
	\setlength{\topsep}{4pt}\setlength{\partopsep}{0pt}%
            \setlength{\itemsep}{2pt}%
            \setlength{\leftmargin}{0pt}\setlength{\rightmargin}{0pt}%
            \setlength{\itemindent}{1.55cm}\setlength{\labelsep}{.2cm}%
            \setlength{\labelwidth}{1cm}%
       }%
   }%
  {\end{list}}


\renewcommand{\theassumptionn}{\thesubsection.\arabic{assumptionn}}


\newcounter{assumptiona}[section]
\newenvironment{asma}%
  { %
    \begin{list}{\arabic{section}.\Alph{assumptiona}.}%
       { %
          \usecounter{assumptiona}%
\setlength{\leftmargin}{0pt}\setlength{\rightmargin}{0pt}%
            \setlength{\itemindent}{1.55cm}\setlength{\labelsep}{.2cm}%
            \setlength{\labelwidth}{1cm}%
       }%
   }%
  {\end{list}}
	    
\renewcommand{\theassumptiona}{\thesection.\Alph{assumptiona}}


\theoremstyle{plain}

\newtheorem{thm}{Theorem}[section]
\newtheorem*{cor}{Corollary}
\newtheorem{lem}{Lemma}[section]
\newtheorem{prop}{Proposition}[section]
\newtheorem{corol}{Corollary}[section]

\theoremstyle{definition}
\newtheorem*{defn}{Definition}
\newtheorem*{exmp}{Example}


\theoremstyle{remark}
\newtheorem*{rmk}{Remark}
\newtheorem{rmrk}{Remark}[section]

\numberwithin{equation}{section}


\newcommand{\myaa}{\alpha}
\newcommand{\bb}{\beta}
\newcommand{\mygg}{\gamma}
\newcommand{\GG}{\Gamma}
\newcommand{\dd}{\delta}
\newcommand{\DD}{\Delta}
\newcommand{\ee}{\varepsilon}
\newcommand{\zz}{\zeta}
\newcommand{\hh}{\eta}
\newcommand{\QQ}{\Theta}
\newcommand{\kk}{\kappa}
\newcommand{\myll}{\lambda}
\newcommand{\LL}{\Lambda}
\newcommand{\myss}{\sigma}
\newcommand{\ff}{\varphi}
\newcommand{\vP}{\varPhi}
\newcommand{\oo}{\omega}
\newcommand{\OO}{\Omega}

\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\D}{\mathcal{D}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\myH}{\mathcal{H}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\myL}{\mathcal{L}}
\newcommand{\M}{\mathcal{M}}
\newcommand{\N}{\mathcal{N}}
\newcommand{\myO}{\mathcal{O}}
\newcommand{\myP}{\mathcal{P}}
\newcommand{\RR}{\mathcal{R}}
\newcommand{\T}{\mathcal{T}}
\newcommand{\U}{\mathcal{U}}
\newcommand{\W}{\mathcal{W}}
\newcommand{\X}{\mathcal{X}}
\newcommand{\Y}{\mathcal{Y}}
\newcommand{\Z}{\mathcal{Z}}

\newcommand{\BB}{\mathbb{B}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\DB}{\mathbb{D}}
\newcommand{\EP}{\mathbb{E}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\MP}{\mathbb{M}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\OP}{\mathbb{O}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\rd}{\mathbb{R}^d}
\newcommand{\SP}{\mathbb{S}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\VV}{\mathbb{V}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\YY}{\mathbb{Y}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\AF}{\EuFrak{A}}
\newcommand{\ZF}{\EuFrak{Z}} 
\newcommand{\GE}{\EuFrak{E}}
\newcommand{\GF}{\EuFrak{F}}
\newcommand{\LF}{\Eufrak{L}}
\newcommand{\MM}{\EuFrak{M}}
\newcommand{\NF}{\EuFrak{N}}
\newcommand{\PF}{\EuFrak{P}}

\newcommand{\pD}{\partial D}
\newcommand{\prD}{\partial_{reg} D} 
\newcommand{\pE}{\partial E}
\newcommand{\pQ}{\partial Q}
\newcommand{\rQ}{\partial_r Q}
\newcommand{\prQ}{\partial_{reg} Q}
\newcommand{\paQ}{\partial Q}
\newcommand{\pO}{\partial O}
\newcommand{\grd}{$^\circ$}
\newcommand{\<}{\langle}
\newcommand{\up}{\uparrow}
\newcommand{\down}{\downarrow}
\newcommand{\ar}{\Longrightarrow}
\newcommand{\dar}{\Longleftrightarrow}
\newcommand{\upaa}{\upuparrows}
\newcommand{\raa}{\rightrightarrows}
\newcommand{\foral}{\qquad\text{ for all } \ }

\newcommand{\from}{\qquad\text{ in } \ }
\newcommand{\qt}{\quad\text}

\newcommand{\Levy}{L\'{e}vy}
\newcommand{\Holder}{H\"{o}lder}
\newcommand{\Ito}{It\^{o}}

\newcommand{\prx}{P_{r,x}}
\newcommand{\pirx}{\Pi_{r,x}}
\newcommand{\pix}{\Pi_x}
\newcommand{\px}{P_x}
\newcommand{\rdo}{\mathbb{R}^{d-1}}
\newcommand{\J}{\mathcal {J}}

\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Supp}{Supp}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\Exp}{Exp}
\DeclareMathOperator*{\limmed}{lim\,med}
\DeclareMathOperator{\const}{const.}
\DeclareMathOperator{\cp}{Cap}
\DeclareMathOperator{\CP}{CP}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\SBV}{SBV}
\DeclareMathOperator{\LPT}{LPT}
\DeclareMathOperator{\PT}{PT}
\DeclareMathOperator{\Sup}{Sup}
\DeclareMathOperator{\Inf}{Inf} 
\DeclareMathOperator{\SG}{SG}
\DeclareMathOperator{\RG}{RG}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Div}{div}
\DeclareMathOperator{\Ex}{Ex}
\DeclareMathOperator{\NSD}{NSD}
\DeclareMathOperator{\PD}{PD}
\DeclareMathOperator{\dist}{dist}

\begin{document}

\title[A new inequality for superdiffusions]{A new inequality for 
superdiffusions and its  applications to nonlinear differential equations}

\author{E. B. Dynkin}
\address{Department of Mathematics, Cornell University,
Ithaca, NY 14853}
\email{ebd1@cornell.edu}
\thanks{Partially supported by the
National Science Foundation Grant DMS-0204237}
\subjclass[2000]{Primary 60H30; Secondary 35J60, 60J60}
\keywords{Positive solutions of semilinear elliptic PDEs, 
superdiffusions, conditional diffusions, $\mathbb{N}$-measures}

\date{April  23, 2004}

\commby{Mark Freidlin}

\begin{abstract}
Our motivation is the following problem: to  describe all  positive 
solutions of  a 
semilinear elliptic equation $L  u=u^\alpha$ with $\alpha>1$ in a bounded 
smooth  domain $E\subset  \mathbb{R}^d$.  
In 1998  Dynkin and Kuznetsov  solved 
this problem for a class of solutions which they called $\sigma$-moderate. 
The question if all solutions belong to this class remained open. In 2002 
Mselati 
proved that this is true for the equation $\Delta u=u^2$ in a domain of 
class $C^4$. His principal tool---the Brownian snake---is not applicable 
to the case $\alpha\neq 2$. In 2003  Dynkin and Kuznetsov modified most of  
Mselati's arguments by using superdiffusions instead of the snake. 
However a critical  gap remained.  A new inequality established in the 
present paper allows us to close this gap.
\end{abstract}

\maketitle


\section{Introduction}
\subsection{Diffusions and superdiffusions} 
We denote by $\M(S)$  the set of all finite measures, and by $\myP(S)$ 
the set of all probability measures on a measurable space $S$. $\B(E)$ 
stands for the set of all positive Borel functions on $E$. We use 
notation  $\1$.]

\section{Tools}
\subsection{$h$-transform and conditional diffusion}
Suppose $\xi$ is a diffusion in a domain $E$ with the transition function
 $p_t(x,dy)$, and let $h\in\myH(E)$.  Then 
\begin{equation}
\label{A1.2}
p_t^h(x,dy)=\frac {1}{h(x)} p_t(x,dy)h(y)
\end{equation}
is the transition function of a continuous  Markov process $(\xi_t,\hat \Pi_x^h)$  in $E$ called the $h$-transform of $\xi$. We prefer to deal with  measures  
$\Pi_x^h=h(x)\hat \Pi_x^h$ which depend linearly on $h$.
Put  $\Pi_x^\nu=\Pi_x^{h_\nu}$ and  $\hat\Pi_x^y=\hat\Pi_x^{\dd_y}$  
where $\dd_y$ is the unit mass at a point $y$. The process $(\xi_t,\hat
\Pi_x^y)$ can be interpreted as a diffusion starting from $x\in E$ and conditioned to exit from $E$ at $y$.

The following lemma is proved, for instance, in \cite{Dy02}, page 103:
\begin{lem}
\label{Lemma B2.1}
 For every stopping time $\tau$ and every pre-$\tau$ positive $Y$,
\begin{equation}
\label{B2.1}
\Pi_x^hY1_{\tau<\tau_E}=\Pi_xYh(\xi_{\tau})
1_{\tau<\tau_E}.
\end{equation}
\end{lem}

\subsection{Measures $\NN_x$}
 Denote by $\Z_x$  the class of all functions of the form
\begin{equation}
\label{A1.5a}
Z=\sum_1^n \0,
\]
then
\begin{equation}
\label{5.1}
\NN_x\{\RR_E\cap\GG=\emptyset,1-e^{-Z}\}
=-\log P_x\{e^{-Z}\mid \RR_E\cap\GG=\emptyset\}.
\end{equation}

By applying \eqref{B5.1} to $\myll Z$ and passing to the limit as $\myll\to +\infty$, we get
\begin{multline}
\label{5.1a}
-\log P_x\{\RR_E\cap\GG=\emptyset,Z=0\}
=\NN_x\{\RR_E\cap\GG\neq\emptyset\}
+\NN_x\{\RR_E\cap\GG=\emptyset,Z\neq 0\}.
\end{multline}

By Proposition 1.1 in \cite{DK04},
\begin{equation}
\label{5.1d}
\NN_x Z_\nu=P_x Z_\nu \qt{if } P_xZ_\nu<\infty.
 \end{equation}
On the other hand, for every $f\in\B(\bar D)$,
\begin{equation}
\label{5.1e}
P_x\0$ and, for all $Z',Z''\in\Z_x$,
\begin{multline}
\label{nnn}
\NN_x\{\A,(e^{-Z'}-e^{-Z''})^2\}\\
=-2\log P_x\{e^{-Z'-Z''}\mid\A\}
+\log P_x\{e^{-2Z'}\mid\A\}+\log P_x\{e^{-2Z''}\mid\A\}.
\end{multline}
If  $Z'=Z''$ $P_x$-a.s. on $\A$ and if $P_x\{\A,Z'<\infty\}>0$, then  $Z'=Z''$ $\NN_x$-a.s. on $\A$.
\end{prop}
\begin{proof}
First, $P_x{\A}>0$ because $P_x{\A}=e^{-w_\LL(x)}$. 
Next
\[
(e^{-Z'}-e^{-Z''})^2=2(1-e^{-Z'-Z''})-(1-e^{-2Z'})-(1-e^{-2Z''}).
\]
Therefore \eqref{nnn} follows from  \eqref{5.1}.
The second part of the proposition is an obvious implication of \eqref{nnn}.
 \end{proof}
\subsection{Properties of  superdiffusions}
The following properties are often used in the theory of superdiffusions.
[They are  a part of the definition of branching exit Markov systems, and superdiffusions are a special case of such systems (see \cite{Dy02}, Chapters 3 and 4).]

\begin{asm} 
\item\label{2.1.A} (Markov property)
If  $Y\ge 0$ is measurable with respect to the $\myss$-algebra generated by $X_{D'}, D'\subset D$ and $Z\ge 0$ is measurable with respect to the $\myss$-algebra generated by $X_{D''}, D''\supset D$, then
\begin{equation}
\label{Markov}
P_\mu(YZ)= P_\mu(YP_{X_D}Z).
\end{equation} 

\item\label{2.1.B}
If  $\mu(E)=0$, then $P_\mu\{X_E=\mu\}=1$.
\end{asm} 

We use \ref{2.1.A}, \ref{2.1.B} and  Proposition \ref{Proposition B2.1} to prove the next proposition.

\begin{prop}
\label{Proposition 5.1}
Let $D\subset E$ be two open sets. Then, for every $x\in D$, $X_{D}$ and $X_{E}$ coincide  $P_x$-a.s. and $\NN_x$-a.s. on the set  $\A=\{\RR_{D}\subset D^*\}$.
\end{prop}

[Note that 
\begin{equation}
\label{LL}
D^*=\{x\in\bar D: d(x,\LL)>0\}
\end{equation}
where $\LL=\pD\cap E$.]


\section{Relations between superdiffusions and conditional 
diffusions \protect\linebreak in two open sets}
\subsection{}
Now we consider two bounded smooth open sets $D\subset E$. We denote by $\tilde Z_\nu$  the stochastic boundary value of  $\tilde h_\nu(x)=\int_{\pD}  k_D(x,y)\nu(dy)$ in $D$;  $\tilde
\Pi_x^y$ refers to the diffusion in  $D$ conditioned to exit  at $y\in\partial D$. 

\begin{thm}
\label{Theorem 3.1}
Put $\A=\{\RR_D\subset D^*\}$.
For every $x\in D$,
\begin{equation}
\label{CC1}
\RR_E= \RR_D  \qt{$ P_x$-a.s. and\quad  $\NN_x$-a.s.}
\end{equation}
and
\begin{equation}
\label{CC2}
Z_\nu=\tilde Z_\nu  \qt{$ P_x$-a.s. and\quad  $\NN_x$-a.s. on } \A
\end{equation}
for all $\nu\in\N_1^E$ concentrated on $\pD\cap\pE$.
\end{thm}
\begin{proof}
1\grd.\ 
First, we prove \eqref{CC1}.
Clearly, $\RR_D\subset \RR_E$ $P_x$-a.s. and $\NN_x$-a.s. for all $x\in D$. We get \eqref{CC1} if we show that, if $O$ is an open subset  of $E$, then, for every $x\in D$,  $X_O=X_{O\cap D}$  $P_x$-a.s. on $\A$  and, for every $x\in O\cap D$, $X_O=X_{O\cap D}$   $\NN_x$-a.s. on $\A$. For $x\in O\cap D$ this follows from  Proposition \ref{Proposition 5.1} applied  to $O\cap D\subset O$ because $\{\RR_D\subset D^*\}\subset\{\RR_{O\cap D}\subset(O\cap D)^*\}$. For $x\in D\setminus O$, 
$P_x\{X_O=X_{D\cap O}=\dd_x\}=1$.

2\grd.\ Put
\begin{equation}
\label{D*m}
D^*_m=\{x\in\bar D: d(x,E\setminus D)>1/m\}.
\end{equation}
To prove \eqref{CC2}, it is sufficient to prove that it holds  on 
$\A_m=\{\RR_D\subset D^*_m\}$  for all sufficiently large $m$. First we prove that, for all $x\in D$,
\begin{equation}
\label{CC4}
Z_\nu=\tilde Z_\nu\qt{$ P_x$-a.s. on $\A_m$}.
\end{equation}
We get \eqref{CC4} by proving that both $Z_\nu$ and  $\tilde Z_\nu$ coincide $P_x$-a.s. on $\A_m$ with the stochastic boundary value $Z^*$ of $h_\nu$ in $D$.

Let 
\[
E_n=\{x\in E: d(x,\pE)>1/n\},\quad D_n=\{x\in D: d(x,\pD)>1/n\}.
\]
If $n>m$, then 
\[
\A_m \subset \A_n\subset\{\RR_D\subset D_n^*\}
\subset\{\RR_{D_n}\subset D_n^*\}.
\]
We apply Proposition \ref{Proposition 5.1}  to $D_n\subset E_n$ and we get 
that, $P_x$-a.s.  on $\{\RR_{D_n}\subset D_n^*\}\supset \A_m$,  
$X_{D_n}=X_{E_n}$  for all $n>m$, which implies $Z^*=Z_\nu$.

3\grd.\ 
Now we prove that
\begin{equation} 
\label{CC6}
Z^*= \tilde Z_\nu\qt{$ P_x$-a.s. on $\A_m$}.
\end{equation}
 Consider $h^0=h_\nu-\tilde h_\nu$ and $Z^0=Z_\nu^*-\tilde Z_\nu$.
If  $y\in \pD\cap\pE$, then
\begin{equation}
\label{M5.8}
k_E(x,y)=k_D(x,y)+\Pi_x\{\tau_D<\tau_E,k_E(\xi_{\tau_D},y)\}.
\end{equation}
 Therefore 
\begin{equation}
\label{Mhh}
h^0(x)=\Pi_x\{\xi_{\tau_D}\in \pD\cap E, h_\nu(\xi_{\tau_D})\}.
\end{equation}
This is a harmonic function in $D$. It vanishes on  $\GG_m=\pD\cap D^*_m=\pE\cap D^*_m$.

We claim that, for every $\ee>0$ and every $m$, $h^0<\ee$ on $\GG_{m,n}=\pE_n\cap D_m^*$ for all sufficiently large $n$. [If this is not true, then there exists a  sequence $n_i\to\infty$ such that $z_{n_i}\in
\GG_{m,n_i}$ and $h^0(z_{n_i})\ge\ee$. If $z$ is a limit point of $z_{n_i}$, then $z\in
\GG_m$ and $h^0(z)\ge \ee$.]

All measures $X_{D_n}$ are concentrated, $P_x$-a.s., on $\RR_D$.
Therefore $\A_m$ implies that they are concentrated, $P_x$-a.s., on $D_m^*$. Since 
$\GG_{m,n}\subset D_m^*$, we conclude that, for all sufficiently large $n$, $\0$. It follows from \eqref{M5aa} that $Z_\nu<\infty$ $P_x$-a.s. and therefore $P_x\{\A, Z_\nu<\infty\}>0$. By Proposition \ref{Proposition B2.1},  \eqref{CC2} follows from \eqref{CC4} .
\end{proof}


\subsection{}
We also need the following  result  (see  \cite{Dy04a}, Lemma 3.2).
\begin{thm}
\label{Theorem 3.2}
Suppose that $D\subset E$ are smooth open sets.
Denote by $\tilde \F$ the $\myss$-algebra in $\OO$ generated  by the sets 
$\{s<\tau_D,\xi_s\in B\}$  where $s\ge 0, B\in\B(E)$.  
 We have
\begin{equation}
\label{5.2.1}
\tilde\Pi_x^y Y=\Pi_x^y\{\tau_D=\tau_E,Y\}
\end{equation}
for all $x\in D, y\in\pE\cap\pD$ and for all $Y\in\tilde\F$.
\end{thm}
  
\begin{corol}
\label{Corollary 3.1}
If
\begin{equation}
\label{5.13}
F_t=\exp\big[-\int_0^t a(\xi_s)\ ds\big]
\end{equation}
where $a$ is a positive continuous function on $[0,\infty)$, then, for 
$y\in \pD\cap\pE,$
\begin{equation}
\label{5.14}
\tilde\Pi_x^y F_{\tau_D}=\Pi_x^y\{\tau_D=\tau_E, F_{\tau_E}\}.
\end{equation} 
\end{corol}

Indeed, it is easy to see that $F_{\tilde\tau}\in\tilde\F$.

\section{Equations connecting $P_x$ and ${\mathbb{N}}_x$ with $\Pi_x^\nu$}
\subsection{}
\begin{thm}
\label{Theorem 4.1}
Let $Z_\nu=\SBV(h_\nu), Z_u=\SBV(u)$ where $\nu\in\N_1^E$ and $u\in \U(E)$. Then
\begin{equation}
\label{jCR}
P_x Z_\nu e^{-Z_u}=e^{-u(x)}\Pi^\nu_x e^{-\Phi(u)}
\end{equation}
and
\begin{equation}
\label{d1}
\NN_x Z_\nu e^{-Z_u}=\Pi^\nu_x e^{-\Phi(u)}
\end{equation}
where 
\begin{equation}
\label{1.10}
\Phi(u)=\int_0^{\tau_E}\psi'[u(\xi_t)]dt.
\end{equation}
\end{thm}
\begin{proof}
Formula \eqref{jCR}  follows from Theorem 3.1 in Chapter 9 of \cite{Dy02}. To prove \eqref{d1}, we observe that, for every
 $\myll
\ge 0$, $\myll Z_\nu+Z_u=\SBV(v)$ where $v=\myll  h_\nu+u\in \U^-(E)$ and therefore, by \eqref{b2.2}, 
\begin{equation}
\label{d2}
\NN_x(1-e^{-\myll Z_\nu-Z_u})=-\log P_xe^{-\myll Z_\nu-Z_u}.
\end{equation}
 By taking the derivatives with respect to $\myll$ at $\myll=0$,\footnote{The 
differentiation under the integral signs is justified by \eqref{5aa}.} 
we get 
\begin{equation}
\label{aaa}
\NN_x Z_\nu e^{-Z_u}= P_x Z_\nu  e^{-Z_u}/P_x e^{-Z_u}.
\end{equation}
By Theorem 1.1 of Chapter 9 in \cite{Dy02},
\begin{equation}
\label{bbb}
P_x e^{-Z_u}=e^{-u(x)}.
\end{equation}
Therefore  \eqref{d2}   follows from \eqref{jCR}, \eqref{aaa} and \eqref{bbb}.
\end{proof}

\begin{thm}
\label{Theorem uu1}
Suppose that   $D\subset  E$ are bounded smooth open sets  and $\LL, L, D^*$ are the sets introduced in Theorem \ref{Theorem A1.1}. Let $\nu$ be a finite measure on  $\pD\cap\pE$, $x\in E$ and $\E_x(\nu)<\infty$.  
Put
\begin{equation}
\label{5.10}
\begin{split}
w_\LL(x)&=\NN_x\{\RR_D\cap\LL\neq\emptyset\},\\
v_s(x)&=w_\LL(x)+\NN_x\{\RR_D\cap\LL=\emptyset,1-e^{-sZ_\nu}\}
\end{split}
\end{equation}
for $x\in D$ and let $w_\LL(x)=v_s(x)=0$ for $x\in E\setminus D$.
For every $x\in E$, we have
\begin{equation}
\label{5.11}
\NN_x\{\RR_E\subset D^*, Z_\nu\}
=\Pi_x^\nu\{A, e^{-\Phi(w_\LL)}\},
\end{equation}
\begin{equation}
\label{5.12}
\NN_x\{\RR_E\subset D^*, Z_\nu\neq 0\}
=\int_0^\infty\Pi_x^\nu \{A, e^{-\Phi(v_s)}\}ds
\end{equation}
where $\Phi$ is defined by \eqref{1.10} and
 \begin{equation}
\label{uu3}
A=\{\tau_E=\tau_D\}=\{\xi_t\in D\text{ for all } t<\tau_E\}.
\end{equation}
\end{thm}
 
\begin{rmk}
 Since $\E_x(\nu)<\infty$, $\nu$ belongs to $\N_x^E$ and to $\N_x^D$.
\end{rmk}

\begin{proof}
1\grd.\ If $x\in E\setminus D$, then, 
$\NN_x$-a.s., $\RR_E$ is not a subset of $D^*$ 
because $\RR_E$ contains supports of  $X_O$ for all neighborhoods $O$ of $x$ 
and we can choose $O$ such that $\bar O\cap D^*=\emptyset$. On the other hand, 
$\Pi_x^\nu(A)=0$. Therefore \eqref{5.11} and \eqref{5.12} hold independently of  values of 
$w_\LL
$ and $v_s$. 

2\grd.\ Now we assume that $x\in D$. 
 Put $\A=\{\RR_D\subset D^*\}$. We claim that
\begin{equation*}
\A=\{\RR_E\subset D^*\} \qt{$\NN_x$-a.s.}
\end{equation*}
 Indeed, $ \{\RR_E\subset D^*\}\subset \A$ because $\RR_D\subset\RR_E$. By Theorem \ref{Theorem 3.1}, $\A\subset\{\RR_D=\RR_E\}$ $\NN_x$-a.s. Hence, $\A\subset\{\RR_E\subset D^*\}$.

By Theorem \ref{Theorem 3.1},  $\RR_D=\RR_E$ and $Z_\nu=\tilde Z_\nu$ $\NN_x$-a.s. on $\A$. Therefore
\begin{equation}
\label{5.17}
\begin{split}
\NN_x\{\RR_E\subset D^*,Z_\nu\}&= \NN_x\{\A,Z_\nu\}
=\NN_x\{\A,\tilde Z_\nu\},\\
\NN_x\{\RR_E\subset D^*,Z_\nu e^{-sZ_\nu}\}&=
\NN_x\{\A,Z_\nu e^{-sZ_\nu}\}
=\NN_x\{\A,\tilde Z_\nu e^{-s\tilde Z_\nu}\}.
\end{split}
\end{equation}
Formula \eqref{5.10} defines two elements of $\U(D)$.
The stochastic boundary value $Z_\LL$ of $w_\LL$ in $D$ is equal to
$\infty1_{\A^c}$ (Remark 1.2 on p.~133 in \cite{Dy02}) and therefore
\begin{equation}
\label{5.18}
e^{-Z_\LL}=1_\A.
\end{equation}
By \eqref{B5.1} and \eqref{5.1c}, 
$v_s(x)=-\log P_x\{\RR_D\cap\LL=\emptyset,e^{-sZ_\nu}\}$ and, by Remark 2.1 
on p.~137 in \cite{Dy02}, the stochastic boundary value $Z^s$ of $v_s$ in $D$ is equal to
$Z_\LL+s\tilde Z_\nu$. Hence,
\begin{equation}
\label{5.19}
e^{-Z^s}=1_\A e^{-s\tilde Z_\nu}.
\end{equation}
By \eqref{5.17}, \eqref{5.18} and \eqref{5.19},
\begin{equation}
\label{EE1}
\NN_x\{\A,Z_\nu\}=\NN_x\{\tilde Z_\nu e^{-Z_\LL}\}
\end{equation} 
and
\begin{equation}
\label{EE2}
\NN_x\{\A,Z_\nu e^{-sZ_\nu}\}=\NN_x \{\tilde Z_\nu e^{-Z^s}\}.
\end{equation}
By applying formula \eqref{d1} to $\tilde Z_\nu$ and to the restriction  of $w
_\LL$ to $D$, we conclude from \eqref{EE1} that
\begin{equation}
\label{5.20}
\NN_x\{\A,Z_\nu\}=\tilde\Pi_x^\nu
\exp\big[-\int_0^{\tau_D}\psi'[w_\LL(\xi_s)]ds\big]
\end{equation}
and, by Corollary \ref{Corollary 3.1},
\begin{equation}
\label{5.20a}
\NN_x\{\A,Z_\nu\}=\Pi_x^\nu\{A,  e^{-\Phi(w_\LL)}\}.
\end{equation}
Analogously, \eqref{d1} applied to the restriction  of $v_s$ to $D$, in 
combination with \eqref{EE2} and \eqref{5.14}, yields 
\begin{equation}
\label{5.21}
\NN_x\{\A,Z_\nu e^{-sZ_\nu}\}
=\Pi_x^\nu\{A, e^{-\Phi(v_s)}\}.
\end{equation}

Formula \eqref{5.11} follows from \eqref{5.20a} and formula \eqref{5.12} follows from \eqref{5.21} because
\begin{equation}
\label{5.22}
\NN_x\{\A,Z_\nu\neq 0\}
=\lim\limits_{t\to\infty}\NN_x\{\A,1-e^{-tZ_\nu}\}
\end{equation}
and 
\begin{equation}
\label{5.23}
1-e^{-tZ_\nu}=\int_0^t Z_\nu e^{-sZ_\nu}ds.
\end{equation}
\end{proof}

\section{Proof of Theorem \ref{Theorem A1.1}}
We  use the following two elementary inequalities:

\begin{asma}
\item\label{ua}
For all $a,b\ge 0$ and $0<\bb<1$,
\begin{equation}
\label{u2}
(a+b)^\bb\le a^\bb+b^\bb.
\end{equation}
\begin{proof}
It is sufficient to prove \eqref{u2} for $a=1$. Put $f(t)=(1+t)^\bb-t^\bb$. Note that $f(0)=1$ and $f'(t)\le 0$ for $t>0$.  Hence $f(t)\le 1$ for $t\ge 0$.
\end{proof}

\item\label{ub}
For every finite measure $M$, every positive measurable function $Y$ and every $\bb>0$,
\[
M(Y^{-\bb})\ge M(1)^{1+\bb}(MY)^{-\bb}.
\]

 Indeed $f(y)=y^{-\bb}$ is a convex function on $\R_+$, and we get \ref{ub} by applying Jensen's inequality to the probability measure $M/M(1)$.
\end{asma}

\begin{proof}[Proof of Theorem \ref{Theorem A1.1}]
1\grd.\ 
If $x\in E\setminus D$, then, $\NN_x$-a.s., $\RR_E$ is not a subset of
$D^*$ (see the proof of Theorem \ref{Theorem uu1}). Hence, both sides
of \eqref{A1.8} vanish.

2\grd.\ Suppose $x\in D$. By \eqref{b2.2},
 $\NN_x(1-e^{-sZ_\nu})=u_{s\nu}$. Thus \eqref{5.10} implies  $v_s\le w_\LL + u_{s\nu}$. Therefore, by \ref{ua},  $v_s^{\myaa-1}\le w
_\LL^{\myaa-1}+u_{s\nu}^{\myaa-1}$ and, since $u_{s\nu}\le h_{s\nu}=sh_\nu$, 
$\Phi(v_s)\le\Phi(w_\LL)+s^{\myaa-1}\Phi(h_\nu)$. 

Put $\A=\{\RR_E\subset D^*\}$.
It follows from \eqref{5.12}  that 
\begin{equation}
\label{u3}
\NN_x\{\A, Z_\nu\neq 0\}\ge
\Pi_x^{\nu}\{A, \int_0^\infty e^{-\Phi(w_\LL)-s^{\myaa-1}\Phi(h_\nu)}ds\}.
\end{equation}
Note that $\int_0^\infty e^{-as^\bb}ds=Ca^{-1/\bb}$ where 
$C=\int_0^\infty e^{-t^\bb} dt$.
Therefore  \eqref{u3}  implies 
\begin{equation}
\label{u1}
\NN_x\{\A, Z_\nu\neq 0\}\ge
C\Pi_x^\nu\{A, e^{-\Phi(w_\LL)} \Phi(h_\nu)^{-1/(\myaa-1)}\}.
\end{equation}
The right side in \eqref{u1} is equal to $CM(Y^{-\bb})$  where $\bb=1/(\myaa-1), Y=
\Phi(h_\nu)$ and $M$ is the measure with the density 
$1_Ae^{-\Phi(w_\LL)}$ with respect to $\Pi_x^\nu$. We get from \eqref{u1} 
and \ref{ub} that
\begin{multline*}
\NN_x\{\A, Z_\nu\neq 0\}\ge CM(1)^{1+\bb}(MY)^{-\bb}\\=
C[\Pi_x^\nu \{A,e^{-\Phi(w_\LL)}\}]^{\myaa/(\myaa-1)} [\Pi_x^\nu\{A,e^{-\Phi(w_\LL)}\Phi(h_\nu)\}]^{-1/(\myaa-1)}.
\end{multline*}
By \eqref{5.11}, $\Pi_x^\nu \{A,e^{-\Phi(w_\LL)}\} =\NN_x\{\RR_E\subset D^*,Z_\nu\}$ and, since 
$\Pi_x^\nu\{A,e^{-\Phi(w_\LL)}\Phi(h_\nu)\}\le \Pi_x^\nu\Phi(h_\nu)$,
we have
\begin{equation}
\label{nu}
\NN_x\{\A, Z_\nu\neq 0\}\ge C[\NN_x\{\RR_E\subset D^*,Z_\nu\}]^{\myaa/(\myaa-1)} 
[\Pi_x^\nu\Phi(h_\nu)]^{-1/(\myaa-1)}.
\end{equation}

3\grd.\ 
By the definition of $h$-transform,
for every  $f\in\B(E)$  and every $h\in\myH(E)$,
\begin{equation*}
\Pi_x^h \int_0^{\tau_E}f(\xi_t)dt=\int_0^\infty\Pi_x^h\{t<\tau_E,f(\xi_t)\}dt=
\int_0^\infty \Pi_x \{t<\tau_E,f(\xi_t)h(\xi_t)\} dt.
\end{equation*}
 By taking $f=\myaa h_\nu^{\myaa-1}$ and $h=h_\nu$ we get
\begin{equation}
\label{u5}
\Pi_x^\nu\Phi(h_\nu)=\myaa \E_x(\nu).
\end{equation}
Formula \eqref{A1.8} follows from  \eqref{nu} and \eqref{u5}.
\end{proof}


\bibliographystyle{amsalpha}
\begin{thebibliography}{Dy04d}

\bibitem[Dy91]{Dy91}
E. B. Dynkin, 
\textit{A probabilistic approach to one class of nonlinear 
differential equations},
Probab. Th. Rel. Fields
\textbf{89}
(1991),
89--115. \MR{1109476 (92d:35090)}

\bibitem[Dy02]{Dy02} \bysame,   
\textit{Diffusions, superdiffusions and partial differential
  equations},
American Mathematical Society, Providence, RI,
2002. \MR{1883198 (2003c:60001)}

\bibitem[Dy04a]{Dy04a} \bysame, 
\textit{On upper bounds for positive solutions of semilinear equations},
J. Functional Analysis
\textbf{210}
(2004), 73--100.
\MR{2051633}

\bibitem[Dy04b]{Dy04b} \bysame, 
\textit{Superdiffusions and positive solutions of 
nonlinear partial differential equations},
Uspekhi Matem. Nauk
\textbf{59}
(2004), to appear.

\bibitem[Dy04c]{Dy04c} \bysame, 
\textit{Absolute continuity results for superdiffusions with 
applications to differential equations},
C. R. Acad. Sc. Paris, S\'{e}rie I,
\textbf{338}
(2004),
605--610.
\MR{2056468}

\bibitem[Dy04d]{Dy04d} \bysame,  
\textit{Superdiffusions and positive solutions of nonlinear 
partial differential equations},
American Mathematical Society, Providence, RI,
2004, to appear.

\bibitem[DK03]{DK03}
E. B. Dynkin and S. E. Kuznetsov,
\textit{Poisson capacities},
Math. Research Letters
\textbf{10}
(2003),
85--95.
\MR{1960126 (2003k:31005)}

\bibitem[DK04]{DK04} \bysame, 
$\NN$-\textit{measures for branching exit Markov systems and their 
applications to differential equations},
Probab. Theory and Related Fields, to appear.

\bibitem[Ku04]{Ku04} S. E. Kuznetsov, 
\textit{An upper bound for positive solutions of the equation}
 $\DD  u=u^\myaa$,
Amer. Math. Soc., Electronic Research Announcements, to appear.

\bibitem[MV04]{MV04} M. Marcus and L. V\'{e}ron, 
\textit{Capacitary estimates of  positive solutions of  
semilinear elliptic equations with absorbtion},
J. European Math. Soc., to appear.

\bibitem[Ms02]{Ms02} B. Mselati, 
\textit{Classification et repr\'{e}sentation probabiliste des 
solutions positives de $\Delta u=u^2$ dans un domaine}, 
Th\'{e}se de Doctorat de l'Universit\'{e} Paris 6,
2002.

\bibitem[Ms04]{Ms04}
B. Mselati,  
\textit{Classification and probabilistic representation of the 
positive solutions of a semilinear elliptic equation}, 
Memoirs of the American Mathematical Society \textbf{168} (2004), no. 798,
to appear.
\end{thebibliography}

\end{document}