EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publishers TeX code     *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you retrieve the article in DVI,       *
%_ * PostScript, or PDF format.                                             *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{17-DEC-2004,17-DEC-2004,17-DEC-2004,17-DEC-2004}
 
\RequirePackage[warning,log]{snapshot}
\documentclass{era-l}

\issueinfo{10}{17}{}{2004}
\dateposted{December 24, 2004}
\pagespan{155}{158}
\PII{S 1079-6762(04)00140-4}
\copyrightinfo{2004}{American Mathematical Society}
\revertcopyright

\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsthm,amssymb,latexsym}
\usepackage{epic}
\usepackage{eepic}
\usepackage{xypic}
\usepackage{mathrsfs}

\newtheorem{conjecture}{Conjecture}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\theoremstyle{definition}
\newtheorem{example}{Example}
\newtheorem{remark}{Remark}

\newcommand{\CC}{\mathbb{C}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\e}{\ar@{-}}
\newcommand{\n}{*=0{\bullet}}
\newcommand{\ns}{*=0{\star}}

\newcommand{\newop}[1]{\expandafter\def\csname #1\endcsname{\mathop{\rm
#1}\nolimits}}

\newop{des}
\newop{min}


\usepackage{graphicx}

\begin{document}

\title[Counterexamples to the Neggers-Stanley conjecture]
{Counterexamples to the Neggers-Stanley conjecture}
\author{Petter Br\"and\'en}
\address{Department of Mathematics,
Chalmers University of Technology and G\"oteborg University,
S-412~96  G\"oteborg,
Sweden}
\email{branden@math.chalmers.se}
\commby{Sergey Fomin}
\date{August 31, 2004}

\subjclass[2000]{Primary 06A07, 26C10}
\keywords{Neggers-Stanley conjecture, partially ordered set, linear
extension, real roots}


\begin{abstract}
The Neggers-Stanley conjecture  asserts 
that the polynomial counting the linear 
extensions of a labeled finite
partially ordered set  by the number of descents has 
real zeros only. We provide counterexamples to this conjecture. 
\end{abstract}

\maketitle

A finite partially ordered set (\emph{poset}) $P$ of cardinality 
$p$ is said to be \emph{labeled} if its elements are identified with 
the integers  $1,2,\ldots, p$. 
We will use the symbol $\prec$ to denote the 
partial order on~$P$ and $<$ to denote the usual order on the 
integers.    
The {\em Jordan-H\"older set} $\mathcal{L}(P)$ 
is the set of permutations $\pi=(\pi_1,\ldots,\pi_p)$ of~
$[p]\stackrel{\rm def}{=}\{1,2,\ldots, p\}$ 
which encode the linear extensions of~$P$. 
More precisely, $\pi\in\mathcal{L}(P)$ 
if $\pi_i \prec \pi_j$ implies~$i \pi_{i+1}$. 
Let $\des(\pi)$ denote the number of descents in~$\pi$. 
The \emph{$W$-polynomial} of a labeled poset $P$ is defined by 
$$
W(P,t) = \sum_{\pi \in \mathcal{L}(P)}t^{\des(\pi)}.
$$
$W$-polynomials appear naturally in many combinatorial contexts 
\cite{Brenti,Simion,Stanleythesis}, and are connected to Hilbert series 
of the Stanley-Reisner rings of simplicial complexes 
\cite[Section III.7]{Stanleygreen} and algebras with straightening laws 
\cite[Theorem 5.2.]{StanleyHilbert}.

\begin{example} 
Let $P_{2,2}$ be the labeled poset shown in Figure~\ref{fig}. Then 
$$
\mathcal{L}(P_{2,2})=\{(1,3,2,4),(1,3,4,2),(3,1,2,4),(3,1,4,2),(3,4,1,2)\},
$$ 
so $W(P_{2,2},t)=4t+t^2$.
\end{example}

\begin{figure}[h]
\setlength{\unitlength}{10mm}
\equation
P_{2,2}\,=\,\vcenter{\xymatrix@R=14pt@C=14pt{
              2& 4&&\\
              1\e[u]& 3\e[lu]\e[u]&&
          }}
$$
\caption{The poset $P_{2,2}$.}
\label{fig} 
\end{figure}

When $P$ is a $p$-element antichain, 
then $\mathcal{L}(P)$ consists of all permutations of~$[p]$, and 
$W(P,t)$ is the $p$th {\em Eulerian polynomial}. The Eulerian 
polynomials are known \cite{Harper} to have only real zeros. 
In this instance, the \emph{Neggers-Stanley conjecture} holds: 

\begin{conjecture}[Neggers-Stanley] 
\label{NS}
For any finite labeled poset~$P$, 
all zeros of the polynomial $W(P,t)$ are real.
\end{conjecture}

A poset $P$ is \emph{naturally labeled} if 
$i\prec j$ implies~$i