

ANALYSIS OF THE LINEARLY IMPLICIT MID–POINT RULE FOR DIFFERENTIAL–ALGEBRAIC EQUATIONS *

CLAUS SCHNEIDER^{\dagger}

Abstract. The error of the linearly implicit mid-point rule after 2m + 1 steps is expanded in powers of m^2 . We prove that the well-known expansion for ordinary differential equations (an expansion in negative powers of m^2) is perturbed by additional terms with non-negative powers of m^2 for semi-explicit differential-algebraic equations of index one. Hence, extrapolation in m^{-2} will be of limited value only. The complete expansion shows these limits and, furthermore, can be used to derive an order 8 method of Rosenbrock type.

 ${\bf Key \ words.} \ Differential-algebraic \ equations, \ linearly \ implicit \ mid-point \ rule, \ Rosenbrock-type \ methods, \ extrapolation.$

AMS subject classifications. 65L05, 65B05, 58F99.

1

^{*}Received March 18, 1993. Accepted for publication June 21, 1993. Communicated by V. Mehrmann.

[†] Johannes Gutenberg-Universität, Fachbereich Mathematik, Saarstraße 21, D-55099 Mainz, Germany, (Schneider@mat.mathematik.Uni-Mainz.DE)