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ANALYSIS OF THE LINEARLY IMPLICIT MID–POINT RULE FOR
DIFFERENTIAL–ALGEBRAIC EQUATIONS ∗
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Abstract. The error of the linearly implicit mid–point rule after 2m + 1 steps is expanded
in powers of m2. We prove that the well-known expansion for ordinary differential equations (an
expansion in negative powers of m2) is perturbed by additional terms with non-negative powers of
m2 for semi–explicit differential–algebraic equations of index one. Hence, extrapolation in m−2 will
be of limited value only. The complete expansion shows these limits and, furthermore, can be used
to derive an order 8 method of Rosenbrock type.
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1. Introduction. We study the behaviour of the linearly implicit mid–point
(LIMP) rule when applied to semi–explicit differential–algebraic equations (DAE’s)

y′ = f(y, z), 0 = g(y, z).(1.1)

We assume that f and g are sufficiently smooth functions and that ∂g/∂z has a
bounded inverse in a neighbourhood of the exact solution, i.e., the DAE is of index
one. Finally, the initial values y(x0) = y0, z(x0) = z0 should be consistent, i.e.,
g(y0, z0) = 0.

We derive an expansion of the error which shows how far extrapolation is justified
and the limits of this procedure as well. Furthermore, we introduce some other means
of eliminating error terms which finally yields a method of order 8.

In Section 2, we briefly present the linearly implicit mid–point rule, reformulate
it as a Rosenbrock–type (ROW) method, and collect some known results. In Section
3, the expansion of the error is given and discussed, thus leading to extrapolation,
elimination, and the highest achievable order. The proofs are provided in the last three
sections where we have to analyze the ‘growth’ and the structure of order conditions.

2. The Linearly Implicit Mid–Point Rule for DAE’s. The LIMP rule (and
its extrapolation) were introduced in [1]. An extension to differential–algebraic equa-
tions is straight–forward (cf. [8], p. 473, e.g.).

Let

Jh :=

 I − hf0
y −hf0

z

−hg0
y −hg0

z

 ,

with partial derivatives of f and g at (y0, z0). Then the first approximations y1, z1

are computed by one linearized Euler step:

Jh

(
y1 − y0

z1 − z0

)
= h

(
f(y0, z0)
g(y0, z0)

)
,(2.1)
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whereas the approximations yi+1, zi+1, i = 1(1)2m are defined by

Jh

(
yi+1 − yi
zi+1 − zi

)
=
(
Jh −

(
2I 0
0 0

))(
yi − yi−1

zi − zi−1

)
+ 2h

(
f(yi, zi)
g(yi, zi)

)
(2.2)

Finally, a smoothing step provides the numerical solution at x0 +H(H := 2mh):

yh(x0 +H) := (y2m+1 + y2m−1)/2,
zh(x0 +H) := (z2m+1 + z2m−1)/2.(2.3)

In order to study the errors yh(x0 + H) − y(x0 + H) and zh(x0 + H) − z(x0 + H)
of the LIMP rule, we reformulate the method as an ROW method following ideas of
[4]. Set k0 := 2m(y1 − y0), kj := m(yj+1 − yj−1), j = 1(1)2m. Then the steps (2.1-3)
may be collected as one step (from x0 to x0 +H) of a (2m+ 1)-stage ROW method
which is given by the data α,A ∈ IR(2m+1)×(2m+1), b ∈ IR2m+1. ROW methods are
explained for ODE’s and DAE’s, e.g., in [8]. In our case

(α)ij =
1
m

 1/2 , j = 0 and i odd,
1 , 0 < j < i and i− j odd,
0 , otherwise,

(2.4)

A = I/(2m) + Sα with the shift S :=


0
1 0
0 1 0
...

...
...

... .
0 . . 0 1 0

 ,(2.5)

bT = last row of A = (1/2, 0, 1, 0, 1, . . . , 0, 1, 0, 1/2)/m.(2.6)

Hence, the method is stiffly accurate (cf. [8] p. 448) and

bTA−1 = (0, 0, . . .0, 1) ∈ IR2m+1.(2.7)

For the analysis to come, we finally need that

(αA−1)ij = 2m(α)ij(−1)[j/2](−1)[(i−1)/2],(2.8)

where [r] denotes the integer part of r ∈ IR and i, j vary between 0 and 2m. Now
we can apply Roche’s analysis of ROW methods (see [10] and[11]) while studying
the order of the method and the possibilities to increase the order by some sort of
‘extrapolation’.

It is easy to see that bT e = 1, eT := (1, 1, . . . , 1) ∈ IR2m+1, bTA−1e = 1, and that
bTAe = 1/2 + 1/(4m2) 6= 1/2. Hence the LIMP rule yields an ROW method which
is convergent of order 1 (cf. [3] and [11]). This order can be increased by eliminating
the 1/(4m2)–error term with extrapolation. In the ODE case, Bader & Deuflhard
proved in [1] that the LIMP rule allows an expansion of the error in positive powers
of m−2 which could be successfully exploited for extrapolation. For stiff equations,
however, perturbations are introduced (cf. [6]) making extrapolation less useful. At
DAE’s (of index 1), finally, m−2-extrapolation achieves order 5 at most (cf. [5] and
[8] p. 473), in general. On the other hand, a perturbed asymptotic expansion could
be derived for the linearly implicit Euler rule for DAE’s (cf. [3]), but the techniques
used in that paper failed for the LIMP rule, and the complete expansion of its error
remained unknown.
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3. Expansion of the Error. The following theorem will show that the error of
the LIMP rule allows an expansion in negative powers of m2 which is perturbed by
oscillating terms of the same kind and additional error terms involving non-negative
powers of m2. This explains the limited advantage of the standard extrapolation for
DAE’s. Furthermore, it shows that the perturbation is quite different from that of
the linearly implicit Euler rule.

Theorem 3.1. Let q ∈ IN. For sufficiently smooth f and g and regular g0
z hold

the following expansions of the error introduced by 2m+1 steps of the LIMP rule with
stepsize h(H = 2mh) — or the error introduced by one step of the associated ROW
method with stepsize H, respectively:

yh(x0 +H)− y(x0 +H) = H

q−1∑
i=1

Hip1,i(m2)/(m2)[(i+1)/2] +

(−1)mH3

q−3∑
i=1

Hip2,i+2(m2)/(m2)[(i+3)/2] +(3.1)

(−1)mH7

q−7∑
i=1

Hir1,i(m2) +H8

q−8∑
i=1

Hir2,i(m2) +O(Hq+1),

where p1,i, p2,i, r1,i, r2,i are polynomials of degree [(i-1)/2] with coefficients depending
on x0, f, g but not on H or m. Likewise,

zh(x0 +H)− z(x0 +H) = H2

q−2∑
i=1

Hi−1p̂1,i(m2)/(m2)[(i+1)/2] +

(−1)mH3

q−3∑
i=1

Hi−1p̂2,i+1(m2)/(m2)[(i+2)/2] +(3.2)

(−1)mH5

q−5∑
i=1

Hi−1r̂1,i(m2) +H8

q−8∑
i=1

Hi−1r̂2,i(m2) +

O(Hmax{q,2}),

where the functions with a ˆ have the same properties as those without one.
We will prove the Theorem 3.1 in the sections to come, but first, some remarks,

interpretations, and comments are in order.
Remarks .

(i) q = 3: One step of Richardson’s extrapolation in m−2 starting with (yh1,zh1 ;
H = 2m1h1) and (yh2,zh2 ; H = 2m2h2) yields an ROW method of order
three, i.e., the local error in the approximation of y is O(H4) and the error
for z is O(H3).

(ii) q = 5: Two extrapolations lead to order 5 when m1,m2, and m3 are all odd
or all even; otherwise order three cannot be improved because of the (−1)m-
terms.

(iii) q = 7: A third extrapolation step as in (ii) will give order 8 in the y–
component only. In the z-component there remains H5(−1)mr̂1,1, which is
not affected by extrapolation.

(iv) q = 9: In general, it is impossible to achieve order 9 for the ROW method
because of r2,1 and r̂2,1 which do not depend on m at all.
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However, the expansion shows how to construct a method of order 8 : Perform
three extrapolation steps with evenmj and the same with odd mj, j = 1(1)4. This will
eliminate the terms containing m−2,m−4,m−6. Then average the two results in order
to eliminate r̂1,1(m2) and r1,1(m2), as well. Hence we arrive at order 6 for z and 8 for
y, i.e., order 6 for the method. Obviously, this process would be far too expensive for
practical applications, but in theory, even m−8 could be eliminated by a fourth step
in the previous extrapolation. Then the approximation of y is of order 9, but for the
z-component, there are still remaining r̂1,3(m2) and r̂1,4(m2) which are both terms in
m2 only. They finally could be eliminated in order to obtain the H8 for z, i.e., an ROW
method of order 8. Unfortunately, the elimination of the m2–terms cannot be achieved
by the kind of extrapolation used up to now. Fortunately, formulas for the recursive
elimination of unconventional terms are given in [13]. They can be used to remove the
m2–terms. We do not go into the details of this process, but we want to emphasize
that even standard extrapolation with mj−k, · · · ,mj amplifies the m2-terms in the
extrapolated result by

∑j
i=j−km

2
i (interpolate 1/x2 at m−2

i with a polynomial in x2

and evaluate at 0). This clearly shows that the mi used for extrapolation should be
as small as possible if we want to avoid an unpleasant growth of the error constants.
Furthermore, extrapolating more than four steps would eliminate some error terms
but increase others at the same time. Therefore, higher accuracy requires a smallerH,
i.e., more ROW steps and more updates of the Jacobian which makes sense because we
are trying to solve nonlinear equations g(y, z) = 0, too. Before proving the Theorem,
some final remarks.

Remarks .

(i) In the trivial case of linear constraints g in (1.1), the unperturbed expansion
of the ODE case is still valid.

(ii) If g happens to be linear in z only, then the unpleasant non-negative powers
of m2 do not appear at all, but the oscillating terms in m−2 are still present.
Hence, extrapolation can be successfully performed with even (odd) mj only.
Otherwise the order is bounded by three again.

(iii) The ROW method of order 8 needs quite a lot of work and is probably of
theoretical interest only.

The assertions of the first two remarks may be deduced from the results in Sec-
tion 6. There it is shown which trees lead to the unpleasant terms in the expansions
(3.1) and (3.2), and it is easy to see that the elementary differentials of these critical
trees vanish in the given cases. Now the proofs will be derived in three steps progress
from nice trees to a tedious counting procedure.

4. How the Trees are Growing. The order conditions of Runge–Kutta and
ROW methods may be derived from trees ( cf. [2], [7], [8]). There are trees with
meagre roots leading to conditions for order k which have the form bTx(k) = σ, σ =
σ(x(k)). We will call them y-conditions and x(k) an order-vector for y and order k.
Additional conditions for order k of the z-component are derived from trees with fat
roots. They are given by equations like bTA−1u(k) = λ, λ = λ(u(k)) (cf. [10] and [11]).
In our case bTA−1u(k) = (u(k))2m. Consequently, we will call them z-conditions and
u(k) an order–vector for z and order k. If k = 1 then there exists only one order-vector
for y : x(1) = (1, 1, ..., 1)T =: e;σ(x(1)) = 1. The z–conditions start with k = 2 and
one order–vector for z : u(2) = (αe)2 (componentwise squaring); λ(u(2)) = 1.

It is easy to construct y–conditions of order q > 1 (cf. [13] and [9] for a detailed
proof):
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(4.1)

1) If bTx(q−1) = σ is a y–condition for order q − 1, then
bTAx(q−1) = σ/q is a y–condition for order q.

2) If bTA−1u(q−1) = λ is a z–condition for order q − 1, then
bTu(q−1) = λ/q is a y–condition for order q.

Hence, Ax(q−1) and u(q−1) are order–vectors for y and order q;σ(Ax(q−1)) =
σ(x(q−1))/q, σ(u(q−1)) = λ(u(q−1))/q.

The real problem are the z–conditions. For order q > 1 they are constructed by
combining previous order–vectors in the following way (cf. [8], [10], [11]):

If k1, k2 ≥ 0, k1 + k2 > 1, k1 + k2 ≤ q and
k1∑
i=1

νi +
k2∑
j=1

µj = q with 1 ≤ ν1 ≤ ν2 ≤ . . . ≤ νk1 ,(4.2)

2 ≤ µ1 ≤ µ2 ≤ . . . ≤ µk2 ,

and if bTx(νi) = σνi are y–conditions for order νi, bTA−1u(µj) = λµj are z–conditions
for order µj , then

u(q) := [(αx(ν1)) ∗ (αx(ν2))∗ . . . ∗(αx(νk1 )) ∗
(αA−1u(µ1))∗ . . . ∗(αA−1u(µk2 ))]

is an order–vector for z and order q (’∗’ means componentwise multiplication), and

bTA−1u(q) =
k1∏
i=1

σνi

k2∏
j=1

λµj =: λ(u(q))

yields a z–condition for order q.
In the sequel, we have to show that the ’extrapolated’ LIMP rule actually achieves

order 8, i.e., it satisfies 1731 order conditions constructed by the rules just described.
Lucky enough, we are only interested in the structure of these conditions for the LIMP
rule with respect to m and not in the details. Obviously, this structure is influenced
by the following operations: Multiplication of an order–vector by α, αA−1, A, bT , or
bTA−1, and by componentwise multiplication of order-vectors. We will show that
order–vectors which are produced according to (4.1-2) by α or A of the LIMP rule
(given in (2.4-5)), do not fulfill the associated order conditions exactly, in general,
but the error allows an expansion like (3.1) or (3.2) with H := 1 and q depending on
the actual order. Hence, this error can be eliminated — within the asserted limits —
by extrapolation and other linear combinations of approximations computed by the
LIMP rule with various stepsizes.

5. Structure of the Order–Vectors. In the first step we will see that an
oscillating term is introduced by αA−1. Remember that u(2)

j = (αe)2
j = j2/(4m2)

and hence αA−1u(2) is one part of some order–vectors for z and order ≥ 3, y and
order ≥ 4, respectively.

Lemma 5.1. Let r ∈ IN and vj := jr, j = 0(1)2m. Then

(αA−1v)i =


0 , i = 0,

pr/2(i2)− C(−1)i/2 , i even and i > 0,

qr/2(i2) , i odd ,



ETNA
Kent State University 
etna@mcs.kent.edu

6 Implicit mid-point rule

for r even, and

(αA−1v)i =

 i · p(r−1)/2(i2) , i even,

i · q(r−1)/2(i2) +D(−1)(i+1)/2 , i odd,

for r odd, i = 0(1)2m. Here p and q are polynomials of degree r/2 or (r − 1)/2,
respectively, with leading coefficient 1.

Proof. Using (2.4) and (2.8) we get

(αA−1v)i = 2



i/4∑
µ=1

[(4µ− 1)r − (4µ− 3)r] , i ≡ 0 mod 4,

(i−1)/4∑
µ=1

[(4µ)r − (4µ− 2)r] , i ≡ 1 mod 4,

1 +
(i−2)/4∑
µ=1

[(4µ+ 1)r − (4µ− 1)r] , i ≡ 2 mod 4,

(i−3)/4∑
µ=0

[(4µ+ 2)r − (4µ)r] , i ≡ 3 mod 4.

In the brackets there are expressions of the form (a + 1)r − (a − 1)r which have to
be expanded in powers of a. Summing up these terms with the Euler–MacLaurin
summation formula for the mid–point rule (as quadrature rule !) (cf. [14] p.135)
yields the desired structure of (αA−1v)i. Furthermore, it can be seen that C and
D are non–vanishing constants depending on r and the first [(r − 1)/2] Bernoulli–
numbers.

The next lemma shows how the oscillation is amplified by αA−1 . For u(4) :=
(αe) ∗ αA−1[(αe) ∗ αA−1(αe)2] this amplification appears at first.

Lemma 5.2. Let r ∈ IN and vj := jr(−1)j/2(−C), j even, vj := jr(−1)(j+1)/2D,
j odd, j = 0(1)2m. Then

(αA−1v)i = i · pr/2(i2) ·

 D(−1)i/2 , i even,

C(−1)(i+1)/2 , i odd,

for r even, and

(αA−1v)i = p(r+1)/2(i2) ·

 D(−1)i/2 , i even,

C(−1)(i+1)/2 , i odd,

for r odd, i = 0(1)2m. The leading coefficient of p is 1/(r + 1).
Proof. Now

(αA−1v)i = 2

 C(−1)(i+1)/2
∑(i−1)/2
µ=1 (2µ)r , i odd,

D(−1)i/2
∑i/2
µ=1(2µ− 1)r , i even.

and — no surprise — the mid–point rule again proves the lemma.
Combining the two lemmas we obtain the impact of αA−1 on an expression which

is already perturbed by an oscillation.
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Lemma 5.3. Let r ∈ IN, k, l, n ∈ IN0 and

v̂j :=

 pl(j2) + (−1)j/2ρn(j2) , j even,

ql(j2) + (−1)(j+1)/2τk(j2) · j , j odd,
(5.1)

ŵj :=

 j · pl(j2) + (−1)j/2ρn(j2) · j , j even,

j · ql(j2) + (−1)(j+1)/2τk(j2) , j odd,
(5.2)

with polynomials p, q, ρ, τ of degrees given by their respective subscripts. Furthermore,
define vj := jr v̂j , wj := jrŵj , j = 0(1)2m. Then

(αA−1v)i =

 ql+r/2(i2) + (−1)i/2τk+1+r/2(i2) , i even,

pl+r/2(i2) + (−1)(i+1)/2ρn+r/2(i2) · i , i odd,

(αA−1w)i =

 i · ql+r/2(i2) + (−1)i/2τk+r/2(i2) · i , i even,

i · pl+r/2(i2) + (−1)(i+1)/2ρn+1+r/2(i2) , i odd,

for even r, and

(αA−1v)i =

 i · ql+(r−1)/2(i2) + (−1)i/2τk+1+(r−1)/2(i2) · i , i even,

i · pl+(r−1)/2(i2) + (−1)(i+1)/2ρn+(r+1)/2(i2) , i odd,

(αA−1w)i =

 ql+(r+1)/2(i2) + (−1)i/2τk+(r+1)/2(i2) , i even,

pl+(r+1)/2(i2) + (−1)(i+1)/2ρn+(r+1)/2(i2) · i , i odd,

for r odd, i = 0(1)2m. The leading coefficients of pl and ql become the leading
coefficients of the new p• and q•.

It is interesting to notice that the pairs (q, τ)[(p, ρ)] move from the odd [even]
positions in v and w to the even [odd] ones after the operations described in the
Lemma 5.3, but there is a different increase of the degrees: The highest exponent of
the oscillations is increased by r+1 whereas there is an increase of only r in the regular
terms, and this different kind of increase finally leads to the non-negative powers of
m2! Anyway, the structure of v̂[ŵ] (i.e., even [odd] exponents at even indices, even
[odd] exponents of the regular term and odd [even] ones in the oscillations at odd
indices) is maintained for even r and present again for odd r after the application of
αA−1 to w[v].

In the next step we shall prove that multiplication by α or A similarly preserves
the structure of v̂ and ŵ. Actually, there is nothing to prove for αv and αw because
of the connection between α and αA−1 given in (2.8) and the previous Lemmas.

Lemma 5.4. Consider v̂, ŵ from (5.1),(5.2) but admit ŵ0 to have an arbitrary
value. Then

(Av̂)i =
1

2m


v̂0 , i = 0,

i · p̂l(i2) + (−1)i/2ρ̂n−1(i2) · i , i even and i > 0,

i · q̂l(i2) + (−1)(i+1)/2τ̂k(i2) , i odd,
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(Aŵ)i =
1

2m


ŵ0 , i = 0,

p̂l+1(i2) + (−1)i/2ρ̂n(i2) , i even and i > 0,

q̂l+1(i2) + (−1)(i+1)/2τ̂k−1(i2) · i , i odd,

Hence the structure of v̂, ŵ is simply swapped. The highest exponent of the oscillations
is decreased by one whereas it is increased by one at the regular term. The leading
coefficients of p̂•, q̂• are those of p•, q• but divided by the highest exponent of p̂•, q̂•
(as in integration of polynomials).

Proof. Multiplying a row of A with a vector may be considered as applying the
trapezoidal rule! After sorting the oscillating terms according to their sign it is now
useful to interpret the multiplication by A as the difference between a trapezoidal
approximation and one obtained by the mid–point rule. Hence, integration of poly-
nomials, Euler–MacLaurin, and Bernoulli prove the assertion.

Remark . The dot product of b with v̂ or ŵ also maintains their structure,
because bT = last row of A — see (2.6).

In the ODE case we could finish this section now, because there are no fat nodes,
i.e., no αA−1 and therefore no oscillations. In the DAE case, however, it remains to
study the componentwise multiplication of vectors containing oscillations like v̂ and ŵ.
A short calculation shows that this operation too preserves the structure described in
Lemma 5.3, but unfortunately, the oscillating terms may lose their changing signs as
a result of this operation and, hence, become part of the regular terms. If the degree
of these former oscillations is the same as or higher than the degree of the former
regular terms, then the sign–independent non–negative exponents of m appear in the
Theorem 3.1. This concludes Section 5. The final step of the proof will be given in
Section 6 where we will compute the exponents of H at which the different sums start.

6. Counting. The rules (4.1), (4.2) and the results of the previous Section prove
inductively the structure of order–vectors for the LIMP rule. By separating regular
terms from terms which are still oscillating or which had their origin in oscillations,
we obtain the following result:

vi :=
ϕ

(2m)k


pk/2(i2) + p̂l1(i2) + (−1)i/2ρn1(i2) , i even,

qk/2(i2) + q̂l2(i2) + (−1)(i+1)/2τn2(i2) · i , i odd,

for k even, and

vi :=
ϕ

(2m)k



const. , i = 0

i · p(k−1)/2(i2) + i · p̂l1(i2) + (−1)i/2ρn1(i2) · i , i even and

i > 0,

i · q(k−1)/2(i2) + i · q̂l2(i2) + (−1)(i+1)/2τn2(i2) , i odd,

for k odd, i = 0(1)2m. The leading coefficient of the polynomials p•, q• is 1.
An order–vector u for z and order k has the structure given by v with ϕ replaced

by λ(u) = σ(u) · (k + 1). An order-vector x for y and order k + 1 has the structure
given by v with ϕ replaced by σ(x) · (k + 1).
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Hence, bTA−1u = u2m = λ(u) +
∑k/2
µ=1 βµm

−2µ +
∑l1
µ=0 γµm

2(µ−k/2)

+ (−1)m
∑n1
µ=0 δµm

2(µ−k/2) holds for an order-vector u for z and order k, k even,
and Lemma 5.4 (with the last row of A, i.e., with bT ) yields for the same case

bTu = λ(u)/(k + 1) +
k/2∑
µ=1

β̂µm
−2µ +

l1∑
µ=0

γ̂µm
2(µ−k/2)

+(−1)m
n1−1∑
µ=0

δ̂µm
2(µ−k/2),

σ(u) = λ(u)/(k + 1).

Therefore, the respective order conditions do not hold, in general, but they allow an
expansion in m2, and this property does not depend on the order k — as the lemmas
showed. However, we still must discuss the degrees n1, n2, and l1, l2. Obviously, they
depend on the ‘history’ of the order–vector — that means they depend on the number
of operations (multiplying by αA−1, A, or componentwise) which were performed
while constructing them recursively. It suffices to count this influence in the worst
case in order to recognize the first appearance of an exponent greater or equal k.
From the lemmas we know that multiplication by αA−1 introduces the oscillation
and increases its influence. Therefore, the sequence u(j) of order–vectors for z and
order j defined by

u(2) := (αe)2, u(j) := (αe) ∗ αA−1u(j−1), j > 2,

deliver the fastest amplification of the oscillating terms. At j = 3 we have 3 as
highest exponent in the regular terms, 1 in the evenly indexed oscillations, and no
oscillation at all at odd indices. Therefore, at j = 5, the oscillation also has exponent
5. Hence, we have proved the H3 and H5 factors up to the oscillations in (3.2). In
order to obtain the H4 and H8 at these places in (3.1) we have to study bTu(j), an
order condition for y and order j + 1. However, the dot product with b decreases
the degree of the oscillation. Nevertheless, the first oscillation occurs in bTu(3) and
it lasts through bTu(7) where it reaches the exponent of the regular term. Clearly,
αA−1u(4) (which is not an order–vector) has 4 as highest exponent in the regular
term and in the oscillations because (αe)i = i/(2m). Therefore (αA−1u(4))2, which
is an order–vector for z and order 8, is the first case of the difficulties introduced by
componentwise multiplication of perturbed terms. This fact explains the H8 in front
of the last sum of (3.2). Then bT (αA−1u(4))2 cannot do better and still maintain the
no–longer–oscillating perturbations, leading to the H9 which is present in all terms
of the last sum in (3.1). Thus, we have finally proved all statements of the Theorem
3.1.

A first application of the results could be replacing every asterisk by a 7 in Table
4.5 of [8, p.473].
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