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BICGSTAB(L) FOR LINEAR EQUATIONS
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Abstract. For a number of linear systems of equations arising from realistic problems, using the
Bi-CGSTAB algorithm of van der Vorst [17] to solve these equations is very attractive. Unfortunately,
for a large class of equations, where, for instance, Bi-CG performs well, the convergence of Bi-
CGSTAB stagnates. This was observed specifically in case of discretized advection dominated PDE’s.
The stagnation is due to the fact that for this type of equations the matrix has almost pure imaginary
eigenvalues. With his BiCGStab2 algorithm Gutknecht [5] attempted to avoid this stagnation. Here,
we generalize the Bi-CGSTAB algorithm further, and overcome some shortcomings of BiCGStab2.
In some sense, the new algorithm combines GMRES(l) and Bi-CG and profits from both.
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1. Introduction. The bi-conjugate gradient method (Bi-CG) [2, 8] solves iter-
atively equations

Ax = b(1.1)

in which A is some given non-singular unsymmetric n × n matrix and b some given
n-vector. Typically n is large and A is sparse. We will assume A and b to be real,
but our methods are easily generalized to the complex case. In each iteration step,
the approximation xk is corrected by some search correction that depends on the true
residual rk (rk = b − Axk) and some “shadow residual” r̃k. The residuals rk are
“forced to converge” by making rk orthogonal to the shadow residuals r̃j for j < k.
Any iteration step requires a multiplication by A to produce the next true residual
and a multiplication by AT (the real transpose of A) to produce the next shadow
residual. This strategy involves short recursions and hence an iteration step is cheap
with respect to the computational cost (except for the matrix multiplications) and
memory requirement. In addition to the mvs (i.e. matrix-vector multiplications), a
few dots (inner products) and axpys (vector updates) are required, and apart from
the xk, four other vectors have to be stored.

Bi-CG seems like an ideal algorithm but in practice it has a few disadvantages.
• The transpose (either complex or real) of A is often not (easy) available.
• Although the computational cost is low in terms of axpys and dots, each step
requires two matrix multiplications, which is double the cost of CG.
• Bi-CG may suffer from breakdown. This can be repaired by look-ahead strategies
[1, 4]. We will not consider the breakdown situation for Bi-CG in this paper.
• Bi-CG often converges irregularly. In finite precision arithmetic, this irregular be-
havior may slow down the speed of convergence.

In [15] Sonneveld observed that the computational effort to produce the shadow
residuals could as well be used to obtain an additional reduction of the Bi-CG residuals
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rk. His CGS algorithm computes approximations xk with a residual of the form
rk = qk(A)rk , where qk is some appropriate polynomial of degree k. The rk are
computed explicitly, while the polynomials qk and the Bi-CG residuals rk play only a
theoretical role. One step of the CGS algorithm requires two multiplications by A and
no multiplication at all by the transpose of A. The computational complexity and the
amount of memory is comparable to that of Bi-CG. In case qk(A) gives an additional
reduction, CGS is an attractive method [15]. Unfortunately, in many situations, the
CGS choice for qk leads to amplifications of rk instead of reduction. This causes
irregular convergence or even divergence and makes the method more sensitive to
evaluation errors [17, 16].

Van der Vorst [17] proposes to take for qk a product of appropriate 1-step MR-
polynomials (Minimal Residual polynomials), i.e. degree one polynomials of the form
1− ωkt for some optimal ωk. To a large extend, this choice fulfills the promises: for
many problems, his Bi-CGSTAB algorithm converges rather smoothly and also often
faster than Bi-CG and CGS. In such cases qk(A) reduces the residual significantly,
while the Bi-CGSTAB iteration steps are only slightly more expensive than the CGS
steps.

However, ωk may be close to zero, and this may cause stagnation or even break-
down. As numerical experiments confirm, this is likely to happen if A is real and has
nonreal eigenvalues with an imaginary part that is large relative to the real part. One
may expect that second degree MR-polynomials can better handle this situation. In
[5] Gutknecht introduces a BiCGStab2 algorithm that employs such second degree
polynomials. Although this algorithm is certainly an improvement in many cases, it
may still suffer from problems in cases where Bi-CGSTAB stagnates or breaks down.
At every second step, Gutknecht corrects the first degree MR-polynomial from the
previous step to a second degree MR-polynomial. However, in the odd steps, the
problem of a nearly degenerate MR-polynomial of degree one may already have oc-
curred (this is comparable to the situation where GCR breaks down while GMRES (or
Orthodir) proceeds nicely (cf. [12]). In BiCGStab2 (as well as in the other methods
CGS, Bi-CGSTAB and the more general method BiCGstab(l), to be introduced be-
low), the Bi-CG iteration coefficients play a crucial role in the computation. If, in an
odd step, the MR polynomial almost degenerates, the next second degree polynomial
as well as the Bi-CG iteration coefficients may be polluted by large errors and this
may affect the process severely.

In this paper, we introduce the BiCGstab(l) algorithm. For l = 1, this algo-
rithm coincides with Bi-CGSTAB. In BiCGstab(l), the polynomial qk is chosen as the
product of l-step MR-polynomials: for k = ml + l we take

qk = qml+l = pmpm−1 . . . p0, where the pi’s are of degree l, pi(0) = 1
and pm minimizes ‖pm(A)qk−l(A)rk‖2.

(1.2)

We form an l-degree MR-polynomial pm after each l-th step. In the intermediate steps
k = ml + i, i = 1, . . . , l− 1, we employ simple factors ti and the pm are reconstructed
from these powers. In this way, we can avoid certain near-breakdowns in these steps.
Near-breakdown may still occur in our approach if the leading coefficient of pm is
almost 0. However, second degree or more general even degree polynomials seem
to be well suited for complex eigenpairs and near-breakdown is hardly a problem in
practice (although it may occur if, for instance, A is a cyclic matrix: Aei = ei−1

for i = 2, 3, . . .). On the other hand, BiCGstab(l) still incorporates the breakdown
dangers of Bi-CG.
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k = −1,
choose x0 and r̃0,
compute r0 = b−Ax0, take u−1 = ũ−1 = 0, ρ−1 = 1,

repeat until ‖rk+1‖ is small enough:
k := k + 1,

ρk = (rk, r̃k), βk = −ρk/ρk−1,
uk = rk − βkuk−1, ck = Auk,
ũk = r̃k − βkũk−1,
γk = (ck, r̃k), αk = ρk/γk,
xk+1 = xk + αkuk, rk+1 = rk − αkck, r̃k+1 = r̃k − αkA

T ũk

Algorithm 2.1. The Bi-CG algorithm.

— In exact arithmetic, if Gutknecht’s version BiCGStab2 does not break down, it
produces the same result as our BiCGstab(2). In actual computation the results can be
quite different. Our version proceeds nicely as should be expected from BiCGstab(2)
also in cases where BiCGStab2 stagnates due to the MR-choice in the odd steps.
In cases where Gutknecht version does well, our version seems to converge slightly
faster. In some cases in finite precision arithmetic, the approximations xk and the
residuals rk drift apart (i.e. b− Axk 6≈ rk), due to irregular convergence behavior of
the underlying Bi-CG process. Gutknecht’s algorithm seems to be significantly more
sensitive to this effect than ours.
— In addition the steps of our version are cheaper with respect to both computational
cost as well as memory requirement: except for the number of mvs, which is the same
for both versions, our version is about 33% less expensive and it needs about 10% less
memory space.
— Gutknecht’s approach can also be used to construct a BiCGstab(l) version. How-
ever, if l increases, the formulas and the resulting algorithm will become increasingly
more complicated, while we have virtually the same algorithm for every l. We can
easily increase l if stagnation threatens.
— In some situations it may be profitable to take l > 2. Although the steps of
BiCGstab(l) are more expensive for larger l, numerical experiments indicate that, in
certain situations, due to a faster convergence, for instance, BiCGstab(4) performs
better than BiCGstab(2). Our BiCGstab(l) algorithm combines the advantages of
both Bi-CG and GMRES(l) and seems to converge faster than any of those.

In the next section, we give theoretical details on the above observations. Section 3
contains a detailed description of the BiCGstab(l) algorithm and its derivation. In
addition, it contains comments on the implementation, the computational costs and
the memory requirement. We conclude section 3 with a number of possible variants
for BiCGstab(l). In section 4 we give some remarks on preconditioning. In the last
section, we present some numerical experiments.

2. Theoretical justification of BiCGstab(l). The Bi-CG algorithm [2, 8]
in Algorithm 2.1 solves iteratively the linear equation (1.1). One has to select
some initial approximation x0 for x and some “shadow” residual r̃0. Then the Bi-
CG algorithm produces iteratively sequences of approximations xk, residuals rk and
search directions uk by

uk = rk − βkuk−1, xk+1 = xk + αkuk, rk+1 = rk − αkAuk(2.1)
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(where u−1 = 0, and r0 is computed by r0 = b − Ax0). The scalars αk and βk
are computed such that both Auk and rk are orthogonal to the Krylov subspace
Kk(AT ; r̃0) of order k, spanned by the vectors r̃0, AT r̃0,. . . ,(AT )k−1r̃0.

By induction it follows that both uk and rk belong to the Krylov subspace
Kk+1(A; r0). Moreover, rk = φk(A)r0, for some φk in the space P1

k of all polyno-
mials p of degree k for which p(0) = 1. Since, in the generic case, by increasing k
the “shadow” Krylov subspaces Kk(AT ; r̃0) “fill” the complete space, the sequence of
‖rk‖ may be expected to decrease. The vector rk is the unique element of the form
p(A)r0, with p ∈ P1

k that is orthogonal to Kk(AT ; r̃0) : in some weak sense, p is the
best polynomial in P1

k .
Consider some sequence of polynomials qk of exact degree k. The vectors Auk

and rk are orthogonal to Kk(AT ; r̃0) if and only if these vectors are orthogonal to
s̃j = qj(AT )r̃0 for all j = 0, . . . , k − 1. Now, as we will see in 3.1,

βk = θk
(rk, s̃k)

(rk−1, s̃k−1)
and αk =

(rk, s̃k)
(Auk, s̃k)

(2.2)

in which θk is a scalar that depends on the leading coefficients of the polynomials
φj and qj for j = k, k − 1. The Bi-CG algorithm takes qk = φk (and θk = 1), so
that the s̃j are computed by the same recursions as for the rj (see Algorithm 2.1,
where for the choice qk = φk, we use the notation r̃k instead of s̃k). However, in exact
arithmetic, for any choice of qk the same approximations xk, residuals rk and search
directions uk can be constructed.

Algorithms as CGS, Bi-CGSTAB and BiCGstab(l) are based on the observation
that

(rk, s̃k) = (rk, qk(AT )r̃0) = (qk(A)rk, r̃0) and (Auk, s̃k) = (Aqk(A)uk, r̃0).(2.3)

In the ideal case the operator φk(A) reduces r0. One may try to select qk such
that Qk = qk(A) additionally reduces rk as much as possible. In such a case it would
be an advantage to avoid the computation of rk and uk, and one might try to compute
immediately rk = Qkrk, uk = Qkuk, and the associated approximation xk by appro-
priate recursions. As (2.2) and (2.3) show, one can use these vectors to compute the
Bi-CG iteration coefficients βk and αk (for more details, see 3.1). If the polynomials
qk are related by simple recursions, these recursions can be used to compute efficiently
the iterates rk, uk and xk without computing rk and uk explicitly. Therefore, the
computational effort of the Bi-CG algorithm to build the shadow Krylov subspace
can also be used to obtain an additional reduction (by Qk) for the Bi-CG residual rk.
Since r2k would have been constructed from the “weakly best” polynomial in P1

2k,
we may not expect that ‖rk‖ � ‖r2k‖ : which says that a method based on Qk can
only converge twice as fast (in terms of costs). Since a Bi-CG step involves two mvs
it only makes sense to compute rk instead of rk if we can obtain rk from rk−1 by
4 mvs at most and a few vector updates and if we can update simultaneously the
corresponding approximation xk, where rk = b−Axk. This has been realized in CGS
and Bi-CGSTAB (these algorithms require 2 mvs per step):
— The choice

qk = φk(2.4)

leads to the CGS (Conjugate Gradient-squared) algorithm of Sonneveld [15]. Since
φk(A) is constructed to reduce r0 as much as possible, one may not expect that φk(A)
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reduces rk as well. Actually, for a large class of problems φk(A) often transforms the
rk to a sequence of residuals rk that converges very irregularly or even diverges [16].
— In [17], van der Vorst attempted to repair this irregular convergence behavior of
CGS by choosing

qk(t) = (1− ωkt)qk−1(t) with ωk such that
‖(I − ωA)qk−1(A)rk‖2 is minimal with respect to the scalar ω for ω = ωk.

(2.5)

In fact this is a special case of our algorithm, namely l = 1.
Unfortunately, for matrix-vector equations with real coefficients, ωk is real as

well. This may lead to a poor reduction of r̂ = qk−1(A)rk, i.e. ‖rk‖ ≈ ‖r̂‖, where
rk = (I − ωkA)r̂. The convergence of Bi-CGSTAB may even stagnate (and actually
does, cf. experiments in [9]). The Bi-CG iteration coefficients αk and βk can not
be computed from rk (see (2.3)) if the polynomial qk is not of exact degree k. This
happens if ωk = 0. Likewise, ωk ≈ 0 may be expected to lead to inaccurate Bi-
CG iteration coefficients. Consequently, stagnation in the Minimal Residual stage
(ωk ≈ 0) may cause breakdown or poor convergence of Bi-CGSTAB. One may come
across an almost zero ωk if the matrix has non-real eigenvalues λ with relatively large
imaginary parts. If the components of r̂ in the direction of the associated eigenvectors
are relatively large then the best reduction by I − ωkA is obtained for ωk ≈ 0. This
fatal behavior of Bi-CGSTAB may be “cured” as follows.

Select some l ≥ 2. For k = ml + l, take

qk = pmqk−l, where pm is a polynomial of degree l, pm(0) = 1
such that ‖p(A)qk−l(A)rk‖2 is minimal with respect to p ∈ P1

l for p = pm
(2.6)

and where qk−l is the product of MR-polynomials in P1
l constructed in previous steps.

In the intermediate steps, k = ml + i, i = 1, . . . , l − 1, we take qk = qml to compute
the residual rk = rml+i = qml(A)rk and search direction uk = qml(A)uk. We use
tiqml to compute the Bi-CG iteration coefficients through (Airk, r̃0) and (Ai+1uk, r̃0)
(cf. (2.3) and (2.2)). This choice leads to the BiCGstab(l) algorithm in 3.2. A
pseudo code for the algorithm is given in Algorithm 3.1.

So, only for k = ml, do the polynomials qk that we use belong to P1
k . In the

intermediate steps we employ two types of polynomials, polynomials of exact degree
k (the tiqml) and polynomials that are 1 in 0 (the qml).

The vectors rk, uk, Airk and Ai+1uk can be computed efficiently. However,
we are interested in approximations xk and not primarily in the residual rk. These
approximations can easily be computed as a side-product: if rk+1 = rk − Aw then
xk+1 = xk + w. Whenever we update rk by some vecto u we have its original under
A−1u as well. The polynomials used in the algorithm ensure that this is possible.

The residuals rk in the intermediate steps k = ml + i will not be optimal in
Kk+k(A; r0). They cannot, because they belong to Kk+ml(A; r0). Although the
BiCGstab(l) algorithm produces approximations and residuals also in the interme-
diate steps, the approximations and residuals of interest are only computed every l-th
step.

In the BiCGstab(l) algorithm we have that rk = qk(A)φk(A)r0. For k = ml the
reduction operator qk(A)φk(A) that acts on r0 is the product of the Bi-CG reduction
operator and a GMRES(l)-like reduction operator: qk(A) is the product of a sequence
of GMRES reduction operators of degree l (or, equivalently, of l-step Minimal Residual
operators; see [12]). Note that qk(A) is not the operator that would be obtained by
applying k steps of GMRES(l) to the residual φk(A)r0 of k steps Bi-CG. After each l
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steps of Bi-CG we apply an l-step Minimal Residual step and accumulate the effect.
Nevertheless BiCGstab(l) seems to combine the nice properties of both methods.
If GMRES stagnates in the first l steps then typically GMRES(l) does not make
any progress later. By restarting, the process builds approximately the same Krylov
subspace as before the restart, thus encountering the same point of stagnation. This is
avoided in the BiCGstab(l) process where the convergence may keep on going by the
incorporated Bi-CG process. The residual r̂ = qk−l(A)rk may differ significantly from
the residual qk−l(A)rk−l. Therefore, each “Minimal Residual phase” in BiCGstab(l)
in general has a complete “new” starting residual, while, in case of stagnation, at each
new start, GMRES(l) employs about the same starting residual, keeping stagnating
for a long while.

3. The BiCGstab(l) algorithm. Let uk, ck, rk be the vectors as produced
by Bi-CG and let αk, βk be the Bi-CG iteration coefficients, ck = Auk (see Algo-

rithm 2.1).

3.1. The computation of the Bi-CG iteration coefficients. Consider the
Bi-CG method in Algorithm 2.1.

We are not really interested in the shadow residuals r̃k nor in the shadow search
directions ũk. Actually, as observed in section 2, we only need r̃k to compute βk and
αk through the scalars (rk, r̃k) and (ck, r̃k). We can compute these scalars by means
of any vector s̃k of the form s̃k = qk(AT )r̃0 where qk is some polynomial in Pk of
which the leading coefficient is non-trivial and known.

To prove this, suppose qk ∈ Pk has non-trivial leading coefficient σk, that is qk(t)−
σkt

k is a polynomial in Pk−1. Note that r̃k = φk(AT )r̃0 for the Bi-CG polynomial
φk ∈ P1

k and that φk(t) − τkt
k belongs to Pk−1 for τk = (−αk−1)(−αk−2) . . . (−α0).

Hence, both the vectors r̃k − τk(AT )kr̃0 and s̃k − σk(AT )kr̃0 belong to Kk(AT ; r̃0).
Since both the vectors rk and ck are orthogonal to this space (see [2]), we have that

(rk, r̃k) =
τk
σk

(rk, s̃k) and (ck, r̃k) =
τk
σk

(ck, s̃k).(3.1)

Hence,

βk = − (rk, r̃k)
(rk−1, r̃k−1)

= −τkσk−1

σkτk−1

(rk, s̃k)
(rk−1, s̃k−1)

= αk−1
σk−1

σk

(rk, s̃k)
(rk−1, s̃k−1)

(3.2)

and

αk =
(rk, r̃k)
(ck, r̃k)

=
(rk, s̃k)
(ck, s̃k)

.(3.3)

Using (2.3) it even follows that we do not need s̃k. With rk = qk(A)rk and ck =
qk(A)ck, we have that

(rk, s̃k) = (rk, r̃0) and (ck, s̃k) = (ck, r̃0).(3.4)

Therefore, we can compute the Bi-CG iteration coefficients αk and βk by means of rk
and ck. We do not need the r̃k, ũk, nor s̃k.

3.2. The construction of the BiCGstab(l) algorithm. The Bi-CG vectors
uk, ck, rk are only computed implicitly — they only play a role in the derivation of
the algorithm — while the Bi-CG iteration coefficients αk, βk are computed explicitly
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— they are explicitly needed in the computation.1 Instead of the Bi-CG vectors, for
certain indices k = lm, we compute explicitly vectors uk−1, rk and xk: xk is the
approximate solution with residual rk and uk−1 is a search direction.

The BiCGstab(l) algorithm (Algorithm 3.1) iteratively computes uk−1, xk and
rk for k = l, 2l, 3l, . . .. These steps are called outer iteration steps. One single outer
step, in which we proceed from k = ml to k = ml + l, consists of an inner iteration
process. In the first half of this inner iteration process (the “Bi-CG part”) we implicitly
compute new Bi-CG vectors. In the second half (the “MR part”) we construct by a
Minimal Residual approach a locally minimal residual.

We describe the BiCGstab(l) algorithm by specifying one inner loop.
Suppose, for k = ml and for some polynomial qk ∈ Pk with qk(0) = 1 we have

computed uk−1, rk and xk such that

uk−1 = Qkuk−1, rk = Qkrk and xk where Qk = qk(A).(3.5)

The steps of the inner loop may be represented by a triangular scheme (Scheme 3.1)
where the steps for the computation of residuals and search directions are indicated
for l = 2 (and k = m2). The computation proceeds from row to row, replacing
vectors from the previous row by vectors on the next row. In Scheme 3.1 vector
updates derived from the Bi-CG relations (2.1) are indicated by arrows. For instance,
in the transition from the first row to the second one, we use Qkuk = Qk(rk −
βkuk−1) = Qkrk − βkQkuk−1 and to get from the second row to the third, we use
Qkrk+1 = Qk(rk − αkAuk) = Qkrk − αkAQkuk. The computation involves other
vector updates as well (in the MR part); these are not represented. Vectors that are
obtained by multiplication by the matrix A are framed. The column at the left edge
represents iteration coefficients computed according to (3.2)–(3.4) before replacing the
old row by the new one. Recall that ck = AQkuk. The scheme does not show how
the approximations for x are updated from row to row. However, their computation
is analogous to the update of the residuals Qkrk+j : when a residual is updated by
adding a vector of the form −Aw, the approximation for x is updated by adding the
vector w.

In the Bi-CG part, we construct the next row from the previous rows by means
of the Bi-CG recursions (2.1) and matrix multiplication. The fifth row, for instance,
is computed as follows: since rk+2 = rk+1 − αk+1Auk+1 we have that

Qkrk+2 = Qkrk+1 − αk+1AQkuk+1 and AQkrk+2 = AQkrk+1 − αk+1A
2Qkuk+1.

By multiplying AQkrk+2 by A we compute the vector A2Qkrk+2 on the diagonal of the
scheme. After 2l rows we have the vectors AiQkrk+l and AiQkuk+l−1 (i = 0, . . . , l).

In the MR part, we combine these vectors AiQkrk+l to find the minimal resid-
ual rk+l. This vector is the residual in the best approximation of Qkrk+l in the Krylov
subspace Kl−1(A;AQkrk+l). The computation of the scalars γi needed for this linear
combination is done by the modified Gram-Schmidt orthogonalization process. The
γi and AiQkuk+l−1 lead to uk+l−1:

rk+l = Qkrk+l −
l∑
i=1

γiA
iQkrk+l and uk+l−1 = Qkuk+l−1 −

l∑
i=1

γiA
iQkuk+l−1.

1 Moreover, even if they were not needed in the computation, it could be worthwhile to compute
them: from these coefficients one can easily compute the representation of the matrix of A with
respect to the basis of the Bi-CG vectors ci. This matrix is tri-diagonal and enables us to compute
cheaply approximations (Ritz values) of the eigenvalues of A.
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Qkuk−1 Qkrk
βk ↓ ↙

Qkuk Qkrk AQkuk B

αk ↓ ↙ i

Qkuk Qkrk+1 AQkuk AQkrk+1 |
βk+1 ↓ ↙ ↓ ↙ C

Qkuk+1 Qkrk+1 AQkuk+1 AQkrk+1 A2Qkuk+1 G

αk+1 ↓ ↙ ↓ ↙
Qkuk+1 Qkrk+2 AQkuk+1 AQkrk+2 A2Qkuk+1 A2Qkrk+2

Qkuk+1 Qkrk+2 AQkuk+1 AQkrk+2 A2Qkuk+1 A2Qkrk+2 M

γ1, γ2 R

Qk+2uk+1 Qk+2rk+2

Scheme 3.1. The computational schema for BiCGstab(2).

In this part we determine from a theoretical point of view the polynomial pm(t) =
1− γ1t − . . . − γlt

l. Implicitly we update qk to find qk+l. We emphasize that we do
not use complicated polynomials until we arrive at the last row of the scheme where
we form implicitly pm.

The vectors in the second column of vectors, the Qkrk+j (r̂0 in the algorithm
and in the detailed explanation below) are also residuals (corresponding to x̂0 in the
algorithm). The vectors AjQkuk+j−1 and AjQkrk+j along the diagonal are used in the
computation of the Bi-CG iteration coefficients αk+j and βk+j+1. The computation
of all these “diagonal vectors” require also 2l multiplications by A (mvs). Note that
l steps of the Bi-CG algorithm require also 2l multiplications by some matrix: l
multiplications by A and another l by AT . As indicated above, the other vectors
AiQkrk+j and AiQkuk+j−1 (i = 0, . . . , j − 1) in the triangular schemes can cheaply
be constructed from vector updates: we obtain the vectors Qkrk+l, . . . , A

l−1Qkrk+l as
a by-product. Consequently, the last step in the inner loop can easily be executed. The
vector rk+l is the minimal residual of the form p(A)Qkrk+l, where p ∈ P1

l . In exact
arithmetic, l steps of GMRES starting with the residual r̂0 = Qkrk+l would yield the
same residual rk+l (see [12]). However, GMRES would require l mvs to compute this
projection. For stability reasons, GMRES avoids the explicit computation of vectors
of the form Air̂0. Since we keep the value for l low (less than 8), our approach does
not seem to give additional stability problems besides the ones already encountered
in the Bi-CG process. We trade a possible instability for efficiency (see also 3.6).

We now give details on the Bi-CG part, justify the computation of the Bi-CG
iteration coefficients and discuss the MR part. In the MR part, we compute uk+l−1,
rk+l and xk+l.

The Bi-CG part. In this part, in l steps, we compute iteratively AiQkuk+l−1,
AiQkrk+l (i = 0, . . . , l), the approximation x̂0 for which b − Ax̂0 = Qkrk+l, the
Bi-CG iteration coefficients αk+j , βk+j (j = 0, . . . , l− 1) and an additional scalar ρ0.
We start our computation with the vectors û0 = uk−1 = Qkuk−1, r̂0 = rk = Qkrk
and x̂0 = xk, the scalar αk−1 and some scalars ρ0 and ω from the previous step; −ω
is the leading coefficient of pm−1.
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Suppose after j-steps, we have

ûi = AiQkuk+j−1, r̂i = AiQkrk+j (i = 0, . . . , j),
x̂0 such that r̂0 = b−Ax̂0,

α = αk+j−1 and ρ0 = (r̂j−1, r̃0).

Note that

ûi = Ai−1QkAuk+j−1 = Ai−1Qkck+j−1.

Then the (j + 1)-th step proceeds as follows (the “old” vectors “û”, “r̂” and x̂0 may
be replaced by the new ones. For clarity of explanation we label the new vectors with
a ′). Below, we comment on the computation of αk+j and βk+j .

ρ1 = (r̂j , r̃0) = (AjQkrk+j , r̃0), β = βk+j = αρ1
ρ0

, ρ0 = ρ1,

û ′i = AiQkuk+j = AiQk(rk+j − βk+juk+j−1) = r̂i − β ûi (i = 0, . . . , j),

û ′j+1 = Aû ′j (multiplication by A),

γ = (û ′j+1, r̃0) = (AjQkck+j , r̃0), α = αk+j = ρ0
γ ,

r̂ ′i = AiQkrk+j+1 = AiQk(rk+j − αk+jck+j) = r̂i − α û ′i+1 (i = 0, . . . , j),
r̂ ′j+1 = Ar̂ ′j (multiplication by A),

x̂ ′0 = x̂0 + α û ′0 (b−Ax̂ ′0 = r̂0 − αAû ′0 = r̂0 − α û ′1 = r̂ ′0).

Now, drop the ′ and repeat this step for j = 0, . . . , l − 1.

The computation of the Bi-CG iteration coefficients. Consider some j ∈ {0, . . . , l−
1}. We define γ = (AjQkck+j , r̃0) and ρ1 = (AjQkrk+j , r̃0).

For j = 0, let ρ0 = (Al−1Qk−lrk−1, r̃0). The leading coefficient of qk(t) is equal
to the leading coefficient of tl−1qk−l(t) times −ωm−1, where −ωm−1 is the leading
coefficient of the “MR polynomial” pm−1 for which qk = pm−1qk−l. Hence, by (3.2),
(3.3) and (3.4), we have that

βk = − αk−1

ωm−1

ρ1

ρ0
and αk =

ρ1

γ
.

In case j > 0, let ρ0 = (Aj−1Qkrk+j−1, r̃0). Now, the polynomials tjqk(t) and
tj−1qk(t) have the same leading coefficient. Therefore, again by (3.2), (3.3) and (3.4),
we have that

βk+j = αk+j−1
ρ1

ρ0
and αk+j =

ρ1

γ
.

The MR part. Suppose x̂0, r̂j , ûj are known for j = 0, . . . , l such that

r̂0 = b−Ax̂0 and r̂j = Ar̂j−1, ûj = Aûj−1 (j = 1, . . . , l)

(as after the l steps of the Bi-CG part).
Let

∑l
j=1 γj r̂j the orthogonal projection of r̂0 onto the span of r̂1, . . . , r̂l.

With pm(t) = 1− γ1t− . . .− γlt
l (t ∈ R) we have that

rk+l = r̂0 −
l∑

j=1

γj r̂j = pm(A)r̂0 = pm(A)Qkrk+l = Qk+lrk+l.
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Further,

uk+l−1 = û0 −
l∑

j=1

γj ûj = pm(A)û0 = Qk+luk+l−1

and

xk+l = x̂0 +
l∑

j=1

γj r̂j−1.

We wish to compute these quantities as efficient as possible.
The orthogonal vectors q1, . . . , ql are computed by modified Gram-Schmidt from

r̂1, . . . , r̂l; the arrays for r̂1, . . . , r̂l may be used to store q1, . . . , ql.
For ease of discussion, we consider the n× l matrices R, Q and U for which

Rej = r̂j , Qej = qj , Uej = ûj for j = 1, . . . , l.

Moreover, we consider the l × l matrices T , D, S, where T is the upper triangular
matrix for which R = QT , D is the diagonal matrix given by QTQ = D, and S is
given by Se1 = 0 and Sej = ej−1 (j = 2, . . . , l). If ~γ ∈ Rl minimizes

‖r̂0 −R~γ ‖2 = ‖r̂0 −QT~γ ‖2,

or equivalently, ~γ is the least square solution of QT~γ = r̂0, then ~γ = T−1D−1QT r̂0

and

rk+l = r̂0 −R~γ = r̂0 −QD−1QT r̂0,

uk+l−1 = û0 − U~γ,

xk+l = x̂0 + γ1r̂0 + RS~γ = x̂0 + γ1r̂0 + QTS~γ.

or, with

~γ′ = D−1QT r̂0, ~γ = T−1~γ′ and ~γ′′ = TS~γ,

we have

rk+l = r̂0 −Q~γ′, uk+l−1 = û0 − U~γ, xk+l = x̂0 + γ1r̂0 + Q~γ′′.

Since −γl is the leading coefficient of the polynomial pm we have ωm = γl (ω in the
algorithm).

In the algorithm we use the same arrays for r̂j and qj . Therefore, qj is written as
r̂j in the algorithm.

Remark. In Bi-CG as well as in several other iterative methods the vector Auk is
a scalar multiple of rk+1 − rk. Unfortunately, Auk+l−1 is not a multiple of rk+l − rk
nor of rk+l −Qkrk+l which would facilitate the computation of Auk+l−1. For similar
reasons one can not save on the costs of the computation of uk+l−1, unless one is
willing to rearrange the Bi-CG part (see [13] or our discussion in 3.5).
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k = −l,
choose x0, r̃0,
compute r0 = b−Ax0,
take u−1 = 0, x0 = x0, ρ0 = 1, α = 0, ω = 1.

repeat until ‖rk+l‖ is small enough
k = k + l,

Put û0 = uk−1, r̂0 = rk and x̂0 = xk.
ρ0 = −ωρ0

For j = 0, . . . , l − 1 (Bi-CG part)

ρ1 = (r̂j , r̃0), β = βk+j = αρ1
ρ0
, ρ0 = ρ1

For i = 0, . . . , j
ûi = r̂i − βûi

end
ûj+1 = Aûj
γ = (ûj+1, r̃0), α = αk+j = ρ0

γ

For i = 0, . . . , j
r̂i = r̂i − αûi+1

end
r̂j+1 = Ar̂j, x̂0 = x̂0 + αû0

end

For j = 1, . . . , l
For i = 1, . . . , j − 1

τij = 1
σi

(r̂j , r̂i)
r̂j = r̂j − τij r̂i

end
σj = (r̂j , r̂j), γ′j = 1

σj
(r̂0, r̂j)

end

(mod.G–S) (MR part)

γl = γ′l, ω = γl
For j = l − 1, . . . , 1

γj = γ′j −
∑l
i=j+1 τjiγi

end

(~γ = T−1~γ′)

For j = 1, . . . , l − 1
γ′′j = γj+1 +

∑l−1
i=j+1 τjiγi+1

end

(~γ′′ = TS~γ)

x̂0 = x̂0 + γ1r̂0, r̂0 = r̂0 − γ′l r̂l, û0 = û0 − γlûl
For j = 1, . . . , l − 1

û0 = û0 − γj ûj
x̂0 = x̂0 + γ′′j r̂j
r̂0 = r̂0 − γ′j r̂j

end

(update)

BLAS2
GEMV

or BLAS3
GEMM

Put uk+l−1 = û0, rk+l = r̂0 and xk+l = x̂0.

Algorithm 3.1. The BiCGstab(l) algorithm.
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3.3. The computational cost and memory requirements. BiCGstab(l) as
well as for instance GMRES(l) and CGS are Krylov subspace methods. These methods
compute iteratively a sequence (xk) (or (xml)) of approximations of x for which,
for every k, xk belongs to the k-dimensional Krylov subspace Kk(A; r0) (or xml ∈
Kml(A; r0) for every m; actually, the approximation xk − x0 of x− x0 belongs to this
Krylov subspace. Without loss of generality we assume x0 = 0). The success of such
a method depends on

• its capability to find a good (best) approximation in the Krylov subspace
Kk(A, r0) (also in the presence of evaluation errors),
• the efficiency to compute the next approximation xk+1 from the ones of the

previous step(s),
• the memory space that is required to store the vectors that are needed for

the computation.
For none of the methods, are all the conditions optimally fulfilled (unless the

linear problem to be solved is symmetric, or otherwise nice). For instance, in some
sense GMRES finds the best approximation in the Krylov subspace (it finds the
approximation with the smallest residual), but the steps are increasingly expensive
in computational cost as well as in memory requirement. Bi-CG proceeds efficiently
from step to step, but it does not find the best approximation. This makes it hard to
compare the methods of this type analytically.

It is hard to get access to the convergence behavior, to its capability to find good
approximations of x. Nevertheless one can easily investigate the computational cost
per iteration step, which we will do now. Note that some methods do not aim to find
a good approximation in Krylov subspaces of all dimensions; CGS and Bi-CGSTAB
head for even dimensions, while the BiCGstab(l) approximation xk is only computed
for k = ml, for xml ∈ K2ml(A; r0). In addition the computational cost may vary from
step to step, as is the case for GMRES(l) and BiCGstab(l). For these reasons we give
the average costs to increase the dimension of the approximating Krylov subspace
by one. If, for a certain linear system, the methods we wish to compare are all able
to find an equally good approximation in the Krylov subspace of interest, then this
average cost represents the overall efficiency of the methods well. If some less efficient
method finds better approximations, then it depends on the number of iteration steps
which one is the best. We assume that the problem size n is large and therefore that
the costs of small vector operations (involving vectors of dimension l) are negligible.

In Table 3.1 we list the computational cost and the memory requirements for a
number of Krylov subspace methods. GMRESR(l,m) was introduced in [19] (see
also [11]); in this modification of GMRES(l) (or, more appropriate, of GCR(l)),
GMRES(m) is used as a preconditioner. GMRES(l) as well as GMRESR(l,m) avoid
excessive use of memory by restarting after a certain number of steps.

The column “computational costs” contains the average amount of large vector
operations that is needed to increase the dimension of the relevant Krylov subspace
by one.
Furthermore, the table shows the maximum number of n-vectors that have to be
stored during the computation; we do not count the locations needed to store the
matrix (but our count includes b, r̃0, xk and rk ).

3.4. Remarks on the implementation of the algorithm. (a) Actually we
only introduced the vectors uk−1, xk and rk for ease of presentation. Neither of them
have to be stored: they can overwrite û0, x̂0 and r̂0.
(b) The computation of û0 in the MR part of Algorithm 3.1 involves a number of
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Table 3.1

The average cost per Krylov dimension.

Method Computational Costs Memory

mv(s) axpy dot requirements

Bi-CG 2 6.5 2 7
CGS 1 3.25 1 7
Bi-CGSTAB 1 3 2 7
BiCGStab2 1 5.5 2.75 10
BiCGstab(2) 1 3.75 2.25 9
BiCGstab(l) 1 0.75(l + 3) 0.25(l + 7) 2l + 5
GMRES(l) 1 ≈ 0.5(l + 3) ≈ 0.5(l + 1) l + 3
GMRESR(l,m) 1 ≈gl,m + 1 ≈gm,l m + 2l + 4

where gl,m = 0.5(m + 3) + (l + 2)/(2m)

The algorithm BiCGStab2 [5], may be improved slightly. For instance, it computes certain vectors

in each step while it suffices to compute them in the even steps only. Our list above is based on the

improved algorithm.

vector updates. In order to restrict memory traffic, it is worth postponing the updates
to the end and to combine them in the next Bi-CG part (when j, i = 0) where û0 has
to be updated again. A similar remark applies to the final update of x̂0 in the Bi-CG
part and the first update of x̂0 in the MR part. One can also gain computational speed
by computing inner products together with the appropriate vector updates or matrix
multiplications. For instance ρ1 in the Bi-CG part can be computed in combination
with the last vector update for r̂0 in the MR part.
(c) The final updates in the MR part should be implemented using the BLAS2 sub-
routine GEMV (or GEMM from BLAS3) instead of the BLAS1 subroutine AXPY.
Depending on the computer architecture this will improve efficiency.
(d) Another change in the algorithm that would reduce significantly the amount of
work involves the modified Gram-Schmidt process. One can use the generalized in-
verse of R in order to compute the necessary coefficients γi for the MR-polynomial
(see “The MR part” in 3.2). More precisely one can compute these coefficients from
the normal equations as ~γ = (RTR)−1RT r̂0. Now we do not have to compute an
orthogonal basis for range(R) and we have saved (l− 1)/4 vector updates per Krylov
dimension.

This approach not only reduces the total amount of work, but it also makes the
algorithm more suitable for parallel implementation.

However, when l is large this approach may be more unstable than the one based
on modified Gram-Schmidt. Consequently one might not expect to obtain the best
possible reduction for r̂0. We discuss this variant and we analyze its stability in [13].

3.5. Variants. Many variants of the above process are feasible. We will mention
only a few. For a detailed discussion, numerical experiments and conclusions, we refer
to [13].

Dynamic choice of l. For a number of problems the BiCGstab(l) algorithm (with
l > 1) converges about as fast as the BiCGstab(1) algorithm, i.e. the average reduction
per step of the residuals in one algorithm is comparable to the reduction in the other.
In such a case it is more efficient to work with l = 1, since for larger l the average
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cost per step is higher. However, particularly if BiCGstab(1) stagnates (if ω ≈ 0),
one should take an l larger than 1. It may be advantageous not to fix l at the start of
the process, but to choose l for each new inner loop depending on information from
the previous inner loop.

If for larger l a significant reduction can be obtained locally, it is also worth
switching to larger l.

It is not obvious how the switch can be realized and what the correct switching
criterion would be. We further discuss this issue in [13]. The switch that we will
discuss there is based on a BiCGstab(l) algorithm in which, in the inner loop, the MR
part and the Bi-CG part are reversed. This costs slightly more memory and vector
updates, but it facilitates the selection of an appropriate l before any stagnation or
breakdown occurs.

Bi-CG combined with some polynomial iteration. The MR part does not require
any additional mvs but it needs quite a number of axpys and dots due to the
orthogonalization process. If one knows the coefficients γi of the polynomial pm(t) =
1−
∑l
j=1 γjt

j , then one can skip the orthogonalization. Unfortunately, the optimal γj
will not be known a priori, but one might hope that the γj from previous steps work
as well (at least for a number of consecutive steps). Further, since the Bi-CG iteration
coefficients provide information on the spectrum of A, one might use this information
to construct a shifted Chebychev polynomial of degree l and take this for pm. Of
course, one may update the polynomial in each step. Note that the construction of
the Chebychev polynomial does not involve extra operations with n-vectors.

Bi-CG combined with standard GMRES or Bi-CG. Instead of computing rk+l by
correcting r̂0 with some explicit linear combination of vectors Aj r̂0 as we do, one can
apply l steps of standard GMRES with starting residual r̂0. This approach would
require l mvs to obtain rk+l. One has to compute the γj from the GMRES results in
order to construct uk+l−1 (see also the remark on the MR part in 3.2). If one decides
to pursue this last approach, one can save l mvs and a number of axpys and dots
in the Bi-CG part as follows. The Bi-CG iteration coefficients αk+j and βk+j can
also be computed from the vectors AQkuk+j , Qkrk+j−1, Qkrk+j (the û1, r̂0 in the
algorithm) and the shadow residuals r̃j−1, r̃j . Instead of building a triangular scheme
of residuals and search directions (see Scheme 3.1) one can stick to a scheme of three
columns of Qkuk+j , Qkrk+j , AQkuk+j . The shadow residuals r̃1, . . . , r̃l−1 need only
be computed and stored once.

If these shadow residuals are available, it is tempting to apply l steps of Bi-CG to
compute rk+l starting with Qkrk+l. This saves a number of axpys and dots in the
“MR part”. The search direction uk+l−1 has also to be computed. This can be done
without additional mvs: from the Bi-CG relations (2.1) it follows that the Ajuk+l−1

are linear combination of AiQkrk+l and AQkuk+l−i (i = 1, . . . , j). The scalars in the
linear combination can be expressed in terms of the Bi-CG iteration coefficients βk+j ,
αk+j . Hence, uk+l−1 can be computed by updating Qkuk+l−1 using the previously
computed vectors AQkuk+l−j and AjQkrk+l (j = 1, . . . , l).

3.6. The stability. We obtain rk+l by subtracting some explicit linear combi-
nation of vectors Aj r̂0 from r̂0. One may object that this approach might be unstable
especially if l is not small. However, we restrict ourselves to small l (l ≤ 8). Our
strategy resembles somewhat the look ahead strategy in the Lanczos algorithms in
[4, 6, 7]. In our numerical experiments the convergence did not seem to suffer from
such instabilities. On the contrary, the residual reduction of BiCGstab(l) proceeds
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more smoothly than those of Bi-CG or CGS. Bi-CG and l-step MR seem to improve
their mutual stability. The following two observations may help to understand why
the γi may be affected by non-small errors without spoiling the convergence.
— The polynomial pm must be non-degenerate (the contribution γlA

lr̂0 should be
significant also in finite precision arithmetic) and the same scalars should be used to
update the residual, the search direction and the approximation. The Bi-CG part
does not impose other restrictions on the γi used in the actual computation.
— In the MR part, any reduction is welcome even it is not the optimal one.

As an alternative to our approach, one may gain stability by computing rk+l by
l steps of GMRES with starting residual r̂0 (see the “GMRES variant” in 3.5). One
also has to keep track of the search directions. Since this GMRES stability “cure”
is directed towards the residuals it is not clear whether this approach would improve
the stability of the computation of the search directions. We return to these stability
questions in [13].

In [5], for l = 2, Gutknecht “avoids” the instability caused by working with the
“naive” basis for the Krylov subspace. He computes rk+l from r̂0 by a GCR-type
method (in his algorithm the GCR part and the Bi-CG part are intertwined), thus
incorporating the breakdown dangers of GCR.

4. The preconditioned BiCGstab(l) algorithm. Let H0 be a precondition-
ing matrix. Instead of solving Ax = b, one may as well solve

H0A = H0b(4.1)

or

AH0y = b with x = H0y.(4.2)

Therefore, by replacing A by H0A and r0 = b − Ax0 by r0 = H0(b − Ax0), we
have an algorithm that solves (4.1) iteratively. In this case the computed residuals rk
are not the real residuals (even not in exact arithmetic) but rk = H0(b−Axk).

By replacing A by AH0 and x0 = x0 by x0 = H−1
0 x0, we have an algorithm

that solves iteratively (4.2). The computed residuals are the real ones, that is, rk =
b−AH0xk, but now xk is not the approximation we are interested in: we would like
to have H0xk instead. If we do not want to monitor the approximations of the exact
solution x, it suffices to compute H0xk only after termination.

In both variants, the BiCGstab(l) algorithm may converge faster, due to the
preconditioning. However, in order to get either the real residual (in (4.1)) or the real
approximate (in (4.2)), some additional work is required. In contrast to algorithms
as Bi-CG and GCR, there is no variant of preconditioned BiCGstab(l) that generates
the real residual and the approximations of interest without additional computational
work or additional storage requirement.

5. Numerical examples. In this section we will discuss some numerical ex-
periments. These experiments are intended to show the characteristic behavior of
BiCGstab(l) for certain linear systems. We do not pretend that the problems are
solved in the best possible way. For instance, in some experiments we used a precon-
ditioner, whereas in others we did not. With a suitable preconditioner all methods
can be made to converge efficiently, but this is not the point we would like to make.
The experiments are used to show that BiCGstab(l) may be a good alternative for
certain problems. The algorithm was implemented as in Algorithm 3.1.
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All partial differential equations were discretized with finite volumes discretiza-
tion. When a preconditioner was used then the explicitly left preconditioned system
was solved (see (4.1)). In all cases x0 = 0 was taken as an initial guess. The ex-
periments were done on a CRAY Y-MP 4/464, in a multi-user environment. The
iterations were stopped when ‖rk‖2/‖r0‖2 < 10−9 (except in example 2 where the
iterations were stopped when ‖rk‖2/‖r0‖2 < 10−12), or when the number of matrix
multiplications exceeded 1000.

The figures show the convergence behavior of the iterative methods. For Bi-
CGstab(l) we have plotted the norms of the residuals rml that are computed by
Algorithm 3.1, i.e. only every l-th step (see our discussion at the end of section 2).
Horizontally the number of matrix multiplications is counted. In exact arithmetic this
number represents the dimension of the relevant Krylov subspace, except for Bi-CG,
where it should be divided by two.

At the end of this section we give in Table 5.1 an overview of the required CPU-
time for the true residual norm of several iterative methods. The numbers between
brackets () are the log of the `2-norm of the final true residuals: 10 log(‖b− Axk‖2).
The log of the norm of the computed updated residuals can be seen from the figures.
A ‘ * ’ in Table 5.1 indicates that the method did not meet the required tolerance
before 1000 multiplications of the matrix A. We did our experiments for Bi-CG,
CGS and several popular or successful GMRES variants. We selected algorithms that
have about the same memory requirements as the BiCGstab(l) algorithms that we
tested. If one can store 13, say, n-vectors then one may choose for instance between
BiCGstab(4), GMRES(10) and GMRESR(3,4) [19]. In our experiments BiCGstab(4)
then seems to be the better choice.

5.1. Example 1. First we consider an advection dominated 2-nd order partial
differential equation, with Dirichlet boundary conditions, on the unit cube (this equa-
tion was taken from [9]):

uxx + uyy + uzz + 1000ux = F.

The function F is defined by the solution u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).
This equation was discretized using (52×52×52) volumes, resulting in a seven-diagonal
linear system of order 125000. No preconditioning was used.

In Fig. 5.1 we see a plot of the convergence history. Bi-CGSTAB stagnates as
might be anticipated from the fact that this linear system has large complex eigenpairs.
Surprisingly, Bi-CGSTAB does even worse than Bi-CG. For this type of matrices this
behavior of Bi-CGSTAB is not uncommon and might be explained by the poor first
degree minimal residual reductions. In that case the Bi-CG iteration coefficients αk
and βk are not accurately computed. BiCGstab(2) converges quite nicely and almost
twice as fast as Bi-CG (see our discussion in section 2).

5.2. Example 2. Next, we give an example where BiCGStab2 [5] suffers from
the underlying Bi-CGSTAB algorithm (see our discussion in the introduction).

The symmetric positive definite linear system stems from a (200×200) discretiza-
tion of

−(Dux)x − (Duy)y = 1,

over the unit square, with Dirichlet boundary conditions along y = 0 and Neumann
conditions along the other parts of the boundary. The function D is defined as

D = 1000 for 0.1 ≤ x, y ≤ 0.9 and D = 1 elsewhere.
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Fig. 5.1. Convergence plot of example 1.

Modified Incomplete Cholesky Decomposition was used as preconditioner. This ex-
ample was taken from [17]. A convergence plot is given in Fig. 5.2.

Here the underlying Bi-CG algorithm looses bi-orthogonality among the residuals
in a very early phase and consequently superlinear convergence takes place for none of
the methods (in contrast to what might be expected; see, for instance, [14] and [18]),
but apparently the BiCGstab(l) algorithm for l = 2, 4, has less problems. Gutknecht’s
BiCGStab2 follows the convergence history of Bi-CGSTAB almost perfectly. This kind
of behavior was also observed by Gutknecht. Apparently the polynomials of degree
one in the odd steps spoil the overall convergence behavior of BiCGStab2.

In exact arithmetic we have that rk = b−Axk. In finite precision arithmetic the
true residual b−Axk and the recursively computed rk may differ. The difference will
be more significant if the convergence history of the residuals shows large peaks. In
our algorithm the updates for the approximations follow very closely the updates for
the residuals: in each step we have x̂0 = x̂0 + w where r̂0 = r̂0 −Aw. In Gutknecht’s
version the formulas that describe the update of the approximations are quite different
from the ones for the residuals. Therefore, if the true residuals and the computed ones
drift apart this is much more apparent in Gutknecht’s version. In this experiment the
final computed preconditioned residual norms were of order 10−8, whereas the true
preconditioned residual norms were of order 10−4 for BiCGstab(l), l = 1, 2, 4, but
only of order 10−1 for BiCGStab2 (see Table 5.1).

Although BiCGstab(l) becomes more expensive with respect to the number of
inner products and vector updates as l increases, the convergence may be faster,
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Fig. 5.2. Convergence plot for example 2.

and therefore, the total CPU-time needed to find an accurate approximation may
decrease. In this example the BiCGstab(4) algorithm (for instance) is faster than the
BiCGstab(2) algorithm (see Table 5.1). So it is sometimes more profitable to use an
l > 2 (see also our next example).

5.3. Example 3. Our third example shows more clearly that taking l > 2 may
be beneficial. Here BiCGstab(2) converges very slowly, whereas BiCGstab(4) does not
seem to have any problem: it converges quite nicely, although linearly. This example
was taken from [10].

The nonsymmetric linear system comes from a (201 × 201) finite volume dis-
cretization of

−ε(uxx + uyy) + a(x, y)ux + b(x, y)uy = 0,

on the unit square, where

a(x, y) = 4x(x− 1)(1− 2y), b(x, y) = 4y(1− y)(1− 2x),

with Dirichlet boundary conditions u(x, y) = sin(πx)+sin(13πx)+sin(πy)+sin(13πy).
We took ε = 10−1 and did not use any preconditioning. A convergence plot is shown
in Fig. 5.3.

5.4. Example 4. Our last example shows that even if Bi-CGSTAB converges
well, BiCGstab(l), l = 2, 4, . . . , may be good competitors. Moreover, when the
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Fig. 5.3. Convergence plot for example 3.

problem is discretized on a finer grid BiCGstab(2) seems to be a better choice for
solving this problem. The problem was taken from [17].

The two nonsymmetric linear systems come from a (129× 129) and a (201× 201)
finite volume discretization of the partial differential equation

−(Aux)x − (Auy)y + B(x, y)ux = F

over the unit square, with B(x, y) = 2 exp(2(x2 + y2)). Along the boundaries we have
Dirichlet conditions: u = 1 for y = 0, x = 0 and x = 1, and u = 0 for y = 1. The
function A is defined as shown in figure 5.6; F = 0 everywhere, except for the small
subsquare in the center where F = 100. Incomplete LU factorization was used as a
preconditioner.

From Fig. 5.4 we observe that Bi-CGSTAB and BiCGstab(2) behave similarly
for the coarser grid with BiCGstab(2) slightly faster, but on the finer grid (Fig. 5.5)
BiCGstab(2) performs much better than Bi-CGSTAB. BiCGstab(4) and BiCGstab(8)
have a similar convergence history as BiCGstab(2). Compare also Table 5.1.

5.5. Conclusions. From our experiments we have learned that the BiCGstab(l)
may be an attractive method. The algorithm is a generalization of van der Vorst’s
Bi-CGSTAB [17]. For l = 1 BiCGstab(l) computes exactly the same approximation
xk as Bi-CGSTAB does.

For l > 1 it seems that BiCGstab(l) is less affected by relatively large complex
eigenpairs (as one encounters in advection dominated partial differential equations).
Its computational work and memory requirement is modest.
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Fig. 5.4. Convergence plot for example 4 (129 × 129).

Table 5.1

CPU-time and log10 of the true residual norm (see the introduction of 5).

Method Example 1 Example 2 Example 3 Ex. 4 (129) Ex. 4 (201)

Bi-CG 4.96 (-10.5) 6.35 (-4.2) 2.71 (-2.4)* 1.60 (-7.0) 4.58 (-7.0)
CGS divergence 4.54 (-4.4) break down divergence divergence
Bi-CGSTAB stagnation 4.67 (-4.3) 3.22 (-3.4)* 1.10 (-7.0) 7.87 (-6.2)
BiCGStab2 4.42 (-10.7) 5.63 (-1.9) 4.26 (-2.6)* 1.31 (-6.8) 3.77 (-6.7)
BiCGstab(2) 3.88 (-10.4) 4.45 (-4.5) 4.00 (-3.6)* 1.01 (-6.8) 3.68 (-6.7)
BiCGstab(4) 4.17 (-10.9) 4.00 (-4.5) 4.35 (-7.5) 1.11 (-6.8) 3.68 (-6.8)
BiCGstab(8) 5.03 (-11.1) 4.36 (-3.5) 5.54 (-6.9) 1.27 (-7.5) 4.06 (-6.9)
GMRES(6) 5.27 (-10.3) stagnation 4.69 (-2.7)* stagnation stagnation
GMRES(10) 6.30 (-10.3) stagnation 5.16 (-3.5)* stagnation stagnation
GMRESR(2,2) 8.85 (-10.3) stagnation 5.71 (-2.5)* stagnation stagnation
GMRESR(3,4) 6.25 (-10.3) stagnation 5.16 (-2.6)* stagnation stagnation

BiCGstab(2) is, in exact arithmetic, equivalent with Gutknecht’s BiCGStab2 [5].
However we have given arguments and experimental evidence for the superiority of
our version.

Therefore, we conclude that BiCGstab(l) may be considered as a competitive
algorithm to solve nonsymmetric linear systems of equations.
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Fig. 5.5. Convergence plot for example 4 (201 × 201).
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